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Judging Model Reduction of Chaotic Systems via Optimal Shadowing Criteria
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A common goal in the study of high dimensional and complex system is to model the system by
a low order representation. In this letter we propose a general approach for assessing the quality of
a reduced order model for high dimensional chaotic systems. The key of this approach is the use of
optimal shadowing, combined with dimensionality reduction techniques. Rather than quantify the
quality of a model based on the quality of predictions, which can be irrelevant for chaotic systems
since even excellent models can do poorly, we suggest that a good model should allow shadowing by
modeled data for long times; this principle leads directly to an optimal shadowing criterion of model
reduction. This approach overcomes the usual difficulties encountered by traditional methods which
either compare systems of the same size by normed-distance in the functional space, or measure how
close an orbit generated by a model is to the observed data. Examples include interval arithmetic
computations to validate the optimal shadowing.

PACS numbers: 05.45.-a 05.10.-a 05.45.Xt 89.75.Hc

Model reduction is an important concept found across
science and engineering. Approximating gross scale fea-
tures of high dimensional systems is a fundamental ques-
tion which occupies a great deal of time and energy in
the study of such disparate mathematical fields as PDE
theory, time-delay systems, networked dynamical sys-
tems, and where-ever high dimensional problems natu-
rally arise from the underlying science from which come
the models. The POD method for example [1] is a pop-
ular way to produce a basis set for high-dimemensional
data from solutons of PDEs, onto which the resulting
Galerkin projections are optimal in the sense of a fastest
decaying time-average power spectrum. Underlying such
techniques there is usually the common thread of min-
imization of the ℓ2 distance in the functional space be-
tween the actual system and its reduced order model -
models are considered best in the Banach space. How-
ever, for chaotic systems, use of the ℓ2 minimization crite-
ria to compare the two functions for determining whether
a model is good may not be relevant, since two functions
can be close in an underlying Banach space, but exhibit
dramatically different dynamical properties [2].

Likewise, a reasonable model, even a perfect model,
may quickly produce quickly and dramatically differ-
ent simulation results - it is well known that comparing
time-series from simulations is an unworkable criterion
of model comparison due to sensitive dependence. When
random noise or modeling error is introduced, as is ar-
guably always the case in practice, even a seemingly per-
fect model would suffer from conflicting judgements. The
sensitivity to perturbations prevents us from the compar-
ing chaotic systems by direct comparison of their trajec-
tories, since even (almost) identical systems would fail
such a measure of comparison. See Fig. 1 as an example.

To judge a model reduction, it is too much to hope that
a model will be capable to reproduce trajectories of the
full system, due to the chaotic nature of the system, as

well as technical details of comparing trajectories which
arise from systems of different dimensionality. We assert
that such comparisons are meaningless good or bad be-
cause the expectation that the results will always be bad.
Instead, we will judge a model to be a good representa-
tion if its trajectories can numerically shadow trajectories
of the full system. In this sense, the model is producing
plausible solutions, if not the actual simulations.
Shadowing was introduced initially to rigorously verify

the existence of a true orbit from a model to a computer
generated orbit which is usually noisy [3–7]. Given a
noisy orbit p = {pt}, a model generated orbit x = {xt}
is said to ǫ−shadow p if ||x − p||∞ ≡ supt ||xt − pt||2 <
ǫ [18]. From now on these subscripts of norms will be
omitted unless otherwise specified.
In terms of judging the model quality, we wish to asso-

ciate the capability of the model to shadow observation
with its quality. However, most shadowing techniques
were developed only to find an arbitrary ǫ−shadowing
orbit, which may be far from optimal (there may be an-
other shadowing orbit with a much smaller ǫ), preventing
us from a good judgement of the model. To overcome this
ambiguity, we ask: what is the best orbit the model can
produce, to match the observed orbit? This amounts to
judge the quality of a model f : D → D for given obser-
vation p by the optimal shadowing distance:

ǫopt ≡ inf
x1∈D

||x− p||, (1)

where D ⊂ R
m and x is an orbit of x1 under f [19].

For deterministic systems, this question is equivalent to
finding the initial point which leads to a true orbit that
can step-by-step match the noisy orbit best.
Based on the concept of optimal shadowing, we focus

on the question of how to understand the quality of a
model reduction, meaning how well does a model of lower
dimensionality represent the dynamics of the full system.

http://arxiv.org/abs/1003.0254v1
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FIG. 1: Illustration of the difficulty in judging a model by
comparing orbits directly. In the upper panel, a noisy numer-
ical orbit p = {pt}

50
t=1 of the logistic map is shown (in black

square). This orbit satisfies pt+1 = 4pt(1−pt)+δt where δt is
uniformly distributed in [−210, 210]. Blue triangle represents
a true, noiseless orbit z = {zt}

50
t=1 with z1 = p1 = 0.8724....

Note that although z is close to p for initial times, after about
10 steps they start to diverge. On the other hand, starting
with s1 = 0.8723..., we found a true orbit s = {st}

50
t=1, shown

in (red) crosses, which is able to match the entire noisy orbit
p. Although generated by the same model, p and s appar-
ently leads to different conclusions about the model quality if
we were to judge a model by comparing time series naively.

Since a high dimensional system and its reduced order
model necessarily generate time series of different dimen-
sions, there is currently no direct way of comparing two
such models. Our approach to solve this problem can be
illustrated by the diagram in Fig. 2. Given a high dimen-
sional system and its candidate reduced order model: we
first generate time series from the original system; next,
dimensionality reduction is performed to extract a low
dimensional representation of the time series; finally, we
look for an optimal shadowing orbit from the reduced
order model to match the low dimensional time series.
The reduced order model, being a simplification of the
original one, suffers from two types of inexactness. The
first type comes from dimensionality reduction, which ac-
counts for the loss of information in simplifying the ob-
servation; the second type comes from shadowing, and
is crucial for assessing the model quality of chaotic sys-
tems, which here accounts for the capability of the given
model to generate one orbit that matches the observed
(low dimensional) time series.

This approach allows us to quantify the quality of a
model reduction even for chaotic systems, which is not
likely to be achieved by traditional methods. Further-
more, the flexibility in emphasizing in between dimen-
sionality reduction and shadowing errors allows one to
adjust the measure of model quality in different situa-
tions depending on specific applications.

To illustrate this perspective, we consider the prob-
lem of modeling a system of coupled chaotic oscillators.
Coupled oscillators have been studied extensively as pro-
totypical of complex systems [8, 9], with promising ap-
plications ranging widely from the modeling of flocking
behavior [10], to mathematical epidemiology where col-
lective behavior leads to mean field model of disease dy-

FIG. 2: General model reduction design cycle. (Down) A
large scale system gives rise to a many variate time-series.
(Bottom Across) Averaging across scales gives rise to a lower
dimensional system with correspondingly fewer measurable
variables in the output time-series. (Up) The step of judging
model quality is usually overlooked in the design cycle. To in-
fer model quality, in some way the model must be required to
remind of the full system. Here we advocate that prediction
is inappropriate due to sensitive dependence to initial condi-
tions. Instead we suggest an optimal shadowing criterion.

namics [11], to mention a few. In any of these settings
where many coupled oscillators may arise, it is natural
to average across spatial scales so that a model with just
a few oscillators may be meant to represent the system,
in the sense that an element of the model may represent
many elements of the whole. In the much the same way
as a community analysis of complex networks where the
topology allows partitioning into groups [12, 13], in dy-
namical systems we assert that groups of oscillators may
exist with similar behavior. When a system is modeled by
a large collection of coupled oscillators the natural ques-
tion is how might the simplified low order model captures
similar properties of the original high order system?
We choose to illustrate our approach by a system of

coupled quadratic maps, described by:

x
(i)
t+1 = a(i)x

(i)
t (1− x

(i)
t )− σ

n
∑

j=1

lija
(j)x

(j)
t (1− x

(j)
t ), (2)

where {x(i)}i=1,...,n represent a set of coupled oscillators,

x
(i)
t ∈ ℜd is the state of oscillator i at time t; each

individual oscillator is driven by a discrete logistic dy-
namics with parameter a(i), which allows possible mis-
match of parameters between different individual oscil-
lators, which is usually the case for a physical setting;
the second term describes the effective coupling between
different oscillators through a discrete Laplacian matrix
L = [lij ]n×n, where for each i,

∑n

j=1 lij = 0; and σ is the
coupling strength. The coupling function has been cho-
sen to have the same form of the individual dynamics,
which corresponds to the situation where each oscillator
receives a direct signal from the output of its neighbors.
For this high (n× d) dimensional coupled system, sev-
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eral questions are of particular interest, as initial explo-
ration for the general problem, and will be answered in
this letter. Fig. 3 serves as an illustration.

1 In what sense can we model a coupled identical oscil-
lator network by a single oscillator?

2 In what sense can we model a coupled non-identical

oscillator network by a single oscillator?
3 In what sense can we model a nearly synchronized clus-

ter by a single oscillator?

For question 1, a general criteria is whether the system
synchronizes or not. When the oscillators synchronize,

limt→∞ ||x
(i)
t −x

(j)
t || → 0 for ∀i, j. After transient, all the

oscillators evolve in the same way, and the second term in
Eq. (2) disappears (there will be no error in dimension-
ality reduction or shadowing). Any single oscillator i is

governed by the same dynamics: x
(i)
t+1 = ax

(i)
t (1 − x

(i)
t ).

Thus we can perfectly model the coupled system by a
single, low dimensional system: st+1 = ast(1− st).

FIG. 3: Illustration of a model reduction of the coupled oscil-
lator network. In the first case (top ellipse), all the oscillators
are the same; in the second case (middle ellipse) the oscillators
are mismatched; while in the third case, the network consists
of a cluster of identical oscillators with a few outliers. The
rectangles represent individual oscillators (the width and color
are used to highlight the difference of individual oscillators).
In all cases, we are interested in whether model reduction is
possible from the original system to a low dimensional system
(represented by a single oscillator on the right).

Questions 2 and 3 are intriguing. In these cases, the
oscillators are unable to completely synchronize, thus a
single oscillator model may not exactly represent the true
collective behavior of the coupled system. In particular,
if one chooses the average trajectory as a low dimensional
representation of the high dimensional time series, then
this average variable is governed by

āt+1 =
1

n

n
∑

i=1

a(i)x
(i)
t (1−x

(i)
t )−

σ

n

n
∑

i,j=1

lija
(j)x

(j)
t (1−x

(j)
t ),

(3)

which depends essentially on every single oscillator, im-
plying that the dimension of the system is as high
as the original coupled system. Even in the situa-
tion where the oscillators are nearly synchronized [14]:

lim supt ||x
(i)
t − x̄t|| ≈ 0, if one were to use mean-field

approximation,replacing x
(i)
t with x̄t and a(i) with ā, re-

sulting in a model:

āt+1 = āx̄t(1− x̄t), (4)

then at each step this model generates error (compar-
ing to the actual average state) which comes from the
heterogeneity of the individual dynamics, and its effect
might be tremendous depending on how the heterogene-
ity distributes among the oscillators. Nevertheless, our
approach overcomes the difficulty and provide a quanti-
tative measure of the reduced order model.
We shall illustrate this for case 2 by the use of op-

timal shadowing for the average trajectory. As a mat-
ter of example, we will construct a network of logistic
oscillators whose individual parameters a(i) are drawn
uniformly from [3.9998, 4] in order to emphasize oscilla-
tor mismatch. We couple those oscillators through an
Erdős-Rényi network [15] of n = 1000 and p = 0.1 (the
probability that any two nodes are joined by an edge),
with coupling strength σ = 0.0075.
The dependence of optimal shadowing distance de-

pends upon the parameter a for a one-parameter family
of reduced models f(x) = ax(1−x). Here we use a finite
trajectory of length T = 1000 after transients. ǫopt are
calculated by use of interval arithmetic, with the excel-
lent package “INTLAB” [16], in order to validate that
we are representing reasonable upper bounds of the ac-
tual optimal shadowing distances. Results are shown in
Fig. 4, for a typical trajectory generated by the original
network. It is interesting to note the difference between
using the shadowing criteria in contrast to the usual ℓ2
criteria: while the model error seems to depend symmet-
rically on a under the ℓ2 criteria, shadowing is able to
capture the asymmetry which seems to be more reason-
able because of the increase of topological entropy for
increasing a. Shadowing also has the advantage to judge
how long the reduced order model is valid for the orig-
inal system (the optimal shadowing distance increases
non-smoothly when we take longer trajectories), another
perspective the ℓ2 criteria does not provide. We have also
obtained similar results in the case of modeling a nearly
synchronized cluster (case 3), which will be reported in
a more detailed paper.
The above example demonstrates the judging of a

model reduction by measurement of the optimal shad-
owing distance from a model to the average trajectory
from the original system. Our choice to use such an av-
erage was selected to minimize the square distance to
all other individual trajectories, i.e., the dimensional-
ity reduction error. To illustrate this perspective, con-
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FIG. 4: (Color online) Optimal shadowing distances of re-
duced order model for a coupled oscillator network. This
system consists of mismatched logistic oscillators coupled
through a network of n = 1000 nodes and p = 0.1, with cou-
pling strength σ = 0.0075. Blue square corresponds to the
optimal shadowing distance for a one-parameter family of re-
duced order models f(x) = ax(1− x); black star corresponds

to the ℓ2 norm
√

∑T−1

t=1
|f(xt)− xt+1|2/T .

sider a toy example where we have two logistic oscil-
lators with parameters 3.9998 and 4, coupled through
a network of Laplacian matrix L = [2,−2;−1, 1] with
coupling strength σ = 0.25. The dimensionality reduc-
tion of the time series [x(1),x(2)] can be represented by
a convex sum: x = (1 − λ)x(1) + λx(2). For given λ,
the dimensionality reduction error can be defined as:

η(λ) =
√

∑

i ||x− x(i)||2/(2T ) where T is the length

of x. In Fig. 5 we show how one would obtain dif-
ferent dependence of the model reduction error ζ(λ) =
(1− µ)η(λ) + ǫopt(λ) on λ. It is interesting to note espe-
cially in the last panel (lower right of Fig. 5) that when
we emphasize purely on the modelability of the low di-
mensional system, then the trajectory from the single
oscillator x

(2) would induce the best model (among the
family of models f(x) = ax(1 − x)). On the other hand,
for other choice of µ, the optimal λ would change, not
necessarily equals 1/2, as expected.

In general it will be interesting to ask such questions as
in a large network, how shall we take the weighted aver-
age of individual trajectories to reach an optimal balance
between dimensionality reduction and shadowing; or how
nonlinear dimensionality reduction can be adopted in the
case of generalized synchronization [17]. Some of the re-
sults will be reported in a future paper.

To summarize, we have proposed a general approach
for assessing the quality of reduced order models for high
dimensional chaotic systems. The key in this approach is
the unusual application of concepts from shadowing, to-
ward the optimal shadowing criterion, combined with di-
mensionality reduction techniques. This approach over-
comes perhaps overlooked problems inherent with tradi-
tional methods of comparison which may either attempt
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FIG. 5: (Color online) Interplay between dimensionality re-
duction error and shadowing error. In each panel the hori-
zontal axis corresponds to λ and vertical axis corresponds to
the model reduction error: ζ(λ) = (1 − µ)η(λ) + ǫopt(λ), for
fixed µ.

to compare systems of the same size by measuring the
distance in the functional space, or alternatively to mea-
sure how close an orbit generated by a model is to the
observed data. Both of these perspectives have funda-
mental flaws which our optimal shadowing based cost
function overcomes.
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