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1. Introduction

The simple Dirichlet Lagrangian

L =
1

4
(Dµz)

† · (Dµz), (1.1)

where † denotes the Hermitian conjugate, may represent e.g. a free quantum particle

described by a wave function z. It is trivial when z is a scalar function of its variables

and Dµ is just a partial derivative. However the model becomes nontrivial and has found

many applications if the target space is a complex Grassmanian manifold and the partial

derivatives (Dµz) turn into the appropriate covariant derivatives. The most popular are

CPN−1 models, whose target spaces are complex G(1, N) Grassmanians, equivalent to

projective spaces (CP stands for complex projective). The target space is a set of

lines intersecting at the origin or, equivalently, the N − 1 dimensional Riemann sphere

immersed in an N -dimensional vector space. The two-dimensional space of independent

variables is the simplest nontrivial one. In that case the variables z are subject to the

constraint

z† · z = 1, (1.2)

and the covariant derivative has the form

Dµz = ∂µz − (z† · ∂µz)z, ∂µ = ∂ξµ, µ = 1, 2. (1.3)

These systems are the subject of our investigation in this paper.

The main objective of the paper is to formulate differential projective geometry

in terms of projective operators, which makes it explicitly invariant under scaling by

any scalar function. Some applications of the projectors have been introduced earlier

in [9, 16]. In this paper we construct a basis of projectors which map onto orthogonal

one-dimensional subspaces and use it to express all other quantities. As the model

is exactly solvable [9, 15], the formulation encompasses the spectral problem and the

surfaces whose immersion conditions are the dynamics equation of the system.

Instead of the Cartesian variables (ξ1, ξ2) ∈ R2, we use more convenient complex

variables (ξ, ξ̄) ∈ C, where ξ = ξ1 + i ξ2 (complex conjugates are marked by a bar over

a symbol). The complex plane is usually compactified to the Riemann sphere.

To avoid the inconvenient non-analytic condition (1.2) the model dynamics is

usually expressed in terms of

z = f/|f |, |f | =
(

f † · f
)1/2

, (1.4)

without any constraints on the new variable f . The Euler-Lagrange (E-L) equations in

the new variables read
(

I−
f ⊗ f †

f † · f

)

·

[

∂∂̄f −
1

f † · f

(

(f † · ∂̄f)∂f + (f † · ∂f)∂̄f
)

]

= 0, (1.5)



Invariant formulation of surfaces associated with CPN−1 models 3

where ∂ and ∂̄ are derivatives with respect to the complex independent variables ξ and

ξ̄ respectively, I is the N ×N unit matrix.

On the other hand, equation (1.5) does not have the simplicity of the original

Lagrangian. Moreover the solutions in terms of the new variables are not unique: the

same Grassmanian solution corresponds to infinitely many f ’s. To achieve uniqueness,

a constraint has to be imposed on f ; most often it relies on putting its first nonzero

component equal to 1.

It seems that more natural variables in the CPN−1 and all Grassmanian models

are projection operators, more precisely orthogonal projectors mapping onto individual

directions in the CPN−1 models or on the appropriate subspaces in Grassmanians of

higher order. The orthogonal projector which maps onto a one-dimensional subspace in

the direction f may be written as

P = [1/(f † ·f)]f ⊗ f †. (1.6)

It is evident that such projectors (as well as other orthogonal projectors) are Hermitian

P † = P . They are also subject to a constraint, but the constraint is analytic and simple

P 2 = P, (1.7)

while the Lagrangian is as simple as the one for z [16, 8]:

L = tr(∂P · ∂̄P ). (1.8)

Similarly to the case of the z variables, the appropriate constraint, (1.7) in this case,

is multiplied by a Lagrange multiplier and subtracted from the Lagrangian before

taking the variation of the action integral. The variation yields the E-L equations

for the projectors, which can be expressed in the well-known form of a conservation law

[15, 16, 8], namely

∂ [∂̄P, P ] + ∂̄ [∂P, P ] = 0. (1.9)

More details on the CPN−1 sigma models may be found in [16, 8]. In the present paper

we concentrate on the consequences of expressing their theory in terms of the projectors.

This paper is organized as follows. In section 2 we list the basic algebraic

and analytical properties of orthogonal projectors which map onto one-dimensional

subspaces. Invariant recurrence relations, which follow from those properties, are

summarized without much detail (the detailed discussion is given in our other paper [3]).

In section 3 we discuss the mutual connection between the projectors and the surfaces

whose conditions for immersion (the Gauss-Codazzi-Ricci equations) are equivalent to

(1.9). Section 4 contains a discussion of the linear problem and the corresponding wave

function. Finally, we list the conclusions and possible directions for further work.

2. Properties of projectors mapping onto 1D subspaces

Here we list the properties of the orthogonal projection matrices P which map onto one-

dimensional subspaces. All of the discussed properties follow from the defining property

(1.7) and from the fact that the target is one-dimensional.
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(i) From the definition of the projective property (1.7) it follows that the operators P

are diagonalizable and their eigenvalues are 0 or 1.

(ii) If a projector maps onto a one-dimensional subspace, its rank is one and thus only

one of the eigenvalues is one, the rest being zero. Hence for such P

tr(P ) = 1. (2.1)

The diagonalisation may always include placing the only nonzero eigenvalue in the

first row and first column.

(iii) By differentiating the defining property (1.7) we obtain after straightforward

computation

∂P · P = (I− P ) · ∂P, P · ∂P = ∂P · (I− P ) (2.2)

and the same holds for the “barred” derivative ∂̄. In other words: an exchange with

∂P or ∂̄P turns P into I− P and vice versa.

Induction yields a more general property about the exchange of P with an arbitrary

number of ∂P and ∂̄P in arbitrary order

P · ∂P · ∂̄P · ... · ∂P = ∂P · ∂̄P · ... · ∂P · P (2.3)

if the total number of the derivatives ∂P, ∂̄P is even, or

P · ∂P · ∂̄P · ... · ∂P = ∂P · ∂̄P · ... · ∂P · (I− P ) (2.4)

if the total number of the derivatives ∂P, ∂̄P is odd.

The above properties hold for all projection operators, regardless of the dimension

of their target subspace and the projection angle.

(iv) If an orthogonal projector P maps onto a one-dimensional subspace then, for any

square matrix A having the same dimension as the space, we have

P · A · P = tr(P · A)P. (2.5)

The proof by diagonalisation follows directly from the property that only one

eigenvalue of P is one, while the others are zero. A consequence of this property

is the necessary and sufficient condition that a projection of any projector Q onto

the projector P is a zero matrix, that is

P ·Q · P = 0 iff tr(P ·Q) = 0, (2.6)

which is compatible with the definition of the scalar product [3]

(A,B) = −(1/2)tr(A ·B). (2.7)

(v) The following traces vanish:

tr(P · ∂P · P · ∂̄P · ... · ∂P ) = 0, (2.8)
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where the matrix product of derivatives contains any odd number of the ∂ and

∂̄ derivatives in arbitrary order, while the number of the projectors P and their

positions in the product are also arbitrary.

Proof: If the product contains at least one operator P : Write any of the operators

P in the product as P ·P and exchange the right P with ∂P and ∂̄P , one by one, up

to the rightmost position, while moving the left P in the same way to the leftmost

position. On each exchange, P turns into I − P and vice versa (property 2.4). If

we do not encounter the product P · (I−P ) = 0 or (I−P ) ·P = 0 (which ends the

procedure), we end up with

tr
(

P · ∂P · P · ∂̄P · ... · ∂P · (I− P )
)

(2.9)

if the number of the derivatives to the left of the P is even while that to the right

is odd, or

tr
(

(I− P ) · ∂P · P · ∂̄P · ... · ∂P
)

(2.10)

if the number of the derivatives to the left of the P is odd while that to the right

is even. In either case the trace is zero because a cyclic permutation of the factors

yields an expression containing the product P · (I− P ) = 0 or (I− P ) · P = 0.

If the product contains only derivatives, without P operators, the unit matrix may

be put as the first factor and represented as P + (I − P ). The same procedure as

before yields zero for each of the components. Q.E.D.

(vi) Properties involving 2nd derivatives of the projectors P are interesting as such

derivatives occur in the E-L equations (1.9). It follows from tr(P · ∂P ) = 0 and

tr(P · ∂̄P ) = 0 (a special case of (2.8)) that

tr(P · ∂2P ) = −tr(∂P · ∂P ), (2.11)

with analogous formulae for the ∂∂̄ and ∂̄2 derivatives.

(vii) If the P operator also satisfies the E-L equations (1.9), then we have

tr(P · ∂̄P · ∂∂̄P ) = 0 (2.12)

The proof is straightforward if we use property (2.2) and the invariance of traces

on cyclic permutations.

(viii) While traces of products of an odd number of derivatives vanish for the P

projectors, the traces of an even number can significantly be simplified by the

following property: For any square matrix A (of the proper dimension) we have the

factorisation property

tr(A · ∂P · ∂P · P ) = tr(A · P )tr(∂P · ∂P · P ), (2.13)

with analogous formulae in which one or both ∂ derivatives are replaced by ∂̄.
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Proof: From equation (2.3) we have

tr(A · ∂P · ∂P · P ) = tr(A · P · ∂P · ∂P · P ), (2.14)

which yields equation (2.13) by property (2.5).

(ix) Gram-Schmidt orthogonalization

Given a set of linearly independent vectors in a vector space, we can

always construct an orthonormal basis by using the well-known Gram-Schmidt

orthogonalization procedure. An orthogonal basis has its counterpart in the

corresponding set of projectors. If we represent one-dimensional projectors as

matrices in the new orthonormal basis, the i-th projector Pi is represented by a

matrix having one nonzero diagonal element, zii = 1, while all other elements of

the matrix are zero.

This straightforward procedure is not so trivial if the vectors and projectors are

functions of the mainfold parameters e.g. ξ, ξ̄ and we want the basis vectors to

satisfy the E-L equations (1.5) or, equivalently, the corresponding projectors Pi to

satisfy equation (1.9). The Gram-Schmidt orthogonalization operators which map

solutions of (1.5) to consecutive orthogonal solutions are [2, 16]

P+(f) = (I− P ) · ∂f, (2.15)

which we refer to as a “creation operator” and

P−(f) = (I− P ) · ∂̄f, (2.16)

which is called an “annihilation operator”. The corresponding “creation” and

“annihilation” operators for one-dimensional projectors were found in [3]. They

are defined by

Π−(Pk) = Pk−1, Π+(Pk) = Pk+1. (2.17)

while their explicit form reads

Π−(P ) =
∂̄P · P · ∂P

tr(∂̄P · P · ∂P )
=

(I− P ) · ∂̄P · ∂P

tr(∂̄P · P · ∂P )
=

∂̄P · ∂P · (I− P )

tr(∂̄P · P · ∂P )
, (2.18)

and

Π+(P ) =
∂P · P · ∂̄P

tr(∂P · P · ∂̄P )
=

(I− P ) · ∂P · ∂̄P

tr(∂P · P · ∂̄P )
=

∂P · ∂̄P · (I− P )

tr(∂P · P · ∂̄P )
, (2.19)

The complete basis is obtained if we apply the creation operator 0, 1, . . . , N − 1

times to any holomorphic solution of (1.5) or its projector counterpart (2.17). The

construction may also be performed in the opposite direction by means of the

annihilation operator, starting from an antiholomorphic solution.

It immediately follows from (2.18, 2.19), that the result of the “creation” or

“annihilation” is always orthogonal to the original projector

Π+(P ) · P = P ·Π+(P ) = 0 and Π−(P ) · P = P ·Π−(P ) = 0 (2.20)
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(x) If the basis is built by the above Gram-Schmidt orthogonalisation, starting from

a vector which is a holomorphic function of ξ, then the projectors whose target

subspaces are vectors of the basis, satisfy

tr(∂P · ∂P ) = 0, tr(∂̄P · ∂̄P ) = 0. (2.21)

Other projectors mapping onto one-dimensional subspaces do not have to satisfy this

equation. The proof will be given in Appendix A.

Using properties (i)–(x) we can prove all the properties required for the model to

be consistent.

(i) If P is an orthogonal projector and P+1 = Π+(P ) exists, then P+1 is also an

orthogonal projector: it has the projective property P 2
+1 = P+1 and its kernel is

orthogonal to its target subspace. The same is true of Π−(P ). Moreover the trace

of ∂P ·P · ∂̄P vanishes iff the whole matrix vanishes (the same holds for ∂̄P ·P ·∂P ),

which ensures the possibility of constructing P±1 whenever the matrix is nonzero.

(ii) The operators Π+ and Π− are inverses of each other, i.e. Π+ (Π−(P )) =

Π− (Π+(P )) = P , provided that the inner operation on P is possible.

(iii) If P satisfies the E-L equations (1.9) and P+1 = Π+(P ) exists, then P+1 also satisfies

those equations.

The proofs are in Appendix A.

3. Projectors and soliton surfaces

We first recall some of the previously known results. It has been shown in [4] that the

conservation law (1.9) may be interpreted as a condition for the contour integral

X(ξ, ξ̄) = i

∫

γ

(

−[∂P, P ]dξ + [∂̄P, P ]dξ̄
)

, (3.1)

to be independent of the path of integration γ. This defines a mapping of an area on a

Riemann sphere into a set of su(N) matrices Ω ∋ (ξ, ξ̄) 7→ X(ξ, ξ̄) ∈ su(N) ≃ RN2−1.

This generalised Weierstrass formula for immersion of 2D surfaces in RN2−1 [6, 7, 10]

defines surfaces in terms of the projectors P . The compatibility conditions of the

immersion constitute the conservation law (1.9). The integration may be performed

explicitly for the surfaces corresponding to the projectors Pk obtained recursively from

the holomorphic solution. It yields ([5], see also the proof in Appendix A)

Xk = −i

(

Pk + 2

k−1
∑

j=0

Pj

)

+
i(1 + 2k)

N
I, k = 0, . . . , N − 2. (3.2)

For k = N − 1 equation (3.2) gives an equation equivalent to that for k = 0, which

reduces the number of surfaces (or algebraically independent immersion functions).
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Inversely, we can obtain the projectors Pk from the surfaces Xk either as a linear

combination of the surfaces X0, . . . , Xk

Pk = i

k
∑

j=1

(−1)k−j (Xj −Xj−1) + (−1)kiX0 +
1

N
I, (3.3)

or by a nonlinear formula which depends on Xk only [3]

Pk = Xk
2 − 2i

(

2k + 1

N
− 1

)

Xk −
2k + 1

N

(

2k + 1

N
− 2

)

I. (3.4)

The projective property P 2
k = Pk apparently imposes a constraint on the surfaces

Xk. Does it constitute an equation defining those surfaces or is it identically satisfied by

the surfaces constructed from (3.2)? To verify this, we examine the projective property

for Pk, where we substitute the Pk with (3.4). Direct substitution of (3.4) into the

projective property yields a 4th degree equation. However a simpler, 3rd degree condition

may be obtained by multiplying (3.4) by Xk and making use of the fact that Pk is

orthogonal to all the lower-index projectors. The 3rd degree condition obtained in this

way may be factorised to the form

[

Xk − i

(

1 + 2k

N
− 2

)

I

][

Xk − i

(

1 + 2k

N
− 1

)

I

] [

Xk − i
1 + 2k

N
I

]

= 0. (3.5)

This condition has a simple interpretation if we diagonalise it, which is always possible as

the Xk matrices are antihermitian. The diagonalised form (3.5) consists of a product of

matrices containing merely eigenvalues of Xk minus a number equal to i[(1+2k)/N−2],

i[(1 + 2k)/N − 1] or i(1 + 2k)/N . We find that equation (3.5) is always satisfied if the

surfaces have been constructed according to (3.2). That is

• The component i(1+2k)/N has been added to each diagonal element of the sum of

projectors (3.2) to make Xk traceless. Therefore it occurs as a component of every

eigenvalue of Xk.

• The component 2i subtracted from i(1+2k)/N is a contribution due to 2i
∑k−1

j=0
Pj

as each of the Pj has one eigenvalue equal to 1 and the other eigenvalues equal to

0. It occurs at the indices of the dimensions onto which P1 . . . Pk−1 map.

• The component i subtracted from i(1 + 2k)/N is a contribution due to −i Pk. It is

a component of the eigenvalue at the index pointing at the dimension onto which

Pk maps.

• Nothing is subtracted from i(1 + 2k)/N at the indices k + 1 . . .N pointing at the

dimensions onto which none of P0, . . . , Pk map.

Thus equation (3.5) is the lowest degree constraint on the immersion functions Xk of

the surfaces. If we directly substituted (3.4) into the projective property, we would get

an equivalent condition: the equation would differ from (3.5) by the middle factor: in

the 4th degree condition the factor [Xk − i ((1 + 2k)/N − 1) I] is squared.
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Although equation (3.5) is obvious when we look at the source of Xk (3.2), it is

nevertheless a nontrivial constraint on the surfaces. Since all the eigenvalues are in-

dependent of the coordinates (ξ, ξ̄), the whole kinematics of a moving frame (vielbein)

may only be due to variation of the diagonalising (unitary) matrix.

Differential geometry of the surfaces. Once we have the immersion functions

of the surfaces, we can describe their metric and curvature properties.

(i) The diagonal elements of the metric tensor are zero. This property, proven in [3],

directly follows from property (2.21). Let gk be the metric tensor corresponding to

the surface Xk. Its components will be marked with indices outside the parentheses

to distinguish them from the number of the surface. We have

(gk)11 = −
1

2
tr(∂Xk ·∂Xk) =

1

2
tr([∂Pk, Pk] · [∂Pk, Pk]) = −

1

2
tr(∂Pk ·∂Pk) = 0, (3.6)

where we have successively applied the definition of the metric tensor, the definition

of Xk given in (3.1), property (2.2) and property (2.21). The vanishing of (gk)22
follows from the Hermitian conjugate of (3.6).

(ii) The nonzero off-diagonal element (gk)12 = (gk)21 is equal to

(gk)12 = −
1

2
tr(∂Xk · ∂̄Xk) = −

1

2
tr([∂Pk, Pk] · [∂̄Pk, Pk]) =

1

2
tr(∂Pk · ∂̄Pk). (3.7)

Thus the 1st fundamental form reduces to

Ik = tr(∂Pk · ∂̄Pk) dξdξ̄. (3.8)

The second form

IIk = (∂2Xk − (Γk)
1
11∂Xk)dξ

2 + 2∂∂̄Xkdξdξ̄ + (∂̄2Xk − (Γk)
2
22∂̄Xk)dξ̄

2, (3.9)

is easy to find when we determine the Christoffel symbols (Γk)
1
11 and (Γk)

2
22. These

are the only nonzero components of the Γ. We have from (3.7)

(Γk)
1
11 = ∂ ln (gk)12, (Γk)

2
22 = ∂̄ ln (gk)12. (3.10)

Using (3.1) and the E-L equations (1.9) together with (3.10), we can write (3.9) as

IIk = −tr(∂Pk · ∂̄Pk) ∂
[∂P, P ]

tr(∂Pk · ∂̄Pk)
dξ2 + 2[∂̄P, ∂P ]dξdξ̄

+ tr(∂Pk · ∂̄Pk) ∂̄
[∂̄P, P ]

tr(∂Pk · ∂̄Pk)
dξ̄2

(3.11)

Examples of the metric for surfaces induced by Veronese solutions of the E-L

equations (1.5) are given in [3].



Invariant formulation of surfaces associated with CPN−1 models 10

4. Projectors and the spectral problem

The spectral problem is closely related to the immersion functions of the surfaces. The

relation between the wave functions and the immersion functions is given by the Sym-

Tafel formula [11, 12, 13, 14], and they are also related by their asymptotic properties.

These aspects of the theory were discussed in [3]. In this section we concentrate on the

consequences of their representation in terms of projectors.

Similarly to the surfaces, the wave functions of the spectral problem can also be

expressed in terms of the projectors. The spectral problem found by Zakharov and

Mikhailov [15] reads

∂Φk =
2

1 + λ
[∂Pk, Pk]Φk, ∂̄Φk =

2

1− λ
[∂̄Pk, Pk]Φk, k = 0, 1, . . . , N − 1, (4.1)

where λ ∈ C is the spectral parameter and the wave functions are given by [1]

Φk = I+
4λ

(1− λ)2

k−1
∑

j=0

Pj −
2

1− λ
Pk, (4.2)

Φk
−1 = I−

4λ

(1 + λ)2

k−1
∑

j=0

Pj −
2

1 + λ
Pk. (4.3)

This in turn yields the projectors Pk in terms of the wave functions [3]

Pk = (1/4)
[

2(1 + λ2)I− (1− λ)2Φk − (1 + λ)2Φ−1

k

]

. (4.4)

The projective property may be represented in terms of Φk as a factorisable 4th degree

expression with one double (squared) factor, resembling the corresponding equation for

the surfaces Xk, namely

P 2
k −Pk = (1/16)Φ−2

k (I−Φk)
[

(1 + λ)2 − (1− λ)2Φk

]

[(1 + λ)− (1− λ)Φk]
2 = 0. (4.5)

It may be interpreted in the same way as the equivalent relation for the surfaces (3.5).

We can also obtain a 3rd degree equation in which all of the linear factors are of the

1st degree. This may be performed in a way similar to the derivation of (3.5), i.e. by

multiplying (4.4) by Φk and applying the orthogonality of Pk to P0 . . . Pk−1.

5. Concluding remarks

The description of CPN−1 models in terms of orthogonal projection operators has a few

advantages compared with their description in terms of vectors. It is natural, and the

picture which it provides is clear. At the same time it need not be more difficult than

that in terms of vectors, provided that we know a few identities of the projector algebra

and analysis (such as those listed in Section 2). The construction of an orthogonal basis

in terms of projectors is straightforward. Also the principal conditions required for the

consistency of the model are easy to prove.
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The technique presented above for constructing an increasing number of surfaces

associated with CPN−1 sigma models on Euclidean spaces can lead to a detailed

analytical description of the surfaces in question. This description provides us with

effective tools for finding surfaces without invoking any additional considerations,

proceeding directly from the given CPN−1 sigma model equations (1.9).

In the next stage of this research, it would be worthwhile to extend the presented

approach to more general sigma models based on Grassmannian manifolds, i.e. the

homogeneous spaces

G(m,n) =
SU(N)

S (U(m)× U(n))
, N = m+ n. (5.1)

Grassmannian sigma models are a generalization of CPN−1 sigma models. Their

important common property is that the Euler-Lagrange equations can best be written in

terms of projectors. They share a lot of properties like an infinite number of local and/or

nonlocal conserved quantities, infinite-dimensional symmetry algebras, Hamiltonian

structures, complete integrability, the existence of multisoliton solutions, etc. The

investigation of surfaces for this case can lead to different classes and much more diverse

types of surfaces than the ones discussed in this paper. The geometrical aspects of such

surfaces will be described in more detail in a future work.
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Appendix A. Proofs of consistency properties

Here we use the properties (i–x) of the projection operators mapping onto one-

dimensional subspaces in order to prove several properties required for the consistency

of the description of the CPN−1 model in terms of projection operators.

(i) The projective property of the P “promoted” by the creation operator (2.17) has

been proven in [3]. However we may obtain it immediately by using the property

(2.5)

Π+(P ) ·Π+(P ) =
∂P · P · ∂̄P · ∂P · P · ∂̄P

[tr(∂P · P · ∂̄P )]2
=

∂P · P · ∂̄P

[tr(∂P · P · ∂̄P )]
= Π+(P ), (A.1)

where the property (2.5) has been applied to transform the numerator in (A.1)

according to

(∂P · P · ∂̄P ) · (∂P · P · ∂̄P ) = tr(∂P · P · ∂̄P ) ∂P · P · ∂̄P. (A.2)
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A by-product of the proof is a demonstration that the trace of ∂P ·P · ∂̄P vanishes

iff the whole matrix vanishes. Namely, if the trace vanishes then the r.h.s. of (A.2)

is zero, but it is a square of a Hermitian matrix ∂P · P · ∂̄P . Hence it vanishes iff

the matrix vanishes.

This means that the construction of Π+(P ) from P (2.19) is correct and always

possible, except for the cases in which ∂P ·P · ∂̄P vanishes. In this case Π+(P ) = 0

is indeterminate.

Mutatis mutandis we may prove the projective property and correctness of the

construction for Π−(P ).

The orthogonality of the projectors Π+(P ) and Π−(P ) follows from the fact that

they are Hermitian (which may be checked in a straightforward way).

(ii) In order to make the model consistent, we should have

Π− (Π+(P )) = P and Π+ (Π−(P )) = P, (A.3)

provided that the action of the creation operator (first case) or the annihilation

operator (second case) can be executed. For shorthand notation we introduce

P+1 = Π+(P ); P−1 = Π−(P ) (A.4)

According to the definition of Π±,we have to prove that ∂̄P+1 ·P+1 ·∂P+1/tr(∂̄P+1 ·

P+1 · ∂P+1) = P , provided that P+1 6= 0.

To assess ∂̄P+1 · P+1 · ∂P+1 and its trace, note that we may double P+1 in this

expression, due to its previously proven projective property.

∂̄P+1 · P+1 · ∂P+1 = ∂̄P+1 · P+1 · P+1 · ∂P+1 (A.5)

Note also that the second half of the r.h.s. in equation (A.5) is the Hermitian

conjugate of its first half. Consider the first half. We have

∂̄P+1 · P+1 = ∂̄
∂P · P · ∂̄P

tr(∂P · P · ∂̄P )
·

∂P · P · ∂̄P

tr(∂P · P · ∂̄P )

=
(P · ∂̄∂P · ∂̄P + ∂P · ∂̄P · ∂̄P )∂P · P · ∂̄P

[

tr(∂P · P · ∂̄P )
]2

.

(A.6)

We apply properties (2.3) and (2.5) in order to replace some of the factors in the

numerator by the appropriate traces, then we use the property (2.13) to factor

those traces. The invariance of traces under cyclic permutations of factors allows

us to obtain (after cancellation of the common factor)

∂̄P+1 · P+1 =

[

tr(∂̄∂P · P ) + tr(∂P · ∂̄P · P )
]

P · ∂̄P

tr(∂P · P · ∂̄P )
(A.7)

Using the property (2.11) and then the exchange property (2.2), we further get

∂̄P+1 · P+1 =

[

−tr(∂P · ∂̄P ) + tr(∂P · ∂̄P · P )
]

P · ∂̄P

tr(∂P · P · ∂̄P )
= −P · ∂̄P (A.8)
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Hence, combining the above result with its Hermitian conjugate, we finally get

Π− (Π+(P )) =
P · ∂̄P · ∂P · P

tr(P · ∂̄P · ∂P · P )
= P (A.9)

due to property (2.5). Q.E.D.

(iii) We now prove, by a different method than that of [5], the equation (3.2), expressing

Xk as a sum of projectors. An equation obtained in the proof will also be used to

demonstrate another property necessary for the consistency of the model: if Pm

satisfies the E-L equation (1.9), then Pm+1 = Π+(Pm) also does.

Proof: The surfaces Xk are defined by (3.1) up to a constant matrix (whose diagonal

elements are uniquely determined by the condition that the traces of Xk vanish).

Hence it is sufficient to prove that

∂Xk = −i∂Pk − 2i

k−1
∑

j=0

∂Pj , (A.10)

∂̄Xk = −i∂̄Pk − 2i
k−1
∑

j=0

∂̄Pj, (A.11)

or equivalently

[∂Pk, Pk] = ∂Pk + 2

k−1
∑

j=0

∂Pj , (A.12)

[∂̄Pk, Pk] = −∂̄Pk − 2

k−1
∑

j=0

∂̄Pj . (A.13)

This thesis will be proven by induction. For k = 0, equations (A.12) and (A.13)

reduce to

∂P0P0 − P0∂P0 = ∂P0 and ∂̄P0P0 − P0∂̄P0 = −∂̄P0 (A.14)

which by property (2.2) are equivalent to

P0 · ∂P0 = 0 and ∂̄P0 · P0 = 0 (A.15)

where P0 maps onto a direction of a holomorphic function. Let z be a unit vector

in that direction. Then P0 = z⊗ z and z depends only on ξ, while z† depends only

on ξ̄. Hence

P0 · ∂P0 = z ⊗ z† · ∂z ⊗ z† = (z† · ∂z)z ⊗ z† = 0 (A.16)

since z† · ∂z = ∂(z† · z) = 0 for any holomorphic unit vector z. The second half of

(A.14) is the Hermitian conjugate of the first half.

Let (A.12 and A.13) now hold for k = m ≥ 0. By property (2.2) we have

∂̄Pm+1 · Pm+1 − Pm+1 · ∂̄Pm+1 = 2∂Pm+1 · Pm+1 − ∂̄Pm+1 (A.17)
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We may replace 2 ∂̄Pm+1 ·Pm+1 by −2Pm∂̄Pm using (A.8). Applying property (2.2)

to one of these two Pm∂̄Pm we get

[∂̄Pm+1, Pm+1] = −∂̄Pm+1 + [∂̄Pm, Pm]− ∂̄Pm (A.18)

On the basis of the induction hypothesis, (A.18) turns into

[∂̄Pm+1, Pm+1] = −∂̄Pm+1 − 2

m
∑

j=0

∂̄Pj , (A.19)

which is exactly the second part of the thesis, i.e. (A.13). The first part of the

thesis: (A.12) is its Hermitian conjugate. Q.E.D.

From the intermediate result (A.18) we obtain the connection between the E-L

equations (1.9) for Pm and those for Pm+1. Applying the ∂ derivative to (A.18),

the ∂̄ derivative to its Hermitian conjugate, and subtracting the results of the

differentiation from each other we obtain

∂ [∂̄Pm+1, Pm+1] + ∂̄ [∂Pm+1, Pm+1] = ∂ [∂̄Pm, Pm] + ∂̄ [∂Pm, Pm], (A.20)

whence Pm+1 satisfies the E-L equations (1.9) iff Pm does, provided that the

construction of Pm+1 from Pm is possible. This result may also be used in the

opposite direction: when the construction of Pm−1 from Pm is possible, then Pm−1

satisfies the E-L equations iff Pm does. This is another criterion of consistency of

the model.

Another by-product of the proof is the demonstration of property (x) (2.21) (from

which it follows that the metric tensor gk of the surfaces Xk has zeros on the diagonal

(gk)11 = (gk)22 = 0). Indeed (2.21) obviously holds for k = 0, when P = z⊗z†. If it

holds for k = m then, writing (A.18) as [∂̄Pm+1, Pm+1]+ ∂̄Pm+1 = [∂̄Pm, Pm]− ∂̄Pm

and squaring both sides, we obtain (using property (2.2) and the invariance of traces

under cyclic permutations)

tr(∂̄Pm+1 · ∂̄Pm+1) = tr(∂̄Pm · ∂̄Pm), (A.21)

which yields the thesis for all k by induction.
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