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Abstract
In this paper, we study discrete-time quantum walks on one-dimensional lattices. We find that

the coherent dynamics depends on the initial states and coin parameters. For infinite size of

lattice, we derive an explicit expression for the return probability, which shows scaling behavior

P (0, t) ∼ t−1 and does not depends on the initial states of the walk. In the long-time limit, the

probability distribution shows various patterns, depending on the initial states, coin parameters

and the lattice size. The average mixing time Mǫ closes to the limiting probability in linear N (size

of the lattice) for large values of thresholds ǫ. Finally, we introduce another kind of quantum walk

on infinite or even-numbered size of lattices, and show that the walk is equivalent to the traditional

quantum walk with symmetrical initial state and coin parameter.

PACS numbers: 03.67.Lx, 05.40.Fb, 03.65.Db, 03.67.Ca
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I. INTRODUCTION

Random walk is related to the diffusion models and is a fundamental topic in discussions
of Markov processes. Several properties of (classical) random walks, including dispersal
distributions, first-passage times and encounter rates, have been extensively studied. The
theory of random walk has been applied to computer science, physics, ecology, economics,
and a number of other fields as a fundamental model for random processes in time [1–3].

Quantum random walk, which is a natural extension of the classical random walk, has at-
tracted a great deal of attention in the scientific community in recent years. The continuous
interest in the study of quantum random walk can be partly attributed to its broad applica-
tions in the field of quantum information and computation [4, 5]. Quantum random walks
can be used to design highly efficient quantum algorithms for quantum computer [6, 7]. For
example, Grovers algorithm can be combined with quantum walks in a quantum algorithm
for glued trees which provides even an exponential speed up over classical methods [7–9].
Besides their important applications in quantum computation, quantum walks are also used
to model the coherent exciton transport in solid state physics [10]. This could be done in the
framework of the tight-binding model, which is equivalent to the so-called continuous-time
quantum walk on discrete structures [11, 12]. It is shown that the dramatic non-classical
behavior of quantum walks can be attributed to quantum coherence, which does not exist
in the classical random walks.

In the literature, there are two types of quantum random walks: discrete-time and
continuous-time quantum walks [13]. The main difference between them is that discrete
time quantum walk requires a ”coin”-which is just any unitary matrix-plus an extra Hilbert
space on which the coin acts, while continuous-time quantum walks do not need this extra
Hilbert space. Aside from this, these two versions are similar to their classical counterparts.
Discrete-time quantum walks evolve by the application of a unitary evolution operator at
discrete time intervals, and continuous-time quantum walks evolve under a (usually time-
independent) Hamiltonian. Unlike the classical case, the extra Hilbert space for discrete-time
quantum walks means that one cannot obtain the continuous quantum walk from the dis-
crete walk by taking a limit as the time step goes to zero. This is because discrete time
quantum walks need an extra Hilbert space, called the ”coin” space, and taking the limit
where the time step goes to zero does not eliminate this Hilbert space. Although there is
no natural limit to go from the discrete to continuous quantum walks for general graphs,
Ref. [14] offers a treatment of this limit for the quantum walk on the line, where it is pos-
sible to meaningfully extract the continuous-time walk as a limit of the discrete-time walk.
The dynamics of quantum walks of both types has been studied in detail for walks on an
infinite line-for the continuous-time case in Refs. [11, 15, 16] and for the discrete-time case in
Refs. [17–20], it has been shown that the properties of discrete and continuous time quantum
walks are different.

Here, we focus on discrete-time quantum walks (DTQWs). Previous work have studied
DTQWs on the line and cycles. The behavior of DTQWs on the line is strikingly different
from the classical random walks because of quantum interference. The variance σ2 of the
quantum walk is known to grow quadratically with the number of steps, t, σ2 ∝ t2, compared
to the linear growth, σ2 ∝ t, for the classical random walk [13, 19]. Since the cycle (or one-
dimensional lattice) is a line segment with periodic boundary conditions, the solutions of
quantum walks on cycles can be simplified greatly on consideration of the Fourier space of
the particle [21]. For a classical random walk on a 1D lattice of size N , the mixing time
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Mǫ converges to the uniform distribution in time O(−N2lnǫ) [21]. Quantum mechanically,
the probability oscillates forever and in general do not mix even instantaneously. However,
by defining a time-averaged probability distribution, the quantum walks can mix to the
uniform or non-uniform distribution. In Ref. [22], Bednarska et al. have studied the long-
time limiting probability distribution for a Hadamard walk on 1D lattice (cycles). They have
shown that the Hadamard walk converges to the uniform distribution on odd-numbered size
of cycles but it converges to a nontrivial distribution on even-numbered 1D lattices. Previous
studies related to DTQWs on 1D lattices (cycles) focus on a particular choice of the initial
state and coin parameter [23–25]. Here, we consider DTQWs on 1D lattices for various initial
states and coin parameters, and discuss the effect of these parameters on the properties of
the quantum dynamics.

In this paper, we give a systematic study of DTQWs on 1D lattice with various initial
states and coin parameters. We explore the time evolution of the walk, return probability,
long-time limiting probability and mixing times, and compare the properties for various
initial states and coin parameters. The paper is organized as follows: In Sec. II we briefly
review discrete-time quantum walks on regular graphs. In Sec. III, we derive analytical
results for DTQWs on 1D lattice and find an explicit formula for the return probability. We
also do computer simulation to implement DTQWs on 1D lattice for various parameters,
and find that the numerical results accurately agree with our analytical results. In Sec. IV,
we study the properties of mixing times and discuss the influence of the parameters of the
walk. In Sec. V, we define another kind of quantum walk on infinite or even-numbered size
of lattices, and prove that the defined walk is equivalent to the traditional quantum walk
with symmetrical initial state and coin parameter. Conclusions are given in the last part,
Sec. VI.

II. DISCRETE-TIME QUANTUM WALKS

Discrete-time quantum walk was first introduced by Mayer and Aharonov et al. in
Ref. [26, 27]. Discrete-time quantum walk takes place in a discrete space of positions,
with a unitary evolution of coin toss and position shift in discrete time steps. Here, we
define discrete-time quantum walks (DTQWs) on d-regular graph, which is a regular graph
each vertex has exactly d edges.

The discrete-time quantum walk on d-regular graph happens on the coin Hilbert space Hc

and position Hilbert space Hp, the total Hilbert space is given by H = Hc⊗Hp [13]. If the d-
regular graph has N vertices we have Hp = {|i〉 : i = 1, 2, ..., N}, Hc = {|ei〉 : i = 1, 2, ..., d}.
The coin flip operator Ĉ and position shift operator Ŝ are applied to the total state in
H at each time step [13]. The coin flip operation Ĉ (only acting on Hc) is the quantum
equivalent of randomly choosing which way the particle will move, then the position-shift
operation Ŝ moves the particle according to the coin state, transferring the particle into the
new superposition state in position space. For every vertex, all the outgoing edges is labeled
as 1, 2, . . . , d. The conditional shift operation Ŝ moves the particle from v to w if the edge
(v, w) is labeled by j on v’s side [13]:

Ŝ|ej〉 ⊗ |v〉 =

{
|ej〉 ⊗ |w〉, if ej

v = (v, w)
0, otherwise.

(1)

The evolution of the system at each step of the walk is governed by the total operator,

Û = Ŝ(Î ⊗ Ĉ), (2)
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where Î is the identity operator in Hp. Thus the total state after t steps is given by,

|ψ(t)〉 = Û t|ψ(0)〉. (3)

Finally, we obtain the probability distribution,

P (x, t) =
d∑

i=1

|〈ei, x|ψ(t)〉|2 =
d∑

i=1

|〈x| ⊗ 〈ei|ψ(t)〉|2. (4)

For d-regular graphs, the coin flip matrix Ĉ can be of various forms. The most common
coins analyzed in the field are the Grover coin and the discrete Fourier transform (DFT)

coin [13, 28]. It is shown that the choice of coin flip Ĉ and initial coin state strongly influence
the behavior of discrete-time quantum walks. In the next section, we will concentrate
DTQWs on 1D lattice. We will choose a general form of the initial coin state and coin flip
matrix, and derive analytical results for the walk.

III. DISCRETE-TIME QUANTUM WALKS ON ONE-DIMENSIONAL LATTICE

DTQWs on the line has already been analyzed in detail and the equivalence of all unbiased
coin operators has been noted by several authors [17–20, 29–31]. Here, we continue to use
this framework and extend the calculations for DTQWs on 1D lattices.

A. Analytical solutions

In the following, we restrict our attention to DTQWs on 1D lattice. Without loss of
generality, we consider the one-parameter family of coins,

Ĉ =

( √
ρ

√
1 − ρ√

1 − ρ −√
ρ

)
, 0 6 ρ 6 1 (5)

The value of ρ = 1/2 corresponds to the Hadamard coins, which is a balanced coin and
involves the coin into each direction in Hc with equal probability. Suppose the particle was
initially (t = 0) localized at vertex x0 and the initial coin states distributed in the coin
subspace,

|ψ(0)〉 = (
√
a|e1〉 +

√
1 − aeiφ|e2〉) ⊗ |x0〉, (6)

where the two parameters a ∈ [0, 1] and φ ∈ [0, 2π). The position shift operator Ŝ has the
following form [13],

Ŝ = (
∑

i

|i− 1〉〈i|) ⊗ |e1〉〈e1| + (
∑

i

|i+ 1〉〈i|) ⊗ |e2〉〈e2|. (7)

The total states |ψ(t)〉 and probability distribution P (x, t) after t steps are determined by
Eqs. (3) and (4). The solution of the problem can be greatly simplified in the Fourier space.
The Fourier transformation of the state in particle Hilbert space can be written as,

|ψ̃N(k, t)〉 =
1√
N

N∑

x=1

e2πikx/N |ψN(x, t)〉, x ∈ {1, 2, ..., N}. (8)
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Then the time evolution of the states in the Fourier picture turn into a single difference
equation,

|ψ̃N(k, t)〉 = Ũ(k)|ψ̃N(k, t− 1)〉, (9)

where Ũ(k) is time evolution operator in the Fourier space,

Ũ(k) =

( √
ρe−2πki/N

√
1 − ρe−2πki/N

√
1 − ρe2πki/N −√

ρe2πki/N

)
. (10)

The solution of (9) is,

|ψ̃N(k, t)〉 = Ũ(k)t|ψ̃N(k, 0)〉, (11)

where |ψ̃N(k, 0)〉 is the Fourier transformation of the initial state. To evaluate the pow-

ers of the propagator Ũ(k), it is convenient to diagonalize Ũ(k) using its eigenvalues and
eigenstates. Using En(k) and |qn(k)〉 to represent the nth eigenvalue and orthonormalized

eigenvector of the propagator (Ũ(k)|qn(k)〉 = En(k)|qn(k)〉, n = 1, 2), Eq. (11) can be written
as,

|ψ̃N(k, t)〉 =
2∑

i=1

Et
i (k)〈qi(k)|ψ̃N(k, 0)〉|qi(k)〉. (12)

In the above Equation, Fourier transformation of the initial states is given by |ψ̃N(k, 0)〉 =
1√
N
e2πikx0/N |C0〉, where the initial coin state |C0〉 ≡

√
a|e1〉 +

√
1 − aeiφ|e2〉. By performing

the inverse Fourier transformation, we obtain the particle state in position representation
as follows,

|ψN(x, t)〉 = 1√
N

∑N
k=1 e

−2πikx/N |ψ̃N(k, t)〉
= 1

N

∑N
k=1 e

−2πik(x−x0)/N
∑2

j=1E
t
j(k)〈qj(k)|C0〉|qj(k)〉.

(13)

Finally, we get the probability distribution,

P (x, t) = |〈e1|ψN(x, t)〉|2 + |〈e2|ψN(x, t)〉|2
= 1

N2

∑2
m=1 |

∑N
k=1 e

−2πik(x−x0)/N

×∑2
j=1E

t
j(k)〈em|qj(k)〉〈qj(k)|C0〉|2.

(14)

Substituting eigenvalues Ej(k) and eigenvectors |qj(k)〉 (See Eq. (B1) in Appendix B) into
the above equation, we obtain the probability distribution for DTQWs on 1D lattice. We
have performed numerical implementations which confirm the prediction of Eq. (14). It is
evident that the probability distribution depends on the initial coin states |C0〉, eigenvalues

and eigenstates of Ũ(k). In the following, we will use the above equation to report the time
evolution of the probability distribution for different initial states and coin parameters.

B. Time evolution

In this section, we explore the probability distribution according to Eq. (14). Specifically,
we consider the following initial coin states (a) |C0〉 = |e1〉, (b) |C0〉 = 1√

2
(|e1〉 ± |e2〉) and

(c) |C0〉 = 1√
2
(|e1〉 ± i|e2〉) with ρ = 3/4, ρ = 1/2 and ρ = 1/4.

Figure 1 shows the probability distribution P (x, t) at t = 20 on 1D lattice of size N = 40.
We note that the initial coin states |C0〉 give strong influence to evolution of P (x, t). For
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FIG. 1: (Color online) Probability distribution of DTQWs on 1D lattice of size N = 40 at t = 20.

The three rows are for ρ = 3/4 (row 1), ρ = 1/2 (row 2) and ρ = 1/4 (row 3) while the three

columns correspond to the initial state |C0〉 = |e1〉 (column (a)), |C0〉 = 1√
2
(|e1〉 ± |e2〉) (column

(b)) and |C0〉 = 1√
2
(|e1〉 ± i|e2〉) (column (c)). The initial node is at x0 = N/2 = 20.

the initial states (a) and (b), P (x, t) is asymmetric at the initial states. On the contrary, for
initial state (c), P (x, t) is symmetric and displays the same distribution for different initial
phase φ = ±π/2. We also note from the figure that, the coin parameter ρ does not bias
the walk; whether P (x, t) symmetric or asymmetric is totally determined by the initial coin
state |C0〉.

Another interesting observation is that the velocities of the two counterpropagating peaks
is different for different values of ρ. We find that the peaks spread faster for large values of
ρ (Compare the row (1)-(3) in Fig. (1)). This result is consistent with the result in Ref. [32]
where the positions of the peaks vary linearly with the time steps t. In Ref. [32], the authors
show that the peak velocity v is a constant value (v ∝ √

ρ) and differs in sign for the two
directions.

It is instructive to consider the extreme values of parameter ρ. If ρ = 0, the coin flip
operation Ĉ becomes the Pauli X operation, the two states cross each other going back and
forth, thereby remaining close to initial excited node. If ρ = 1, the coin flip operation Ĉ
becomes the Pauli Z operation, the two superposition states |e1〉 and |e2〉 move away from
each other without any diffusion and interference. These two extreme cases are not of much
importance, but they define the limits of the behavior. Intermediate values of ρ between
these extremes show intermediate drifts and quantum interference.

We also studied the evolution of probability distribution P (x, t) on different lattice size,
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initial states and coin parameters. The results are analogous to the case we have shown.
The probability distribution generated by DTQWs consists of two counterpropagating peaks.
Between the two dominant peaks the probability decays like t−1 while outside the peaks the
decay is exponential. The probability distribution P (x, t) exhibits symmetric or asymmetric
characteristics depending on the initial coin states.

C. Return probabilities

Now, we consider a particular case of the probability distribution, return probability
P (x = x0, t), which means the probability of finding the walker at the initial node. In order
to study the scaling behavior of P (x = x0, t), we consider return probability on infinite size
of lattice. In the continuum limit N → ∞, θ(k) = 2πk/N in the eigenvalues and eigenstates
(See Eq. (B1)in Appendix B) become quasicontinuous, the return probability P (x = x0, t)
in Eq. (14) can be written as an integral form,

P (x = x0, t)|N→∞ = 1
2π

∑2
m=1 |

∫ π

−π
(
∑2

j=1〈em|qj(θ)〉
×〈qj(θ)|C0〉Et

j(θ))dθ|2
= 1

2π

∑2
m=1 |

∫ π

−π
〈em|q1(θ)〉〈q1(θ)|C0〉e−itω(θ)dθ

+
∫ π

−π
〈em|q2(θ)〉〈q2(θ)|C0〉(−1)teitω(θ)dθ|2

(15)

where E1 = e−iω(θ), E2 = −eiω(θ) and ω(θ) = arcsin(
√
ρ sin θ) are applied in the above

equation.
In Appendix B, we use the stationary phase approximation (SPA) (See Appendix A) to

calculate the above integral. We find that the integral is finally simplified as,

P (x = x0, t)|N→∞ =

{
2
√

1/ρ−1

πt
, if t ∈ Even,

0 if t ∈ Odd.
(16)

Equation (16) indicates that the return probability show scaling behavior P (x =
x0, t)|N→∞ ∼ t−1. We note that the return probability does not depend on the parame-
ters (a and φ in |C0〉, see Eq. (6)) of the initial states. Particularly, when ρ = 1/2, we obtain
the return probability for Hadamard walks: P (x0, t)|N→∞ = 2/(πt). The parameter ρ only
affects the coefficient of the scaling t−1. The scaling behavior of P (x0, t)|N→∞ is analogous
to the return probability of continuous-time quantum walks. For continuous-time quantum
walks on 1D lattice, the return probability is given by π(t) = |J0(2t)|2 ≈ sin2(2t+π/4)/(πt),
where Jn(x) is the Bessel function of the first kind [33, 34]. Thus, both the return probabil-
ity of the discrete-time and continuous-time quantum walks show the same scaling behavior
t−1.

In order to test the prediction of Eq. (16), Fig. 2 shows the return probability P (x = x0, t)
on a 1D lattice of size N = 200 with ρ = 1/4, ρ = 1/2 and ρ = 3/4 for the first 100 steps.
In our calculation, we fix the value of ρ and try to change the initial states of the walks, and
find that the return probabilities are exact the same. This confirms our conclusion that the
return probability is independent on the initial coin states. We also show the theoretical
predictions of Eq. (16) in Fig. 2, which are in good agreement with the numerical results.
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FIG. 2: (Color online) Return probability P (x = x0, t) on 1D lattice of size N = 200 with ρ = 1/4

(triangles), ρ = 1/2 (dots) and ρ = 3/4 (squares) in the first 100 steps. The lines show the

predictions of Eq. (16) for ρ = 1/4 (dashed line), ρ = 1/2 (solid line) and ρ = 3/4 (dotted line),

respectively. Since P (x = x0, t) equals to 0 at odd-numbered step t, we only plot P (x = x0, t) at

even-numbered step t in the figure.

D. Long-time limiting probabilities

In this section, we consider long time averages of the probability distribution. Generally,
the time-averaged distribution P̄ (x, T ) ≡ 1

T

∑T
t=1 P (x, t) converges to a constant value as

T → ∞. This value is defined as the long-time limiting probability,

χ(x) = lim
T→∞

P̄ (x, T ). (17)

Substituting the eigenvalues E1 = e−iω(θk) and E2 = −eiω(θk) into Eq. (14), we obtain,

P (x, t) = 1
N2

∑2
m=1 |

∑N
k=1 e

−2πik(x−x0)/N

×(e−iω(k)t〈em|q1(k)〉〈q1(k)|C0〉
+(−1)teiω(k)t〈em|q2(k)〉〈q2(k)|C0〉)|2

= 1
N2

∑2
m=1

∑N
k=1,k′=1 e

−2πi(k−k′)(x−x0)/N

×[e−iω(k)t〈em|q1(k)〉〈q1(k)|C0〉
+(−1)teiω(k)t〈em|q2(k)〉〈q2(k)|C0〉]
×[eiω(k′)t〈C0|q1(k′)〉〈q1(k′)|em〉
+(−1)te−iω(k′)t〈C0|q2(k′)〉〈q2(k′)|em〉].

(18)

Our goal is to calculate the long time averages of the probability distribution. Only two terms
of the product in Eq. (19) contributes if ω(k) = ω(k′), since limT→∞

1
T

∑T
t=1 e

±i(ω(k)−ω(k′))t =

δω(k),ω(k′) and limT→∞
1
T

∑T
t=1(−1)te±i(ω(k)+ω(k′))t = 0. Thus, the long-time limiting proba-

bility χ(x) can be simplified as,

χ(x) = 1
N2

∑2
m=1

∑N
k=1,k′=1 δω(k),ω(k′)e

−2πi(k−k′)(x−x0)/N

×[〈em|q1(k)〉〈q1(k)|C0〉〈C0|q1(k′)〉〈q1(k′)|em〉
+〈em|q2(k)〉〈q2(k)|C0〉〈C0|q2(k′)〉〈q2(k′)|em〉]

(19)
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FIG. 3: (Color online) Long-time limiting probability χ(x) on 1D lattice of size N = 40 for

ρ = 3/4 (row 1), ρ = 1/2 (row 2) and ρ = 1/4 (row 3) with initial state |C0〉 = |e1〉 (column (a)),

|C0〉 = 1√
2
(|e1〉 ± |e2〉) (column (b)) and |C0〉 = 1√

2
(|e1〉 ± i|e2〉) (column (c)). The walk starts at

the initial node x0 = N/2 = 20.

χ(x) is dependent on the initial coin states |C0〉 and coin parameter ρ (note the eigenstates
|q(k)〉 depends on ρ). Here, we report the long-time limiting probabilities for various initial
states |C0〉 and coin parameter ρ.

We consider the following initial coin states (a) |C0〉 = |e1〉, (b) |C0〉 = 1√
2
(|e1〉±|e2〉) and

(c) |C0〉 = 1√
2
(|e1〉 ± i|e2〉) with ρ = 3/4, ρ = 1/2 and ρ = 1/4. Fig. 3 shows the long-time

limiting probabilities χ(x) on 1D lattice of size N = 40. For initial state (c), χ(x) is a
symmetric distribution, i.e., χ(x) = χ(x′) if x− x0 = x0 − x′. χ(x) also displays localization
on the nodes nearing the initial node x0 and the opposite node x̂0 ≡ x0 + N/2 (mod N).
For the same initial state, it seems that small values of ρ lead to a strong localization than
large values of ρ (compare different rows in the same column). For initial state (a), χ(x) has
large values at the initial node x0 (or opposite node x̂0) and its next node x0 +1 (or x̂0 +1).
These high probabilities are exactly equal, i.e., χ(x0) = χ(x0 + 1) = χ(x̂0) = χ(x̂0 + 1). A
similar phenomena is also observed for the initial state (b) (See column (b) in Fig 3). χ(x)
has large values at the x0’s (or x̂0’s) previous or next nodes, depending on the sign of the
initial state. Here, χ(x0) = χ(x0 + 1) = χ(x̂0) = χ(x̂0 + 1) holds only when ρ = 1/2 (See
Fig. (3(2b))). The probabilities are equal at nodes x and x+N/2 (mod N) for all the initial
states and values of ρ. This behavior is a natural consequence of the periodic boundary
conditions of the 1D lattice. The limiting probability for initial state (c) is symmetric at the
origin node x0, i.e., χ(x− x0) = χ(x0 − x). However, this is not true for conditions (b) and
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(c). This feature is related to the initial coin states. Generally, symmetric initial state leads
to unbiased limiting probability distribution while asymmetric coin state produces biased
quantum walks.

In the above analysis, we have studied the limiting probabilities on lattice of size N = 40.
For odd values of N , we find that χ(x) is a uniform distribution for all the initial states and
values of ρ > 0. For even values of N , we find that the distribution pattern depends on the
parity of N/2. If N/2 is an even number, χ(x) has peaks at the nodes nearing origin node
and the opposite node. However, if N/2 is an odd number, χ(x) has a peak nearing the
origin node but a minimum nearing the opposite node. The minimum in odd N/2 is virtually
the mirror of the peak nearing the origin node x0 (See Fig. 1 in Ref. [22]). Nevertheless, the
situation is different for the extreme case ρ = 1 and ρ = 0. If ρ = 1, two superposition states
move away from each other without any diffusion and interference, the limiting probability
is a uniform distribution for all the initial states and values of N . If ρ = 0, the limiting
probability χ(x) is total determined by the initial states |C0〉 ≡ (

√
a|e1〉 +

√
1 − aeiφ|e2〉).

More specifically, the limiting probability χ(x) for ρ = 0 is summarized as,

χ(x) =





a/2, if x = x0 + 1,
1/2, if x = x0,
(1 − a)/2, if x = x0 − 1,
0, Otherwise

(20)

It is worth mentioning that the limiting probability distributions between the continuous-
time and discrete-time quantum walks are different. For continuous-time quantum walks
(CTQWs), the limiting probability only depends on the parity of N (See Eq.(21) and (22)
in Ref. [34]). On the contrary, the limiting probability for discrete-time quantum walks
depends on more ingredients. This is because the coin degrees of freedom of DTQWs offer
a wider range of controls over the evolution of the walk than the continuous-time quantum
walk.

IV. MIXING TIME

As mentioned in the previous section, the time averaged probability distribution P̄ (x, T )
converges to the limiting probability χ(x) as T → ∞. Here, we study this issue using the
concept of mixing time. Mixing time represents the rate at which the average probability
distribution P̄ (x, T ) approaches its asymptotic distribution χ(x). The average mixing time
is defined as follows,

Mǫ = min{ τ | ∀ T > τ,
∑

x

|P̄ (x, T ) − χ(x)| < ǫ}. (21)

Fig. 4 (a) shows the time dependence of the variation distance V (T ) ≡
∑

x |P̄ (x, T )−χ(x)|
on 1D lattices of size N = 10, N = 20 and N = 100. For long times, the variation distance
V (T ) oscillate frequently and decays approximately as 1/T . For odd-numbered size of N ,
the probability mixes to the uniform distribution, we also find a similar behavior of V (T )
(See V (T ) vs T for N = 11, N = 21 and N = 101 in Fig. 4 (b)).

Fig. 5 shows the dependence of the average mixing time Mǫ on the lattice size N with
different values of threshold ǫ, for the initial state |C0〉 = 1√

2
(|e1〉 ± i|e2〉). For sufficiently

10



1 10 100 1000 10000
10-4

10-3

10-2

10-1

100

 N=101
 N=21
 N=11

 

 

V
(T

)

T

(b)

1 10 100 1000 10000
10-4

10-3

10-2

10-1

100

 

 

V
(T

)

T

 N=100
 N=20
 N=10

(a)

FIG. 4: (Color online) Variation distance V (T ) as a function of time T for 1D lattices of size

N = 10 (dotted curve), N = 20 (solid curve) and N = 100 (dashed curve). The results are for

Hadamard quantum walks (ρ = 1/2) with symmetric initial state |C0〉 = 1√
2
(|e1〉 ± i|e2〉).

large ǫ, the average mixing time is a linear function of N . However, for small values of ǫ,
Mǫ shows wild fluctuation around the linear behavior Mǫ ∝ N .

We also try to compare the average mixing time Mǫ for different values of ρ and initial
states |C0〉. We consider quantum walks for the initial states (a), (b), (c) with ρ = 3/4,
ρ = 1/2 and ρ = 1/4. We find that quantum walk for initial states (c) with ρ = 3/4
has a smaller mixing time Mǫ than the other cases considered here. This may suggest
that quantum walks with symmetric initial states and large values of ρ mix to the limiting
probability distribution fast. We hope this conclusion can be used in constructing efficient
quantum algorithms.

V. NEW QUANTUM WALK ON 1D LATTICE

In this section, we introduce another kind of quantum walk on 1D lattice. The quantum
walk is defined on an infinite or even-numbered size of lattice. The walk starts at node x0

with initial coin state C0|〉 = a0|e1〉+ b0|e2〉, we endow ”direction” to the edges in the graph.
We label each edge a direction (|e1〉 or |e2〉), so that the edges incident on every node can
be labeled as two different directions and every edge between two nodes has the same label
at either end. Only 1D lattices of even-numbered size satisfy this condition. We illustrate
this kind of labeling in Fig. 6. The walk is evolved into the superposition of the coin space
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FIG. 5: (Color online) Dependence of mixing time Mǫ on the lattice size N with ǫ = 0.05, ǫ = 0.1,

ǫ = 0.2 and ǫ = 0.4. The results are obtained using ρ = 1/2 and symmetric initial state |C0〉 =
1√
2
(|e1〉 ± i|e2〉).

by applying the coin flip operation, then the shift operation Ŝ ′ moves the walker according
to

Ŝ ′ = [
∑

x∈G1
(|x− 1〉〈x| ⊗ |e1〉〈e1| + |x+ 1〉〈x| ⊗ |e2〉〈e2|)]

+[
∑

x∈G2
(|x+ 1〉〈x| ⊗ |e1〉〈e1| + |x− 1〉〈x| ⊗ |e2〉〈e2|)]

≡ Ŝ1 + Ŝ2,

(22)

where we use Ŝ1 and Ŝ2 to denote the two terms in the above equation. We separate the
total shift operation Ŝ into two different flip operators, Ŝ1 and Ŝ2, which are applied to two
different node group G1 = {x|..., x = x0 − 4, x = x0 − 2, x = x0, x = x0 + 2, x = x0 + 4, ...}
and G2 = {x|..., x = x0 − 3, x = x0 − 1, x = x0 + 1, x = x0 + 3, ...}, respectively. We
implement the above process iteratively to realize a large number of steps of the quantum
walk. The peculiarity of this walk distinguished from the traditional quantum walk is the
conditional shift operation Ŝ. In the traditional quantum walk, the shift operation Ŝ moves
the walker to the same side of the node, regardless of the position of the walker. However,
in our defined quantum walk, the shift operation Ŝ moves the walker toward different sides,
depending on the position of walker.

A natural question is ”what’s the relationship between the two kinds of quantum walks?”.
To answer this question, we consider the two quantum walks on the same 1D lattice. For
the sake of simplicity, we compare the wave function of the two quantum walks with dif-
ferent initial states and coin flip matrixes. Concretely, we consider the traditional quan-
tum walk with initial coin state |C0〉 = a0|e1〉 + b0|e2〉 and shift matrix Ĉ in Eq. (5), and
our defined quantum walk with initial coin state |C ′

0〉 = b0|e1〉 + a0|e2〉 and shift matrix

Ĉ ′ =

(√
1 − ρ

√
ρ√

ρ −√
1 − ρ

)
. After t steps, suppose the state of the traditional quantum walk

at node x is |ψ(x, t)〉 = (Ax,t|e1〉 + Bx,t|e2〉)|x〉, then the state of our defined quantum walk
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FIG. 6: (Color online) Illustration of the edge labeling on lattice of size N = 4 (a) and N = 3

(b). In (a), the edges 1 ↔ 2, 3 ↔ 4 are labeled as direction |e1〉, edges 2 ↔ 3, 1 ↔ 4 are labeled

as direction |e2〉. In (b), the edges 1 ↔ 2, 2 ↔ 3 are labeled as direction |e1〉 and |e2〉, but edge

1 ↔ 3 can’t be labeled as a single direction. (c) The labeling of coin direction for the traditional

quantum walk, where the left side of each node is labeled as |e1〉 and right side labeled as |e2〉. (d)

The labeling of our defined quantum walk. |e1〉 and |e2〉 are labeled to each edge and two nodes of

the edge has the same label.

|ψ′(x, t)〉 is given by,

|ψ′(x, t)〉 =

{
(Bx,t|e1〉 + Ax,t|e2〉)|x〉, x ∈ G1 if t ∈ Even,
(Ax,t|e1〉 −Bx,t|e2〉)|x〉, x ∈ G2 if t ∈ Odd.

(23)

The above conclusion can be proved using the method of mathematical induction. For
t = 0 and t = 1, it is easy to see that the wave functions satisfy the above equation. Now
suppose for t = T0 (T0 > 1) the conclusion also holds, then we obtain the wave function
|ψ(x, T0 + 1)〉 at t = T0 + 1 according to the iterative relations,

|ψ(x, T0 + 1)〉 = (
√
ρAx+1,T0

+
√

1 − ρBx+1,T0
)|e1〉|x〉

+(
√

1 − ρAx−1,T0
−√

ρBx−1,T0
)|e2〉|x〉

≡ Ax,T0+1|e1〉|x〉 +Bx,T0+1|e2〉|x〉
(24)

where we use Ax,T0+1 and Bx,T0+1 to represent the first two terms. Applying Ŝ ′(Î ⊗ Ĉ ′) to
|ψ′(x, T0)〉 and using the iterative relations, we obtain the wave function |ψ′(x, T0 + 1)〉 at
t = T0 + 1

|ψ′(x, T0 + 1)〉 =



(
√
ρAx+1,T0

+
√

1 − ρBx+1,T0
)|e1〉|x〉+

(−√
1 − ρAx−1,T0

+
√
ρBx−1,T0

)|e2〉|x〉, x ∈ G2 if T0 ∈ Even,
(
√

1 − ρAx−1,T0
−√

ρBx−1,T0
)|e1〉|x〉+

(
√
ρAx+1,T0

+
√

1 − ρBx+1,T0
)|e1〉|x〉. x ∈ G1 if T0 ∈ Odd.

(25)

Comparing Eqs. (24) and (26), we have

|ψ′(x, T0 + 1)〉 =
{
Ax,T0+1|e1〉|x〉 −Bx,T0+1|e2〉|x〉 x ∈ G2, if T0 ∈ Even,
Bx,T0+1|e1〉|x〉 + Ax,T0+1|e2〉|x〉, x ∈ G1, if T0 ∈ Odd.

(26)
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Therefore, our conclusion is also true for t = T0 + 1. According to the mathematical
induction, the relation holds for all the time steps. This completes our proof.

According to the deduction, the two types of quantum walks have the same probability
distribution. This indicates that our defined quantum walk is equivalent to the traditional
quantum walk with a symmetrical initial state and coin parameter ρ. We have performed nu-
merical implementations to realize the quantum walks defined here, and the results support
our findings.

VI. CONCLUSIONS

In summary, we have studied discrete-time quantum walks on one-dimensional lattices.
We show that the evolution of the quantum dynamics depends on the initial states and
coin parameters. For infinite size of lattice, we derive an explicit expression for the return
probability, which shows scaling behavior P (x = x0, t) ∼ t−1 and does not depends on the
initial states of the walk. In the long-time limit, the probability distribution shows various
patterns, depending on the initial states, coin parameters and the lattice size. The average
mixing time Mǫ closes to the limiting probability in linear N for large values of thresholds ǫ.
Finally, we define another kind of quantum walk on infinite or even-numbered size of lattices,
and find that the walk is equivalent to the traditional quantum walk with symmetric initial
state and coin parameter.
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APPENDIX A: THE STATIONARY PHASE APPROXIMATION (SPA)

Stationary phase approximation (SPA) is an approach for solving integrals analytically
by evaluating the integrands in regions where they contribute the most [35–37]. This method
is specifically directed to evaluating oscillatory integrands, where the phase function of the
integrand is multiplied by a relatively high value. Suppose we want to evaluate the behavior
of function I(λ) for large λ,

I(λ) =
1

2π

∫
g(x)e−λf(x)dx. (A1)

The SPA asserts that the main contribution to this integral comes from those points where
f(x) is stationary [df(x)/dx ≡ f ′(x) ≡ 0]. If there is only one point x0 for which f ′(x0) = 0
and d2f(x)/dx2|x0 ≡ f ′′(x0) 6= 0, the integral is approximated asymptotically by,

I(λ) ≈ 1√
2πλf ′′(x0)

g(x0)e
−λf(x0). (A2)

If there are more than one stationary points satisfy [df(x)/dx ≡ f ′(x) ≡ 0], then the integral
I(λ) is approximately given by the sum of the contributions [each being of the form given
in Eq. (A2)] of all the stationary points [36].
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APPENDIX B: CALCULATION OF THE RETURN PROBABILITY USING SPA

The eigenvalues and eigenstates of Ũ(k) can be written as,

E1 = e−iω(k), E2 = −eiω(k);
|u1〉 = [2 − 2

√
ρ cos(ω(k) − θ(k))]

×{√1 − ρ|e1〉 + [−√
ρ+ e−i(ω(k)−θ(k))]|e2〉},

|u2〉 = [2 + 2
√
ρ cos(θ(k) + ω(k))]

×{√1 − ρ|e1〉 + [−√
ρ− ei(ω(k)+θ(k))]|e2〉},

|q1〉 = |u1〉
〈u1|u1〉 , |q2〉 = |u2〉

〈u2|u2〉 ;

(B1)

where θ(k) = 2πk/N and sinω(k) =
√
ρ sin θ(k).

In the continuum limit N → ∞, the values of θk = 2πk/N are quasicontinuous, then the
return probability P (x = x0, t) can be written as the integral form in Eq. (15). Now we
apply SPA to calculate this integral. In Eq. (15), P (x = x0, t)|N→∞ can be written as,

P (x = x0, t)|N→∞ = I1 + I2, (B2)

where

I1 =
1

2π
|
∫ π

−π

〈e1|q1(θ)〉〈q1(θ)|C0〉e−itω(θ)dθ

+

∫ π

−π

〈e1|q2(θ)〉〈q2(θ)|C0〉(−1)teitω(θ)dθ|2,

I2 =
1

2π
|
∫ π

−π

〈e2|q1(θ)〉〈q1(θ)|C0〉e−itω(θ)dθ

+

∫ π

−π

〈e2|q2(θ)〉〈q2(θ)|C0〉(−1)teitω(θ)dθ|2.

(B3)

The stationary points of the above integrals satisfy ω′(θ) = d arcsin(ρ sin θ)/dθ =√
ρ cos(θ)/

√
1 − ρ sin2(θ) = 0. So the contribution of each integral comes from two sta-

tionary points θ = π/2 and θ = −π/2. The second-order derivations at θ = ±π/2 yield
ω′′(±π/2) = ∓√

ρ/
√

1 − ρ. According to the SPA and substituting θ = ±π/2 into Eqs. (B1)-
(B3), we obtain the integral I1 and I2 as follows,

I1 ≈ |z1 + z2 + z3 + z4|2, (B4)

where

z1 =
(1/ρ− 1)1/4

2
√
−2πit

(
√
a+ i

√
1 − aeiφ)e−itω0 ,

z2 = −i(1/ρ− 1)1/4

2
√
−2πit

(
√
a− i

√
1 − aeiφ)eitω0 ,

z3 = (−1)tz2, z4 = (−1)tz1.

(B5)

where ω0 = arcsin
√
ρ. And

I2 ≈ |f1 + f2 + f3 + f4|2, (B6)
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where

f1 = iz1, f2 = −iz2, f3 = (−1)tf2, f4 = (−1)tf1. (B7)

If t is odd, z1 + z4 = z2 + z3 = 0 and f1 + f4 = f2 + f3 = 0, the integral equals to 0. If t
is even, z1 = z4, z2 = z3, f1 = f4, f2 = f3, the integral is simplified as,

I = I1 + I2 = |2(z1 + z2)|2 + |2(f1 + f2)|2

=

√
1/ρ−1

2πt
×

[|(√a+ i
√

1 − aeiφ)e−itω0 + (−i√a−
√

1 − aeiφ)eitω0|2
+|(i√a−

√
1 − aeiφ)e−itω0 + (−√

a+ i
√

1 − aeiφ)eitω0 |2]
=

√
1/ρ−1

2πt
× 4

=
2
√

1/ρ−1

πt

(B8)

Therefore, we obtain the return probability

P (x = x0, t)|N→∞ =

{
2
√

1/ρ−1

πt
, if t ∈ Even,

0 if t ∈ Odd.
(B9)
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