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KdV solitons in Einstein’s vacuum field equations
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Abstract

We present a metric for which Einstein’s field equations in vacuum generate the
Kortweg-de Vries (KdV) equation and thus its N -soliton solutions solve the vacuum equa-
tions. The metric of the one soliton solution has been investigated and is a non-singular,
Lorentzian metric of type N in the Petrov classification.
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1 Introduction

Einstein’s field equations are inherently nonlinear and hence exact solutions for them are not

easy to obtain. Because of their nonlinearity, they are expected to have soliton solutions, at

least for some spacetimes. These are pulse-like travelling wave solutions having fascinating

properties, one being that they propagate without noticeable dispersion and interact without

change of form although they do not obey linear superposition. Einstein’s equations admit wave

solutions which is evident on linearization of these equations for some metrics. The problem of

obtaining such solutions for the field equations without linearization is however a more difficult

one, one reason being that no general solution of these equations is known. The techniques of

extracting soliton solutions of nonlinear evolution equations have been applied to the task of

obtaining exact solutions of Einstein’s equations. Belinski and Zakharov [1, 2, 3] (and [4] for

a comprehensive overview) modified the inverse scattering transform (IST) for application to

Einstein’s equation in vacuum, and since then there has been a consistent search for soliton

solutions of the vacuum equations based on their technique. Different metrics are taken as the

seed metric, from which soliton solutions are generated by the IST. In this manner, a number

of solutions of the Einstein equations have been found.
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In this paper, we approach the problem from a different direction. We attempt to construct

a metric for which the vacuum Einstein’s equations produce a well-known, nonlinear, evolution

equation, namely the Kortweg-de Vries (KdV) equation [5], which is known to be integrable, so

that the existence of N -soliton solutions and integrability of the system is assured. Substitution

of any of the soliton solutions in the metric will result in a spacetime solving the vacuum

Einstein’s equations. We specifically check the metric with one soliton solution and study its

properties, particularly, the curvature and classification scheme. The metric is Lorentzian and

using the Peres algorithm [6], we find that the metric obtained here belongs to the type N in

the Petrov classification scheme and is therefore a metric with radiation. Although the metric

apparently has a singularity at t = 0, we show that this is not a physical singularity and appears

only due to the choice of the coordinate system.

The plan of this paper is as follows: in section two, we present the metric that generates

the KdV equation. In section three, the metric with one soliton solution is discussed in detail.

The fourth section is the concluding one.

2 Vacuum spacetime and the KdV equation

We introduce the line element

ds2 = −
[

af 2(x, t)− 2fxx(x, t)
]

dt2+2
(

3

2
t
)

4

3

dx2−2f(x, t)dtdx+dy2+2
(

3

2
t
)

2

3

dxdy+dtdz (1)

where a is a constant and the subscripts denote partial derivatives. The only nonvanishing

element of the Ricci tensor for the metric (1) is Rtt and the corresponding vacuum equation for

it, Rtt = 0 yields the following nonlinear equation

fxt(x, t)− af(x, t)fxx(x, t)− af 2

x(x, t) + fxxxx(x, t) = 0. (2)

Setting a = 6 and performing one integration over x leads to one of the best-known integrable

nonlinear partial differential equation in the literature, namely, the KdV equation in its standard

form (the integration constant vanishes for soliton solutions [7])

ft(x, t)− 6f(x, t)fx(x, t) + fxxx(x, t) = 0. (3)

It is well known that the KdV equation has all the beautiful properties that characterize

an integrable, nonlinear system including an infinite number of conserved quantities in in-

volution (which defines Liouville integrability), N -soliton solutions, a bi-hamiltonian structure

among other properties (for a review of soliton equations, specially the KdV equation, and their

properties see [7, 8, 9, 10]). Apart from the source of much new mathematics, this equation

appears in a wide variety of physical problems. In integrable systems, like the KdV, dispersion
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is compensated by nonlinearity giving rise to soliton solutions of all orders called N soliton

solutions.

The one soliton solution (1SS) of the KdV equation is

f(x, t) = −
k2

2
sech2

η

2
(4)

where η = kx − k3t, k being the wave number. Equation (4) represents a inverted pulse of

sech2 profile travelling in the positive x direction. The KdV equation being nonlinear, linear

combinations of the one soliton solution do not provide new solutions. Instead, two soliton

solutions (2SS) may be constructed, which represent a nonlinear interaction of two solitons.

For the KdV, the 2SS is

f(x, t) =
1

2

(

k2

1
− k2

2

)

[

k2

2
cosech2(η2/2) + k2

1
sech2(η1/2)

(k2coth(η2/2)− k1tanh(η1/2))2

]

(5)

where η1 = k1x − k3

1
t and η2 = k2x − k3

2
t. That (4) and (5) satisfy the KdV equation (3) can

be verified by direct substitution.

Existence of soliton solutions alone does not imply integrability, although it is relevant to

mention that existence of at least three soliton solutions is a necessary condition for it. It is

well established that the KdV equation passes all tests of integrability.

3 Properties of the spacetime with one soliton solution

If we substitute f(x, t) from (4) into the metric (1), we obtain the following form for it.

ds2 = −k4sech2
η

2
dt2 + 2

(

3

2
t
)

4

3

dx2 + k2sech2
η

2
dtdx+ dy2 + 2

(

3

2
t
)

2

3

dxdy + dtdz (6)

which satisfies the vacuum Einstein equations. Substituting the two soliton solution (5) in (1)

would again lead to a metric satisfying the vacuum equations. In this manner, a hierarchy of

solutions of the vacuum equations can be constructed.

The metric (6) is Lorentzian with determinant detg = −1

4

(

3

2
t
)

4

3 . The nonzero components

of the Riemann-Christoffel curvature tensor Rµ
νρσ corresponding to the metric (6) are

R1

441
= −

2

9t2
(7)

R1

442
=

(2/3)2/3

3t8/3
(8)

R2

441
= −

(2/3)1/3

3t4/3
(9)

R2

442
=

2

9t2
(10)
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R3

141
=

22/331/3

t2/3
(11)

R3

142
=

4(2/3)1/3

3t4/3
(12)

R3

241
=

4(2/3)1/3

3t4/3
(13)

R3

242
=

2

9t2
(14)

R3

441
=

2k2sech2(η/2)

9t2
(15)

R3

442
=

(2
3
)2/3k2sech2(η/2)

3t8/3
(16)

It appears from the curvature components above, as well as the determinant of gµν , that the

metric is singular at t = 0. However, this is merely a coordinate singularity. To show this,

we first note that the curvature scalars RµνρσRµνρσ and RµνρσR
ρσλτR µν

λτ do not show any

singularity being constants equal to zero. Moreover, a coordinate transformation

t =
2

3
e−3τ (17)

allows us to write (6) as

ds2 = −4k4e−6τ sech2
ξ

2
dτ 2+2e−4τdx2−2k2e−3τ sech2

ξ

2
dτdx+dy2+2e−2τdxdy+2e−3τdτdz (18)

where ξ = kx − 2

3
k3e−3τ . The metric, in the form given by (18) remains Lorentzian with its

determinant being −e−10τ .

For the spacetime (18), the components of the curvature tensor are

R1

441
= −2 (19)

R1

442
= −3e2τ (20)

R2

441
= −2e−2τ (21)

R2

442
= 2 (22)

R3

141
= −6e−τ (23)

R3

142
= −4eτ (24)

R3

241
= −4eτ (25)

R3

242
= −e3τ (26)

R3

441
= 2k2sech2

ξ

2
(27)

R3

442
= 3e2τk2sech2

ξ

2
(28)
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The curvature components above are clearly non-singular. In addition, the curvature scalars

RµνρσRµνρσ and RµνρσR
ρσλτR µν

λτ are nonsingular.

Consider the one soliton metric in form given by (6). Under the asymptotic condition

η → ∞, sech2 η
2
→ 0, and we also find that the value of the determinant of the metric tensor

does not change and only the curvature components R3

441
and R3

242
vanish, other components

remaining unchanged. Hence, the metric remains non-singular under the above-mentioned

asymptotic condition.

For vacuum solutions, the Weyl conformal tensor Cµνρσ and the curvature tensor Rµνρσ

become identical. We apply the Peres algorithm to determine the Petrov classification of the

conformal tensor. In the present case,

Cµνρσ 6= 0 (29)

however

C2 = ⋆C2 = 0 and C3 = ⋆C3 = 0 (30)

where

C2 = CµνρσCµνρσ (31)

⋆C2 = ⋆CµνρσC
µνρσ (32)

C3 = CµνλξC
λξρσCµν

ρσ (33)

⋆C3 = ⋆CµνλξC
λξρσCµν

ρσ (34)

where

⋆ Cµνρσ =
1

2
ηµνλξC

λξ
ρσ (35)

ηµνλξ being the fully anti-symmetric tensor in four dimensions. The Peres algorithm states that

equations (29) and (30) imply that the spacetime is type N or III. Additionally, in our case,

the following contraction of the Weyl tensor CµνλξC
λξ

ρσ = 0 which means that the metric is of

type N. The geodesic equations for a material particle in the metric (6) are found to be

du0

dτ
= 0 (36)

du1

dτ
= −2







u1u0

t
+

(

2

3

)2/3
u2u0

3t5/3





 (37)

du2

dτ
=

2
(

21/3(3t)2/3u1 + u2

)

u0

3t
(38)

du3

dτ
=

2

9t5/3

[

k2sech2(η/2)
(

9t2/3u1 − 9t5/3k3u1tanh(η/2) + 22/331/3u2
)

u0

+31/3(2t)4/3u1
(

3× 21/3t2/3u1 + 31/3u2
)

+36t5/3k3cosech3(η)sinh4(η/2)
(

(u1)2 + k4(u0)2
)]

(39)
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The geodesic equations above are coupled differential equations which cannot be easily solved

by inspection. However, the symmetries of the spacetime may help in obtaining their solutions

and will be investigated in the next communication.

4 Conclusion

It is clear, therefore, that we have a metric for which the vacuum Einstein’s equations reduce

to the KdV equation which is known to be completely integrable. Thus the solutions of the

Einstein equations, for this metric, are the soliton solutions of the KdV equations. From this

metric, we get the one soliton metric which is non-singular and of Petrov type N. In this

context, we note that many of the soliton solutions found by the IST do not have properties

that characterize solitons such as permanence of form and amplitude [4]. For soliton solutions

generated by the metric studied in this paper, however, we expect these properties to be present

since they are the KdV solitons. In this paper, classification and curvature of the metric (1)

have been studied; its isometries and other symmetry properties will be presented in a future

work.
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