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Bright vector solitons in cross-defocusing nonlinear media
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We study two-dimensional soliton-soliton vector pairs in media with self-focusing nonlinearities
and defocing cross-interactions. The general properties of the stationary states and their stability
are investigated. The different scenarios of instability are observed using numerical simulations.
The quasi-stable propagation regime of the high-power vector solitons is revealed.
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I. INTRODUCTION

Bright spatial solitons are localized in space self-
induced structures that appear in various physical sys-
tems as the result of a balance between nonlinear self-
focusing and diffractive spreading [1]. As well known, in
bulk Kerr media the two-dimensional (2D) spatial soli-
tons are unstable and they either collapse or spread out
depending on the power of the wave packet (see, e.g.
[2, 3]). The different mechanisms have been proposed to
arrest the collapse, including higher-order linear [4] and
nonlinear [5, 6] effects, nonlocal response [7], orbital mo-
mentum [8] and others [1], but in pure Kerr media for
a single wave beam the problem of collapse is not yet
solved.

The multi-component self-trapped stationary struc-
tures, known as vector solitons, open the new possibil-
ities for stabilization of over-critical beams. Vector soli-
tons consist of more than one field components, which
are supported not only by self-interaction of the same
fields, but also by a cross-interactions between fields of
different type. In nonlinear optical media the internal
and intercomponent interactions are always of the same
sign, so the localized soliton-soliton complexes either un-
dergo the collapse [9] for focusing nonlinearities, or do
not exist at all for defocusing nonlinearities. However,
if media is self-attracting, but the interactions between
different components become repulsive, the collapse ap-
parently could be suppressed. Here the natural question
arises of whether there is a realistic physical system with
competing self-focusing and cross-defocusing nonlineari-
ties?

The first example of the media with appropriate non-
linear properties is two-component BEC of ultracold
atomic gases with Feschbach resonance management.
The remarkable progress of experimental realization of
BEC with tunable nonlinearities [10] motivated inves-
tigations of vector solitons with different signs of non-
linearities [12–22]. The soliton-vortex vector pair for
two-component BEC with attractive intracomponent and
repulsive intercomponent has been investigated in Ref.
[22]. However, the ground state of this system is not
studied yet.

Second nonlinear physical system with tunable cross-
interactions was found recently in plasma with bi-color

laser beam [11]. Depending on a frequency difference,
the cross-focusing or cross-defocusing is observed, while
the self-interactions remain focusing. As was predicted in
Ref. [11], the balance between the competing nonlinear-
ities can stabilize the system and result in a dynamical
guiding of multi-color laser beam.
It is remarkable that bi-color laser beam in plasma

and matter-wave solitons in two-component BEC being
two quite different physical systems, which belong to the
opposite sides of the temperature scale, are described
by the same model. This model is based on the set of
two coupled nonlinear Schrödinger (NLS) equations with
attractive internal and repulsive intercomponent cubic
nonlinearities. In this paper we study the stationary so-
lutions of the coupled NLS equations both numerically
and analytically. Our variational treatment accounts for
the essential modification of the soliton shape and agrees
well with our numerical calculations. Stability of the ob-
tained soliton-soliton pairs has been tested by numeri-
cal simulations. We describe here the different scenarios
of unstable evolution including aziumathally asymmetric
modulational instability, which can substantially restrict
propagation distance for high-power vector solitons. At
the same time, we found out the condition for quasi-
stable propagation of two-dimensional bright vector soli-
tons.

II. BASIC EQUATIONS

Here we consider condition for the formation of self-
induced structures and their stability on the basis of two
coupled NLS equations:

i
∂Ψ1

∂z
+
(

∆⊥ + |Ψ1|2 + σ|Ψ2|2
)

Ψ1 = 0, (1)

i
∂Ψ2

∂z
+
(

∆⊥ + σ|Ψ1|2 + |Ψ2|2
)

Ψ2 = 0, (2)

where ∆⊥ is a 2D Laplacian operator. The integrals of
motion are the beam power (or number of particles for
BEC) in each component

Nj =

∫

|Ψj|2d2r, (3)
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and the Hamiltonian

H = H1 +H2 − σ

∫

|Ψ1|2|Ψ2|2d2r, (4)

where

Hj =

∫
{

|∇Ψj|2 −
1

2
|Ψj|4

}

d2r.

Also the momentum and the angular momentum are con-
served, which we will not need in explicit form since these
integrals vanish for all solutions under consideration.

The model based on Eqs. (1), (2) is of broad physi-
cal interest. In nonlinear optics these equations describe
two noncoherently interacting wave beams propagating
in z-direction, where z comes in units of Rayleigh length.
The properties of bright vector solitons are well known for
media with self-focusing and cross-focusing (σ > 0) non-
linearities [9]. While the parameter of coupling σ varies
over a broad range for different nonlinear optical media
(depending on polarization state, nature of nonlinearity
and anisotropy of media), nevertheless the sign of cross-
interaction coincides with the sign of self-interaction.

The paraxial envelope equations (1), (2) have been de-
rived in Ref. [11] for the problem of bi-color laser beam
propagation in plasmas. When a long bi-color laser beam
with a frequency difference Ω propagates in plasma, the
relativistic cross-focusing provides the self-focusing ef-
fect. At the same time, the cross-interaction is character-
ized by the coupling constant σ = (Ω2 − 2ω2

p)/(Ω
2 −ω2

p),
where ωp is the electron plasma frequency. The sign
of the coupling parameter corresponds to cross-focusing
(σ > 0, if Ω < ωp, Ω >

√
2ωp), or cross-defocusing

(σ < 0, if ωp < Ω <
√
2ωp). The physical reason for

such sharp tuning of the cross-interaction at Ω ≈ ωp is
that the ponderomotive force drives an electron plasma
wave which acts as an either focusing or de-focusing chan-
nel depending on the value of difference frequency. The
analysis of the model given in Ref. [11] was restricted
by the semi-analytical method based on the dynamical
equations for the parameters of bell-shaped Gaussian-
type ansatzes of both components. The suppression of
the catastrophic self-focusing has been predicted in the
frame of such a simplified treatment and supported by
fully relativistic axially-symmetric PIC simulations of the
laser beam dynamics over a large propagation distance.

The NLS equations (1), (2), are known also as Gross-
Pitaevski equations, describe in mean-field approxima-
tion the wave functions of two interacting BEC at ultra
low temperature. The variable z should be replaced by
dimensionless time t in context of BEC. Two equations
correspond to two-component BEC of atoms of the same
isotope in different hyperfine states. The atoms of BEC
are trapped by strong planar external trap, and the order
parameters in z-direction are frozen to the ground state,
while the dynamics in (x, y) plane is described by Eqs.
(1), (2).

III. STATIONARY SOLUTIONS

We look for the radially-symmetric stationary solutions
of Eqs. (1) and (2) in the form

Ψj(r, z) = ψj(r)e
iβjz (5)

where β1 and β2 are independent propagation constants.
We are interested here in ground state solutions, so ψj(r)
can be treated as real functions. Let us choose

√
β1 as the

scale of the radial coordinate and introduce the soliton
parameter λ = β2/β1. Using the following scaling of the
soliton profiles: ψ1 =

√
β1u(r), ψ2 =

√
β1v(r) one can

obtain the set of the stationary equations as follows

− u+∆ru+ (u2 + σv2)u = 0, (6)

− λv +∆rv + (σu2 + v2)v = 0, (7)

where ∆r = d2

dr2
+ 1

r
d
dr

is the radial Laplacian. In this
section we analyze both numerically and analytically two-
parameter vector soliton families (with parameters λ, and
σ) for defocusing intercomponent nonlinearity (σ < 0).

A. Numerical modelling

The stationary equations have been solved by the sta-
bilized iterative procedure similar to that described in
Ref. [27]. The examples of radial profiles u(r) and v(r)
for different coupling constants σ at fixed soliton param-
eter λ are given in Fig. 1. It is seen that for strong re-
pulsive interaction between the two solitons their shapes
change substantially. The field of first beam is squized
out and forms the ring-like shell, while the second com-
ponent is noticeably compressed - it has a higher peak in-
tensity and narrower width compared to its noninteract-
ing counterpart. This is because the internal soliton gets
extra confinement from the ring-like soliton surrounding
it. A similar phenomena, known as ”phase separation”,
was first predicted in two-component BEC [17, 21, 23] in
spherically-symmetric trap.
The powers Nj as the functions of soliton parameter λ

at σ = −0.3 are given in Fig. 2. It is easy to understand
that at λ = 1 two equations of the set (6), (7) coincide,
that is why the diagramsN1(λ) andN2(λ) meet at λ = 1.
Let us introduce an effective radii Ru and Rv of the

soliton components as follows:

R2
u = 2πN−1

u

∫ +∞

0

u2r3dr,R2
v = 2πN−1

v

∫ +∞

0

v2r3dr.

As is seen from Fig. 3, the effective radius and ampli-
tude of the u-component tend to the finite values, while
for v-component the width increases rapidly and the am-
plitude may come close to zero at the limit λ → 0.
This observation explains why here the power of the u-
component, which forms the central core, coincides with
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FIG. 1: (Color online) Examples of stationary vector soliton solution at fixed soliton parameter (λ = 0.5) and different values
of coupling constant σ. Shown are the radial profiles u(r) (solid black line) and v(r) (dashed red line).
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FIG. 2: (Color online) Beam powers Nu (solid black line)
and Nv (dashed red line) vs soliton parameter λ for coupling
constant σ = −0.3. The insets give the examples of radial
profiles u(r) (solid black line) and v(r) (dashed red line) for
the points indicated on the diagrams Nu(λ) and Nv(λ).
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FIG. 3: (Color online) Numerically found stationary states
at σ = −0.3 (a) Amplitudes U = max(u), V = max(v) and
values at soliton center r = 0 vs soliton parameter λ. (b)
Effective widthes of the soliton components vs λ.

the threshold power of single 2D fundamental soliton [28]:
Nu → Nth ≈ 11.7 at λ → 0. Indeed, as λ approaches
zero, the envelope v-component practically vanishes at
the whole localization region of u-component.
The amplitudes (solid curves) as the functions of λ

are compared with the values of the radial profile at the
beam axis (dashed curves) in Fig. 3. The splitting of
the curves U = max(u) and u(0) indicates that the ra-
dial profile u(r) gets the local minimum at r = 0, thus it
deviates from gaussian-type shape for λ > 1. The same
effect of spatial separation of soliton components due to
the extrusion of v-component occurs for λ < 1 (see also
the insets in Fig. 2). This symmetry follows directly
from the definition of the soliton parameter λ = β1/β2.
We have observed that increasing of repulsive interac-
tions leads to the steep shrinking (within narrow limits
in the vicinity of λ = 1) of the region where both com-
ponents are bell-shaped. Furthermore, there is no sym-
metric vector solutions at λ = 1, if σ < −1. It is easy
to see that for this case the set (6), (7) degenerates into
single NLS equation that have no localized solution at
σ < −1. However, at λ 6= 1 there are non-symmetric
”phase-separated” steady-states. This peculiarity gives
rise to a bifurcation at λ = 1 in the Nj(λ) diagrams, if
σ < −1, as in the example in Fig. 4 (b).

B. Variational analysis

The results of the numerical simulation can be illus-
trated through the variational analysis. A common vari-
ational procedure, which usually gives a good analytical
approximation for stationary solutions, fails to describe
a state of vector solitons with spatially separated com-
ponents. Indeed a fixed profile of the trial function is
not able to catch the strong modification of the spatial
distribution observed in numerical solutions of station-
ary NLS equations. Moreover, there is no vector solitons
with symmetric Gaussian-type profiles in both compo-
nents for σ < −1. Thus, an appropriate variational pro-
cedure should include a possibility for modification of a
soliton shape.
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We introduce a trial function with variable radial pro-
file of the form:

ψj(r) = Aj

{

1 + δj(r/aj)
2
}

e
−

1

2

r2

a2

j , (8)

where δj > 0 are additional variational parameters that
describe the modifications of the soliton profile. It is easy
to see that the j-th component gets a local minimum at
r = 0 if δj > 1/2. The amplitudes Aj can be excluded
using the normalization conditions (3). Thus we have
four variational parameters: aj and δj (j = 1, 2), which
are found from the condition that the stationary solution
corresponds to the extremum of the Hamiltonian at fixed
beam powers Nj . The results of variational analysis are
given in Figs. 4 at σ = −1.1. As it should be, one and
only one of the parameters δ1 or δ2 is not equal to zero for
each approximate solution since if one soliton has a hat-
like intensity distribution, then the other component has
the maximum at the center. As is seen from Fig. 4 (b)
the results of variational analysis are in good quantitative
agreement with our numerical simulations of the vector
solitons.

IV. STABILITY ANALYSIS

Before reporting our findings on stability of the 2D
vector solitons, we review briefly the previous results on
this subject. The sufficient condition for collapse of mul-
ticomponent vector solitons is found in Ref. [24] as fol-
lows: H < 0, where H is the Hamiltonian. This rule
follows from the generalized on multicomponent systems
well-known virial relation (see e.g. [3]). For the station-
ary states H = 0, which means that the localized wave
packet close to the stationary state can be collapsing so-
lution. Indeed, in focusing Kerr media the 2D vector soli-
tons are linearly unstable, as was demonstrated in Ref.
[25] where the generalized stability criteria similar to the
Vakhitov-Kolokolov criteria [6] is derived. Obviously, the
repulsive intercomponent interaction has a stabilizing ef-
fect, thus whether this type of vector solitons is stable or
not remains to be seen.
We solved numerically the dynamical equations (1) and

(2) initialized with our computed vector solutions with
added gaussian noise. Numerical integration was per-
formed on the rectangular Cartesian grid by means of
standard split-step fourier technique. The snapshots of
typical unstable evolution of the two-component bright
soliton are given in Figs. 5-7. In these figures the in-
tensity distributions in (x, y) plane of both components
at different z are shown in grayscale: the darker region
corresponds to higher amplitudes.
Clearly, a simultaneous collapse of the both soliton

components is not possible. To illustrate this we consider
evolution of the stationary solution with soliton param-
eter λ <∼ 1 when both components have close values of
power: Nv

>∼ Nu > Nth. The snapshots of the intensity
distributions |Ψj |2 in (x, y) plane, found by numerical

simulation of dynamical equations with initial conditions
Ψ1(r, 0) = u(r), Ψ2(r, 0) = v(r), are given in Fig. 5
for λ = 0.95 and σ = −0.3. From the start we have the
two-component soliton with bell-shaped intensities |Ψj |2.
The Ψ2-component (which in the present case has greater
power than the other component) gradually shrinks to
the beam axis while the Ψ1 component gets the hole in
the intensity distribution because of soliton-soliton repul-
sive force.

The structures exhibiting the most promise for sta-
ble propagation are wave packets when over-critical N >
Nth ring-shaped component traps the bright lower-power
collapse-free component with N < Nth. The examples of
such solutions are given in Fig 2 (the insets A and C).
In fact, the ring-soliton keeps from spreading the inter-
nal bright soliton in an effective potential well. At the
same time, the repulsive core is expected to arrest the
collapse of ring-shaped component. In our simulations,
we indeed observed essential stabilization of such vec-
tor solitons. However, the internal component gradually
leaks out of the potential trap. This ever so slow tunnel-
ing of the internal field is followed by smoothing of the
effective potential well. As the result the bright high-
power beam with maximum at the center is appearing
instead of the initial ring-shaped soliton. Such an over-
critical wave packet, obviously, is unstable with respect
to collapse. The example of described evolution is shown
in Fig. 6. Though we observed the robust propagation
over hundreds of diffractive lengths, the vector solitons
are not completely stable in this regime.

For further stabilization the intensity and width of the
effective potential well should be increased to prevent
the internal component from spreading. Unfortunately,
the new restriction on the way to complete stabilization
of the vector solitons appears. The point is that if the
power of ring-shaped component exceeds some critical
value Ncr, the symmetry-breaking modulational instabil-
ity develops. The initial ring decay into two filaments
which drift off the center and collapse, as in the example
in Fig. 7. To estimate the critical power Ncr, a simple
rule can be used. First, we note that from the momen-
tum conservation follows, that the number of filaments
is not less than two. It was observed previously for the
vortex solitons [26], that each filament that appears dur-
ing modulational instability has a power above the value
necessary to create a single 2D fundamental soliton Nth,
which yields the following rule: Ncr

>∼ 2Nth. This rough
estimate is found to be surprisingly good approximation
for the critical power of modulational instability observed
in our numerical simulations. The modulational instabil-
ity was previously found for scalar higher-order solutions
such as vortex solitons [30], solitons with nodes [31] and
for soliton-vortex vector pairs [22, 32]. Of special note is
fact that we reveal here the modulational instability for
the ground state radially-symmetric solution.
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z = 0 z = 1.2 z =2.2|Y |1

2

|Y |2

2

4

2

0

-4

-2

4

2

0

-4

-2

0 2 4-2-4 0 2 4-2-4 0 2 4-2-4

4

2

0

FIG. 5: Evolution of intensities |Ψ1|
2 (upper row) and |Ψ2|

2

(lower row) of vector soliton for λ = 0.95, σ = −0.3.

0 5 10-5-10 0 5 10-5-10 0 5 10-5-10

0

-5

5

10

-10

0

-5

5

10

-10

z = 0 z = 22.5 z = 37.5|Y |1

2

|Y |2

2

FIG. 6: Evolution of intensities |Ψ1|
2 (upper row) and |Ψ2|

2

(lower row) of vector soliton for λ = 0.1, σ = −0.25.

4

2

0

-4

-2

4

2

0

-4

-2

0 2 4-2-4 0 2 4-2-4 0 2 4-2-4

|Y |1

2

|Y |2

2

4

2

0

z = 0 z = 4.8 z =5.5

FIG. 7: Evolution of intensities |Ψ1|
2 (upper row) and |Ψ2|

2

(lower row) of vector soliton for λ = 0.5, σ = −2.

V. CONCLUSIONS

In conclusion, the general properties and stability of
2D soliton-soliton vector pairs in Kerr nonlinear media
with focusing internal and defocusing cross-interactions
are studied. Stationary solutions are investigated by
means of numerical modelling and approximate varia-
tional method. It is found that for strong repulsive in-
teraction between the two solitons their shapes change
substantially. The field of stronger beam is squized out
and forms the ring-like shell, while the weaker component
is noticeably compressed - it has a higher peak intensity
and narrower width compared to its noninteracting coun-
terpart.

We have undertaken extensive numerical simulations of
(2+1)D dynamical set of NLS equations to study stabil-
ity of the obtained stationary vector solitons. The differ-
ent scenarios of instability have been observed depending
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on the beam power of each component. If the power of
one soliton component exceeds the double power of the
fundamental Towns soliton: N1 > Ncr ≈ 2Nth, such a
ring-shaped beam exhibits the azimuthal modulational
instability. As the result it decays into two collapsing
spikes. If both soliton components have the powers be-
low critical value Ncr, the modulational instability does
not develop. In this case more powerful beam collapses
and extrudes the field of the weaker beam outward from
the center due to the repulsive cross-interaction.
Finally, the quasi-stable regime occurs if the beam

powers of the vector soliton components satisfy the con-
ditions: N1 < Nth < N2 < 2Nth. Though the trapped
weak beam gradually leak out through the potential well,
which is formed by the envelope soliton, this process is
very slow. The collapse of the over-critical beam does not

develop until a significant portion of the trapped energy
washes away and the repulsive core smoothes.

On the one hand, our results impose a serious restric-
tion on the power of a robust soliton-soliton pair, and
on the other hand, they offer the new prospects for the
experimental observation of long-lived two-dimensional
vector solitons in two-component BEC and in plasmas.
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and Yu.S. Kivshar Phys. Rev. Lett. 85, 82 (2000)


