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Stable structures with high topological charge in nonlinear photonic quasicrystals
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Stable vortices with topological charge of 3 and 4 are examined numerically and analytically in
photonic quasicrystals created by interference of 5 as well as 8 beams, in the cases of cubic as well
as saturable nonlinearities . These structures are experimentally realizable, including a prototypical
example of a stable charge 4 vortex. Direct numerical simulations corroborate the analytical and
numerical linear stability analysis predictions.
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Introduction. The study of coherent structures with
non-vanishing topological charge has been a principal
theme of interest in dispersive nonlinear systems with
a wide range of applications including, among others,
Bose-Einstein condensates (BEC) in atomic physics, and
nonlinear optical media [1–4]. More recently, the study
of such states has come to be of interest in settings with
some discrete spatial symmetry i.e., nonlinear lattices.
It was in this context that the notion of “discrete vor-
tices” [5] arose and was subsequently intensely studied in
both discrete and quasi-continuum media; see e.g. [6, 7]
for relevant reviews. This, in turn, led to the experi-
mental realization of unit-charge (S = 1) coherent struc-
tures in saturably nonlinear photorefractive media [such
as SBN:75(Sr0.75Ba0.25Nb2O6)] in [10, 11], as well as the
exploration of higher charge (S = 2) ones in square as
well as hexagonal/honeycomb lattice settings [8]. A mul-
tipole soliton necklace of out-of-phase neighboring lobes
in a square lattice was identified experimentally and the-
oretically in [9] from initial condition of a wide S = 4
gaussian beam.

While such regular lattices have been a focal point of
numerous studies [6], more recently experimental devel-
opments have enabled the study of photonic quasicrystals
in photorefractive media [12], and have spurred a corre-
spondingly intense theoretical activity [13]. We also note
that recent experimental activity has focused on non-
square optical lattices for ultracold atoms in the BEC
case [14]. It is then natural to expect that quasi-crystals
are well within experimental reach in this regard, as well.

Motivated by these developments, we illustrate the
unique ability of such lattices (with saturable, but also
with cubic nonlinearity) to sustain stable vortices of
higher topological charge, such as S = 3 and S = 4. We
illustrate the robustness of such modes, by means of di-
rect numerical simulations. On the other hand, perhaps
counter-intuitively (but as can be analytically predicted),
modes with lower topological charge are found to be un-
stable, and this instability is also dynamically monitored.
As we indicated, such modes should be directly accessi-
ble to present experiments in photorefractive media (and

also, in principle, accessible in ultracold physics).
Theoretical Setup. We introduce the following non-

dimensionalized evolution equation:

[

i∂z +
1

2
∇2 + F (|U |2)− V (x)

]

U = 0. (1)

In the motivating example of a photorefractive crys-
tal, we have F (|U |2) = −1/(1+ |U |2)+ 1, where U is the
slowly varying amplitude of a probe beam normalized by
the dark irradiance of the crystal Id [4, 15], and V repre-
sents modulation of the refractive index from interfering
linearly propagating waves normal to the probe beam,
hence referred to as a photonic lattice. In the case of a
Kerr medium the nonlinearity reads F (|U |2) = |U |2, and
this case also includes the interpretation of U as a mean-
field wavefunction of an atomic Bose-Einstein condensate
[16] with the nonlinearity representing two-body contact
interactions, while the potential V is either modulation
of the refractive index in the former case or an externally
applied field in the latter.
The potential V is taken to be of the form E/(1+I(x)),

where I(x) = 1
N2
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∣

2

. In the motivating case

of a photorefractive crystal, this is the optical lattice in-
tensity function formed by N interfering beams in the
principal directions bj with periodicity 2π/k. We will
consider the cases of N = 5 and N = 8. Here 1 is
the lattice peak intensity, z is the propagation constant,
x = (x, y) are transverse distances, k = 2π/5 is the
wavenumber of the lattice, and E = 5 is proportional to
the external voltage. Recently, such a setting has been
explored theoretically for positive lattice solitons [13, 17],
but we extend the considerations here to solutions of non-
trivial topological charge.
The possible charge, S, of vortices (the number of 2π

phase shifts across a discrete contour comprising the so-
lution) is bounded by the symmetry of the lattice [18].
A lattice with n-fold symmetry has natural contours of
2n sites. Hence, taking into account the degeneracy of
vortex anti-vortex pairs {S,−S}, one has 0 ≤ S ≤ n,
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FIG. 1. (Color online) The stable S = 4 vortex in a quasi-
crystal lattice of N = 5 and with a saturable nonlinearity.
The profile and phase are depicted in panels [a(.i)], the linear
spectrum in panel (b), Fourier spectrum in the inset panel
(b.i), and continuation of the power, P =

∫
|U |2dx, as a func-

tion of the propagation constant, β, in panel (c). The N = 5
lattice is depicted in (d).
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FIG. 2. (Color online) Panels (a-c) are the same as Fig. 1
except for a cubic nonlinearity. Panel (d) shows the growth
rate, or maxλ[Re(λ)]. The insets, (c.i) and (d.i) depict the
profile and linear spectra, respectively, of the highly unstable
solution indicated by a red square on the branches in (c,d),
which collides with the main branch and disappears in a sad-
dle node bifurcation close to the phonon band edge.

with the cases of S = 0, n being the trivial flux cases
of in-phase and out-of-phase neighboring lobes, respec-
tively. The quasi-crystal with N = 5 has n = 5, while
for N = 8, n = 4. Hence, the highest possible charge,
S = n− 1, is S = 4 for the case of N = 5 and S = 3 for
N = 8.

Considering the quasi-one-dimensional contour of ex-
cited sites (depending on the respective amplitudes of

the lattice and the probe field), and within the context
of coupled mode theory [19] in which the probe field is
expanded in Wannier functions [20], one can obtain in-
sights about the stability of the vortices within the frame-
work of a discrete Nonlinear Schrödinger equation [7],
iu̇n = −ε(un+1+ un−1 − 2un)− |un|2un. In that context
and based on either the modulational instability of [19],
or through empirical numerical testing [18] or, more rig-
orously, via Lyapunov-Schmidt perturbative expansions
around the so-called anti-continuum (AC) limit of zero
coupling (ε = 0) [21], it is known that lobes which are
phase-separated by greater than π/2 are stable next to
each other, while those separated by less than π/2 are
unstable. A simple intuitive argument for this situation
is that the effective potential which out-of-phase neigh-
boring nodes exert on one another through the focus-
ing non-linearity is one in which they repel each other,
and, hence, remain localized in their respective separate
wells. On the other hand, if the neighbors are in-phase,
then the effective neighboring potentials are attractive
to one another and hence the solution is unstable to re-
maining localized in separate wells. The possible relative
phases interpolate between these cases, with π/2 being
exactly in the middle. This leads to stability of the higher
charged vortices for contours of larger numbers of nodes
(see also [8]). We briefly review the Lyapunov-Schmidt
argument. In the limit ε → 0 one can construct exact so-
lutions of the form uj =

√
µe{−i(βt−θj)} for any arbitrary

θj ∈ [0, 2π) [21]. The case we are considering is that of
θj = jSπ/n. We linearize around the solution for ε = 0
and the condition for existence of solutions with ε > 0
reduces to the vanishing of a vector function g(θ) of the
phase vector θ = (θ1, . . . , θN ), where

gj ≡ sin(θj−1 − θj) + sin(θj+1 − θj), (2)

subject to periodic boundary conditions. This includes
the discrete reduction of the vortex solutions for 0 ≤ S ≤
n above. The fundamental contours M will have length
|M | = 2n, and |φj+1 − φj | = ∆φ = πS/n is constant for
all j ∈ M , |θ1 − θ|M|| = ∆θ and ∆θ|M | = 0 mod 2π.
For the contour M, there are |M | eigenvalues γj of the

|M | × |M | Jacobian Mjk = ∂gj/∂θk of the diffeomor-
phism given in Eq. (2). The eigenvalues of this matrix
can be mapped to eigenvalues of the Hessian of the en-
ergy, which in turn can be mapped to the eigenvalues of
the full linearization. In particular, eigenvalues of the lin-
earization, denoted λj , are given to leading order by the
relation [21] λj = ±

√

2γjε. Thus, solutions are stable to
leading order if γj < 0 (so λj ∈ iR) and unstable if γj > 0

(so λj ∈ R). We have γj = 4 cos (∆φ) sin2
(

πj
|M|

)

and so

these cases correspond exactly to the cases ∆φ > π/2
(or S > n/2) and ∆φ < π/2 (or S < n/2). In the
boundary case of ∆φ = π/2, one needs to expand to the
next order in the Lyapunov-Schmidt reduction. We note
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that a so-called staggering transformation along the con-
tour, ud

j = (−1)juf
j allows the conclusions for the focus-

ing problem considered here to be mapped immediately
to the analogous defocusing problem (with a change in
the sign of the nonlinearity). We do not consider the
defocusing case here, since the lowest allowable energies
in this case occur for energies larger than the minimum
energy of the linear spectrum, which has a fractal struc-
ture in the case of quasicrystals, rather than well-defined
bands as in the case of a periodic lattice, and therefore
cannot be resolved numerically as accurately. The above
considerations illustrate the expectation that S = 3 vor-
tices may be stable in the N = 5 and N = 8 cases, and
the S = 4 vortex may be stable in the N = 5 case.

Numerical Results. We now turn to numerical com-
putations to confirm the above expectations. We also
explore the evolution of an S = 4 radial gaussian beam,
which forms the expected stable structure, and find that
in the case of cubic nonlinearity, the evolution sensitively
depends on the particular perturbation.
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FIG. 3. (Color online) Panels (a,b) are the same as the pre-
vious figures for the stable S = 3 vortex in the N = 8 quasi-
crystal lattice (c). Panel (d) is the S = 3 vortex for N = 5
and [d.(i,ii)] are the phase and Fourier spectrum, respectively,
of this solution. For both solutions, β = 3.4.

First, we confirm the expectation of stability of the
S = 4 vortex for both saturable and cubic nonlinearities,
over continuations in the semi-infinite gap (see Figs. 1
and 2, respectively). The profiles and phases are depicted
in panels [a(.i)], linear spectra in panels (b), Fourier spec-
tra in the inset panels (b.i), and continuations of the
power, P =

∫

|U |2dx, as a function of the propaga-
tion constant, β, in panels (c). It is notable that the
power of the solution branches differs substantially be-
tween nonlinearities, and the power of the branch of sat-
urable solutions approaches some resonant frequency at
which dP/dβ → ∞ and P → ∞ (see Fig. 1 (c)). The
lattice is depicted in Fig. 1 (d), while Fig. 2 (d) shows

the maximal perturbation growth rate, or maxλ[Re(λ)],
corresponding to the branches in Fig. 2 (c).
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FIG. 4. (Color online) Initial conditions (a.i,b.i) and profiles
at a later time (a.ii,b.ii) of the S = 4 and S = 2 radial Gaus-
sian initial conditions for a saturable nonlinearity.

For the structures we consider, there is one pair of
eigenvalues at the origin accounting for the U(1) (phase)
invariance and the other 2n − 1 eigenvalue pairs associ-
ated to the excited lobes all have negative energy, hence
being candidates for instability [22], and are all either
purely imaginary or purely real. If real, the instability is
immediate, while if imaginary, instability may still arise
due to their collision with the phonon band, or contin-
uous spectrum, resulting in a Hamiltonian-Hopf bifur-
cation and a quartet of eigenvalues. The spectral plane,
with the negative energy modes indicated by red squares,
for the saturable and cubic cases are given in panels (b)
of Figs. 1 and 2, respectively. Panel (b.ii) in Fig. 1 is a
closeup of the origin showing the 9 negative energy pairs
close to the origin and the one pair at the origin. The
potential instability arising from these negative energy
modes is prevented by their proximity to the origin, and
being separated from the phonon energies. The expected
saddle-node bifurcation [23, 24] occurs close to the band
edge (which we computed as ≈ 3.9) in which the main
solution collides (and disappears) with a solution branch
of a configuration with additional populated sites exter-
nal to the original contour and in-phase with those of the
contour, resulting in instability due to real eigenvalues.
Next, we present results of the S = 3 vortex in both

the N = 8 (Fig. 3(a,b)) and N = 5 (Fig. 3 (d)) cases for
β = 3.4. Panel (c) depicts the N = 8 lattice, and [d.(i,ii)]
are the phase and Fourier spectrum, respectively, of the
solution in (d). These solutions are both stable, and
again there is a resonance in the semi-infinite gap (not
shown) similar to what was seen in Fig. 1. The vortices
for S < 3 are unstable (not shown).
In order to examine the potential experimental realiz-
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FIG. 5. (Color online) The dynamics of the unstable S = 2
vortex in the case of a cubic nonlinearity. Evolution of the
same solution with the same perturbation of random noise
with 5% of the initial maximum amplitude of the field can
lead to robust structures that persist for long distances (a)
and almost immediate collapse in different trials (b).

ability of the above waveforms, we launch a radial Gaus-
sian beam with topological charge S = 4 of the form
eiSθ−(r−R)2/(2b2) with (r, θ) denoting polar coordinates,
and R = 8.5, approximately the radius of the contour,
and b = 1, as an initial condition into the system with
saturable nonlinearity and monitor the evolution. After a
transient period, the configuration indeed settles into an
S = 4 vortex contour. For comparison, we launch a sim-
ilar initial condition with S = 2 and notice it never set-
tles into a stable configuration of fixed charge, although
it does appear to maintain a relatively robust intensity
distribution (i.e. 10 populated sites along the contour,
although with fluctuating amplitudes). We introduce a
relevant definition of topological charge within the con-
tour of radius R in order to monitor its evolution

S =
1

2π

∮

∇φdr, (3)

where φ denotes the phase of the relevant complex field
U .
See Fig. 4 for a presentation of the initial conditions

(a.i,b.i) and profiles at a later time (a.ii,b.ii) of the S = 4
and S = 2 initial conditions, respectively, in a medium
with saturable nonlinearity. The charge of each fluctu-
ates, as power is shed and vortices nucleate in the sur-
rounding low amplitude regions and enter and leave the
contour as the solution finds the steady state. However,
for the S = 4 initial condition, the field settles into a
solution of constant charge 4, while for the S = 2 initial
condition, the phase continues to fluctuate throughout
the numerical experiment.
Finally, we examine the evolution of unstable (S = 2)

vortices in the presence of a cubic nonlinearity. The evo-
lution depends sensitively on the particular initial con-
dition. In particular, using the initial condition u =
U(1 + X) with X ∼ 0.05maxx[U(x)] uniform[0,1], two
different particular instances can lead to significantly dif-
ferent dynamics. In one instance, the phase merely re-
shapes as in the case of saturable nonlinearity, but the

structure persists for a very long distance [see Fig. 5 (a)].
In another instance, the solution collapses almost imme-
diately, as can be seen from the maximum amplitude of
the field in Fig. 5 (b). For larger additive noise, collapse
seems more likely from several sample trial simulations.

Conclusions and future directions. We have demon-
strated numerically stable vortices of topological charge
S = 3 in quasi-crystals with n = 4 and 5 directions of
symmetry and S = 4 with n = 5, in the cases of both
cubic as well as saturable focusing nonlinearities. The
negative energy modes for these configurations remain
close to the origin in the spectral plane, preventing col-
lision with the phonon band, and hence there is a very
good prospect for their experimental realization in pho-
tonic quasi-crystals in a photorefractive medium (or a
Kerr medium). This has additionally been demonstrated
by simulation of the evolution of a radial Gaussian beam
into such robust vortex states. This is a prime prospect
for an immediate future direction related to the present
work. The evolution of the unstable S = 2 vortex in
the case of a cubic nonlinearity depends sensitively on
the particular perturbation, ranging from simple phase
reshaping to almost immediate collapse.
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