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Abstract

It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies
describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-
Darboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions
of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock type singularities are
presented.
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1 Introduction

In the present paper we study hierarchies of hydrodynamical systems describing quasiclassical
deformations of hyperelliptic curves [1, 2]

p2 = u(λ), u(λ) := λm −
m−1∑

i=0

λi ui, m ≥ 1. (1)

These hierarchies are of interest for several reasons. First, there are hierarchies of important
hydrodynamical type systems among them. For m = 1 one has the Burgers-Hopf hierarchy [3, 4]

associated with the dispersionless KdV equation ut =
3

2
uux. For m = 2 it is the hierarchy of

higher equations for the 1-layer Benney system (classsical long wave equation)






ut + uux + vx = 0

vt + (u v)x = 0.

(2)

The system (2) and the corresponding hierarchy are quasiclassical limits of the nonlinear Schrödinger
(NLS) equation and the NLS hierarchy [5]. Form ≥ 3 these hierarchies turn to describe the singular
sectors of the above m = 1, 2 hierarchies [1].

Second, all these hierarchies are the dispersionless limits of integrable coupled KdV (cKdV)
hierarchies [6]-[8] associated to Schrödinger spectral problems

∂xx ψ = v(λ, x)ψ, (3)

with potentials which are polynomials in the spectral parameter λ

v(λ, x) := λm −
m−1∑

i=0

λi vi(x) m ≥ 1,

The cKdV hierarchies have been studied in [6]-[8], they have bi-Hamiltonian structures and, as
a consequence of this property, the dispersionless expansions of their solutions possess interesting
features such as the quasi-triviality property [9]-[10]. Moreover, the cKdV hierarchies arise also
in the study of the singular sectors of the KdV and AKNS hierarchies [11, 12]. Henceforth we
will refer to the hierarchies of hydrodynamical systems associated with the curves (1) for a fixed
m as the m-th dispersionless coupled KdV (dcKdVm) hierarchies. The Hamiltonian structures of
the dcKdVm hierarchies have been studied in [13]. At last, it should be noticed that the dcKdVm

hierarchies are closely connected with the higher genus Whitham hierarchies introduced in [14].

In our analysis of the hodograph equations for the dcKdVm hierarchies we use Riemann in-
variants βi (roots of the polynomial u(λ) in (1)) which provide a specially convenient system of
coordinates. We show that the dcKdVm hodograph equations have the form

∂Wm(t,β)

∂βi
= 0, i = 1, . . . ,m, (4)

where t = (t1, t2, . . .) are times of the hierarchy and

Wm(t,β) :=

∮

γ

dλ

2 i π

∑

n≥0 tn λ
n

√∏m
i=1(1− βi/λ)

. (5)
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Here γ denotes a large positively oriented circle |λ| = r. Thus, the hodograph solutions of the
dcKdVm hierarchies describe critical points of the functions Wm(t,β). These functions turn to
be very special as they satisfy a well-known system of equations in differential geometry: the
Euler-Poisson-Darboux (EPD) equations [15]

2 (βi − βj)
∂2Wm

∂βi ∂βj
=
∂Wm

∂βi
− ∂Wm

∂βj
. (6)

The system (6) has also appeared in the theory of the Whitham equations arising in the small
dispersion limit of the KdV equations [17]-[19], and in the theory of hydrodynamic chains [20].

We also study the singular sectors Msing
m of the spaces of hodograph solutions for the dcKdVm

hierarchies. They are given by the points (t,β) such that

rank
(∂2Wm(t,β)

∂βi ∂βj

)

< m. (7)

The varieties Msing
m provide us with special classes of degenerate critical points of the function

Wm within the general theory of critical points developed by V. I. Arnold and others about fourty
years ago [23, 24]. The use of equations (4)-(6) simplify drastically the analysis of the structure of
these singular sectors. In particular, we prove that there is a nested sequence of subvarieties

Msing
m ⊃ Msing

m,1 ⊃ Msing
m,2 ⊃ · · ·Msing

m,q ⊃ · · · , (8)

which represents subsets of the singular sector Msing
m of the dcKdVm hierarchy with increasing

singular degree q, such that each Msing
m,q is determined by a class of hodograph solutions of the

dcKdVm+2 q hierarchy.

The paper is organized as follows. The dcKdVm hierarchies are described in Section 2. Equa-
tions (4)-(6) are derived in Section 3. Section 4 deals with the analysis of the singular sectors of
the dcKdVm hierarchies in terms of their associated hodograph equations. The relation between
singular points of the dcKdVm hodograph equations and solutions of higher dcKdVm+2 q hodo-
graph equations is stated in Section 4. Some concrete examples involving shock singularities of the
Burgers-Hopf equation and the 1-layer Benney system are presented in Section 5.

2 The dcKdVm hierarchies

Given a positive integer m ≥ 1 we consider the setMm of algebraic curves (1). For m = 2 g+1 (odd
case) and m = 2 g + 2 (even case) these curves are, generically, hyperelliptic Riemann surfaces of
genus g. We will denote by q = (q1, . . . , qm) any of the two sets of parameters u := (u0, . . . , um−1)
or β := (β1, . . . , βm) which determine the curves (1)

u(λ) = λm −
m−1∑

i=0

λi ui =
m∏

i=1

(λ− βi). (9)

Obviously, for any fixed β all the permutations σ(β) := (βσ(1), . . . , βσ(m)) represent the same
element of Mm. Note also that

ui = (−1)m−i−1sm−i(β), (10)
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where sk are the elementary symmetric polynomials

sk =
∑

1≤i1<...<ik≤m

βi1 · · · βik .

We next introduce the dcKdVm hierarchy as a particular systems of commuting flows

q(t), t := (x := t0, t1, t2, . . .),

on Mm. In order to define these flows we use the set L of formal power series

f(z) =
+∞∑

n=−∞

cn z
n,

where
z := λ1/2 for m = 2 g + 1; z := λ for m = 2 g + 2.

For any given m ≥ 1 a distinguished element of L is provided by the branch of p =
√

u(λ) such
that as z → ∞ has an expansion of the form







p(z, q) = z2 g+1
(

1 +
∑

n≥1

bn(q)

z2n

)

, m = 2 g + 1,

p(z, q) = zg+1
(

1 +
∑

n≥1

bn(q)

zn

)

, m = 2 g + 2.

(11)

We define the following splittings L = L(+, q)

⊕L(−, q)

f(+,q)(z) :=
( f(z)

p(z, q)

)

⊕
p(z, q), f(−,q)(z) :=

( f(z)

p(z, q)

)

⊖
p(z, q), (12)

where f⊕ and f⊖ stand for the standard projections on positive and strictly negative powers of z,
respectively

f⊕(z) :=

N∑

n=0

cn z
n, f⊖(z) :=

−1∑

n=−∞

cn z
n.

The dcKdVm flows q(t) are characterized by the following condition: There exists a family of
functions S(z, t, q(t)) in L satisfying

∂tn S(z, t, q(t)) = Ωn(z, q(t)), n ≥ 0. (13)

where

Ωn(z, q) := (λ(z)n+m/2)(+, q) =







(z2n+2 g+1)(+, q), m = 2 g + 1

(zn+g+1)(+, q), m = 2 g + 2,

n ≥ 0. (14)

We notice that
Ωn(z, q) =

(

λnR(λ(z), q)
)

⊕
p. (15)
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where R is the generating function

R(λ, q) :=

√

λm

u(λ)
=
∑

n≥0

Rn(q)

λn
, λ→ ∞. (16)

The coefficients Rn(q) are polynomials in the coordinates q, for example

R0 = 1, R1 =
1

2
um−1, R2 =

1

2
um−2 +

3

8
u2m−1, . . .

Functions S which satisfy (13) will be referred to as action functions of the dcKdVm hierarchy.
This kind of generating functions S has been already used in the theory of dispersionless integrable
systems (see e.g. [14]). It can be proved [1] that (13) is a compatible system of equations for S.
In fact its general solution will be determined in the next section. We notice that for n = 0 the
equation (13) reads

∂x S(z, t, q(t)) = p(z, q(t)), (17)

so that (13) is equivalent to the system

∂tnp(z, q(t)) = ∂x Ωn(z, q(t)), n ≥ 0. (18)

We will henceforth refer to the dcKdVm hierarchy form = 2 g+1 andm = 2 g+2 as the Burgers-
Hopf (BHg) and the dispersionless Jaulent-Miodek (dJMg) hierarchies, respectively. Observe that
both hierarchies, BHg and dJMg determine deformations of hyperelliptic Riemann surfaces of genus
g. In our work we will always consider an arbitrary but finite number of these flows.

Since u = u(λ(z), q) = p(z, q)2, the operator J = J(λ, u) defined by

J : = 2 p · ∂x · p = 2u∂x + ux,

J =
m∑

i=0

λi Ji, Jm = 2 ∂x, Ji = −(2ui ∂x + ui,x), um := −1,

satisfies J R = 0. Then from (18) it follows that

∂n u = J
(

λnR(λ,u)
)

⊕
= −J

(

λnR(λ,u)
)

⊖
, (19)

which constitutes the dcKdVm hierarchy in terms of the coordinates ui

∂n ui =
∑

l−k=i, k≥1

Jl Rn+k(u), i = 0, . . . ,m− 1. (20)

From (18) it also follows that

∂tn log p(z, q) =
∂x

[(

λ(z)nR(λ(z), q)
)

⊕
p
]

p(z, q)
,

and then, identifying the residues of both sides at λ = βi, we get

∂n βi = ωn,i(β) ∂x βi, i = 1, . . . ,m, (21)
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where
ωn,i(β) := (λnR(λ,β))⊕|λ=βi

. (22)

The systems (21) are the equations of the dcKdVm hierarchy in terms of the coordinates βi.
Observe that we have two dcKdVm hierarchies, BHg and dJMg, which determine deformations of
hyperelliptic Riemann surfaces of genus g. It can be shown [2, 13] that the dcKdVm flows are
bi-Hamiltonian systems.

We next present some examples of interesting flows in the dcKdVm hierarchies. The dcKdV1

hierarchy is associated to the curve

p2 − u(λ) = 0, u(λ) = λ− v, v := u0 = β1.

The corresponding flows are given by

∂tn v = cn v
n vx, cn :=

(2n + 1)!!

2n n!
, n ≥ 1,

and constitute the Burgers-Hopf hierarchy BH0. In particular the t1-flow is the Burgers-Hopf
equation

∂t v =
3

2
v vx,

which is in turn the dispersionless limit of the KdV equation.

The dcKdV2 (dJM0) hierarchy is associated to the curve

p2 − u(λ) = 0, u(λ) = λ2 − λu1 − u0 = (λ− β1) (λ − β2),

u1 = β1 + β2, u0 = −β1 β2.
The t1-flow of this hierarchy is given by the disperssionless Jaulent-Miodek system







∂t1 u0 = u0 u1x +
1

2
u1 u0x,

∂t1 u1 = u0x +
3

2
u1 u1x,

(23)

which under the changes of dependent variables

u = −u1, v = u0 +
u21
4
,

becomes the 1-layer Benney system (2). In terms of the Riemann invariants β1 and β2

u = −(β1 + β2), v = (β1 − β2)
2/4,

the system (2) takes the well-known form







∂t1 β1 =
1

2
(3β1 + β2)β1 x,

∂t1 β2 =
1

2
(3β2 + β1)β2 x.

(24)
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For v > 0 the 1-layer Benney system is hyperbolic while for v < 0 it is elliptic.

Finally, we consider the BH1 hierarchy. Its associated curve is given by

p2 − u(λ) = 0, u(λ) = λ3 − λ2 u2 − λu1 − u0 = (λ − β1) (λ − β2) (λ − β3),

u1 = β1 + β2 + β3, u2 = − (β1 β2 + β1 β3 + β2 β3), u3 = β1 β2 β3.

The first flow takes the forms






∂t1u0 =
1

2
u2 u0x + u0 u2x,

∂t1u1 = u0x +
1

2
u2 u1x + u1 u2x,

∂t1u2 = u1x +
3

2
u2 u2x.

⇐⇒







∂t1β1 =
1

2
(3β1 + β2 + β3)β1 x,

∂t1β2 =
1

2
(β1 + 3β2 + β3)β2 x,

∂t1β3 =
1

2
(β1 + β2 + 3β3)β3 x.

(25)

3 Hodograph equations for dcKdVm hierarchies and

the Euler-Poisson-Darboux equation

Let us introduce the function

Wm(t, q) :=

∮

γ

dλ

2 i π
U(λ, t)R(λ, q) =

∑

n≥0

tnRn+1(q), (26)

where γ denotes a large positively oriented circle |λ| = r , U(λ, t) :=
∑

n≥0 tn λ
n and R(λ, q) is the

function defined in (16).

Theorem 1. If the functions q(t) = (q1(t, . . . , qm(t)) satisfy the system of hodograph equations

∂Wm(t, q)

∂qi
= 0, i = 1, . . . ,m, (27)

then q(t) is a solution of the dcKdVm hierarchy.

Proof. We are going to prove that the function

S(z, t, q(t)) =
∑

n≥0

tnΩn(z, q(t)) =
(

U(λ(z), t)R(λ(z), q(t))
)

⊕
p(z, q(t)), (28)

is an action function for the dcKdVm hierarchy. By differentiating (28) with respect to tn we have
that

∂n S = Ωn + (U ∂nR)⊕ p+ (U R)⊕ ∂n p, (29)

We now use the coordinates β = (β1, . . . , βm) so that we may take advantage of the identities

∂βi
p = −1

2

p

λ− βi
, ∂βi

R =
1

2

R

λ− βi
. (30)
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Thus we deduce that

(U ∂nR)⊕ p+ (U R)⊕ ∂n p =
1

2

m∑

i=1

[( U R

λ− βi

)

⊕
− (U R)⊕

λ− βi

]

p ∂n βi. (31)

On the other hand

∂Wm(t,β)

∂βi
=

1

2

∮

γ

dλ

2 i π

U(λ, t)R(λ,β)

λ− βi
=

1

2

∮

γ

dλ

2 i π

(U(λ, t)R(λ,β))⊕
λ− βi

. (32)

Hence the hodograph equations (27) can be written as

(U(λ, t)R(λ,β(t)))⊕|λ=βi
= 0, i = 1, . . . ,m. (33)

Thus we have that (U(λ, t)R(λ,β(t))⊕ is a polynomial in λ which vanish at λ = βi(t) for all i. As
a consequence

(U R)⊕
λ− βi

=
((U R)⊕
λ− βi

)

⊕
=
( U R

λ− βi

)

⊕
.

Then from (29) and (31) we deduce that ∂n S = Ωn and therefore the statement follows.

Using (26) we obtain that the hodograph equations (27) can be expressed as

∑

n≥0

tn
∂Rn+1(q)

∂qi
= 0, i = 1, . . . ,m. (34)

Furthermore, from (21), (22) and (33) the hodograph equations (27) can be also written as [1]

∑

n≥0

tn ωn,i(β) = 0, i = 1, . . . ,m, (35)

which represent the hodograph transform for the dcKdVm hierarchy of flows in hydrodynamic
form.

Notice also that we may shift the time parameters tn → tn−cn in (34) to get solutions depending
on an arbitrary number of constants.

It is easy to see that the generating function

R(λ,β) :=

√

λm

u(λ)
=

√

λm
∏m

i=1(λ− βi)
,

is a symmetric solution of the EPD equation

2 (βi − βj)
∂2R

∂βi ∂βj
=
∂R

∂βi
− ∂R

∂βj
. (36)

Consequently, the same property is satisfied by W (t,β) for all t. Thus, we have proved
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Theorem 2. The solutions (t,β) of the hodograph equations

∂Wm(t,β)

∂βi
= 0, i = 1, . . . ,m, (37)

are the critical points of the solution

Wm(t,β) :=

∮

γ

dλ

2 i π

U(λ, t)
√∏m

i=1(1− βi/λ)

of the EPD equation

2 (βi − βj)
∂2Wm

∂βi ∂βj
=
∂Wm

∂βi
− ∂Wm

∂βj
. (38)

Let us denote by Mm the variety of points (t,β) ∈ C
∞ × C

m which satisfy the hodograph
equations (37). From (32) it is clear that for any permutation σ of {1, . . . ,m} the functions

Fi(t,β) :=
∂Wm(t,β)

∂βi
, (39)

satisfy
Fi(t, σ(β)) = Fσ(i)(t,β). (40)

Then, it is clear that Mm is invariant under the action of the group of permutations

(t,β) ∈ Mm =⇒ (t, σ(β)) ∈ Mm.

If (t,β) is a solution of (37) such that βi 6= βj for all i 6= j then it will be called an unreduced

solution of (37). In this case the EPD equation (38) implies that

∂2Wm(t,β)

∂βi ∂βj
= 0, ∀i 6= j. (41)

Given 2 ≤ r ≤ m, a solution (t,β) of (37) such that exactly r of its components are equal will be
called a r-reduced solution of (37).

The formulation (27) of the hodograph equations for the dcKdVm hierarchies allows us to apply
the theory of critical points of functions to analyze the solutions of these hierarchies, while (38)
indicates that the functions Wm are of a very special class.

The EPD equation (38) arose in the study of cyclids [15], where solutions W of the above form
have been found too. Much later it appeared in the theory of Whitham equations describing the
small dispersion limit of the KdV equation [17, 19].

We note that hodograph equations of a form close to (27) have been presented in [20] and [22].
Furthermore, linear equations of the EPD type and their connection with hydrodynamic chains
have been studied in [21] too.

Finally, we emphasize that the functions Wm depend on the parameters t1, t2, . . . (times of the
hierarchy). Since ”degenerate critical points appear naturally in cases when the functions depend
on parameters ” [23, 24], one should expect the existence of families of degenerate critical points
for the functions Wm. Their connection with the singular sectors in the spaces of solutions for
dcKdVm will be considered in the next section.
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To illustrate the statements given above we next present some simple examples. For the dcKdV2

hierarchy we have

W2(t,β) =
x

2
(β1 + β2) +

t1
8
(3β21 + 2β1β2 + 3β22) +

t2
16

(
5β31 + 3β21β2 + 3β1β

2
2 + 5β32

)

+
t3
128

(35β41 + 20β31β2 + 18β21β
2
2 + 20β1β

3
2 + 35β42 ) + · · ·

The hodograph equations with tn = 0 for n ≥ 4, take the form







8x+ 4t1(3β1 + β2) + 3t2
(
5β21 + 2β1β2 + β22

)
+
t3
8
(140β31 + 60β21β2 + 36β1β

2
2 + 20β32) = 0,

8x+ 4t1(β1 + 3β2) + 3t2
(
β21 + 2β1β2 + 5β22

)
+
t3
8
(140β32 + 60β22β1 + 36β2β

2
1 + 20β31) = 0.

(42)

For the dcKdV3 hierarchy we have

W3(t,β) =
x

2
(β1 + β2 + β3) +

t1
8

(
3β21 + 3β22 + 3β23 + 2β1β2 + 2β1β3 + 2β2β3

)

+
t2
16

(

5β31 ++5β32 + 5β33 + 3β21β2 + 3β21β3 + 3β1β
2
2 + 3β22β3 + 3β1β

2
3

+ 3β2β
2
3 + 2β1β2β2

)

+ · · ·

The hodograph equations with tn = 0 for n ≥ 3 are







8x+ 4 t1 (3β1 + β2 + β3) + t2 (15β
2
1 + 3β22 + 3β23 + 6β1 β2 + 6β1 β3 + 2β2 β3) = 0,

8x+ 4 t1 (β1 + 3β2 + β3) + t2 (3β
2
1 + 15β22 + 3β23 + 6β1 β2 + 2β1 β3 + 6β2 β3) = 0,

8x+ 4 t1 (β1 + β2 + 3β3) + t2 (3β
2
1 + 3β22 + 15β23 + 2β1 β2 + 6β1 β3 + 6β2 β3) = 0.

(43)

4 Singular sectors of dcKdVm hierarchies

We say that (t,β) ∈ Mm is a regular point if it is a nondegenerate critical point of the function
Wm. That it is to say, if it satisfies [23, 24]

det
(∂2Wm(t,β)

∂βi ∂βj

)

6= 0. (44)

The set of regular points of Mm will be denoted by Mreg
m and the points of its complementary

set Msing
m := Mm −Mreg

m , where the second differential of Wm is a degenerate quadratic form,

will be called singular points. We will also refer to Mreg
m and Msing

m as the regular and singular

sectors of the dcKdVm hierarchy. So Msing
m describes families of degenerate critical points of the
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function Wm. Near a regular point the variety Mreg
m can be uniquely described as (t,β(t)) where

β(t) is a solution of the dcKdVm hierarchy.

The aim of this section is to analyze the structure of Msing
m by taking advantage of the special

properties of the set of coordinates β.
In general, the singular sectors of dcKdVm hierarchies with m ≥ 2 contain both reduced and

unreduced points. For example, the hodograph equations (42) of the dcKdV2 hierarchy have
reduced singular points given by (x, t1, t2, t3, β1 = β2) where

72xt23 = −9t22 + 36t1t2t3 + (8t1t3 − 3t22)
√

9t22 − 24t1t3,

and

β1 = β2 = −3t2 +
√

9t22 − 24t1t3
12t3

.

Furthermore, there are also unreduced singular points (x, t1, t2, t3, β1, β2) determined by the con-
straint

360xt33 = −45t3t
3
2 + 180t1t

2
3t2 +

√
15 (8t1t3 − 3t22)

√

t23
(
3t22 − 8t1t3

)
,

and

β1 =
−3t2t3 +

√
15
√

t23
(
3t22 − 8t1t3

)

12t23
, β2 = −

5t2t3 +
√
15
√

t23
(
3t22 − 8t1t3

)

20t23

From (41) it follows at once that

Theorem 3. Let (t,β) be an unreduced solution of the hodograph equations (37), then (t,β) is a

singular point if and only if at least one of the derivatives

∂2Wm(t,β)

∂ β2i
, i = 1, . . . ,m,

vanishes.

Notice that since the function Wm satisfies the EPD equation (38) , its partial derivatives at
unreduced points (t,β)

∂qWm(t,β)

∂βq11 · · · ∂βqmm
, q := q1 + · · ·+ qm,

can always be expressed as a linear combination of diagonal derivatives ∂kiβi
Wm with ki ≤ qi.

Thus, for each vector q = (q1, . . . , qm) ∈ N
m with at least one qi ≥ 1 it is natural to introduce

an associated subvariety Msing
m,q of Msing

m defined as the set of unreduced solutions (t,β) of the
hodograph equations (37) such that

∂ki Wm(t,β)

∂ βkii
= 0, ∀ki ≤ qi + 1. (45)

In particular, for q = (0, . . . , 0, q) with q ≥ 1 we denote by Msing
m,q the subvariety associated to

q = (0, . . . , 0, q). That is to say, Msing
m,q is the set of solutions (t,β) of the hodograph equations

(37) such that
∂2Wm(t,β)

∂ β2m
=
∂3Wm(t,β)

∂ β3m
= . . . =

∂q+1Wm(t,β)

∂ βq+1
m

= 0. (46)
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These subvarieties define a nested sequence

Msing
m ⊃ Msing

m,1 ⊃ Msing
m,2 ⊃ · · ·Msing

m,q ⊃ · · · , (47)

and represent sets of points whose singular degree increases with q. Moreover, due to the covariance
of the functions Fi = ∂βi

Wm under permutations there is no need of introducing alternative se-
quences of the form (46) based on systems of equations corresponding to the remaining coordinates
βj for j 6= m.

The next result states that the varieties Msing
m,q of the dcKdVm hierarchy are closely related to

the (2 q + 1)-reduced solutions of the dcKdVm+2 q hierarchy.

Notice that given 2 ≤ r ≤ m, the hodograph equations for r-reduced solutions

βm−r+1 = βm−r+2 = . . . = βm,

of the dcKdVm hierarchy reduce to the system

Fi(t,β) = 0, i = 1, . . . ,m− r + 1,

of m− r + 1 equations for the m− r + 1 unknowns (β1, . . . , βm−r+1). Now we prove

Theorem 4. If (t,β) ∈ Msing
m,q where t = (t0, t1, . . .) and β = (β1, . . . , βm), then if we define

t(m+2 q) := (tq, tq+1, . . .), β(m+2 q) := (β1, . . . , βm,

2 q
︷ ︸︸ ︷

βm, . . . , βm),

it follows that (t(m+2 q),β(m+2 q)) is a (2 q + 1)-reduced solution of the hodograph equations for the

dcKdVm+2 q hierarchy.

Proof. To proof this statement we will use superscripts (m) and (m + 2 q) to distinguish objects
corresponding to different hierarchies. By assumption we have that

(t(m),β(m)) ∈ Msing
m,q .

Thus, taking (30) into account, we have that (46) can be rewritten as







F
(m)
i (t(m),β(m)) :=

∮

γ

dλ

2 i π

U (m)(λ, t(m))R(m)(λ,β(m))

λ− β
(m)
i

= 0, i = 1, . . . ,m

F
(m)
m,j (t

(m),β(m)) :=

∮

γ

dλ

2 i π

U (m)(λ, t(m))R(m)(λ,β(m))

(λ− β
(m)
m )j

= 0, j = 2, . . . , q + 1.

(48)

Now a (2 q + 1)-reduced solution of the hodograph equations for the dcKdVm+2 q is characterized
by

F
(m+2 q)
i (t(m+2 q),β(m+2 q)) :=

∮

γ

dλ

2 i π

U (m+2 q)(λ, t(m+2 q))R(m+2 q)(λ,β(m+2 q))

λ− β
(m+2 q)
i

= 0, (49)
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where i = 1, . . . ,m. But it is clear that

R(m+2 q)(λ,β(m+2 q)) =
λq

(λ− β
(m)
m )q

R(m)(λ,β(m)) (50)

Hence if we set
t
(m+2 q)
i := t

(m)
i+q , i ≥ 0,

we have
U (m)(λ, t(m)) = x(m) + λ t

(m)
1 + · · · + λq−1 t

(m)
q−1 + λq U (m+2 q)(λ, t(m+2 q)). (51)

Then it follows that

F
(m+2 q)
i (t(m+2 q),β(m+2 q)) =

∮

γ

dλ

2 i π

U (m)(λ, t(m))R(m)(λ,β(m))

(λ− β
(m)
i )(λ− β

(m)
m )q

, i = 1, . . . ,m. (52)

Furthermore, for any given i = 1, . . . ,m we have

F
(m)
i (t(m),β(m)) =

∮

γ

dλ

2 i π

U (m)(λ, t(m))R(m)(λ,β(m))

λ− β
(m)
i

=

∮

γ

dλ

2 i π

(λ− β
(m)
m )q U (m)(λ, t(m))R(m)(λ,β(m))

(λ− β
(m)
i ) (λ − β

(m)
m )q

=

q
∑

k=0

c1,k(β
(m)) Ii,k(t

(m),β(m)),

and

F
(m)
m,j (t

(m),β(m)) =

∮

γ

dλ

2 i π

U (m)(λ, t(m))R(m)(λ,β(m))

(λ− β
(m)
m )j

=

∮

γ

dλ

2 i π

(λ− β
(m)
i ) (λ− β

(m)
m )q−j U (m)(λ, t(m))R(m)(λ,β(m))

(λ− β
(m)
i ) (λ− β

(m)
m )q

=

q−j+1
∑

k=0

cj,k(β
(m)) Ii,k(t

(m),β(m)), j = 2, . . . , q + 1.

where the functions cj,k(β
(m)) are the coefficients of the polynomials







(λ− β
(m)
m )q =

∑q
k=0 c1k(β

(m))λk;

(λ− β
(m)
i ) (λ− β

(m)
m )q−j =

∑q−j+1
k=0 cjk(β

(m))λk, j = 2, . . . , q + 1.

(53)
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and

Ii,k(t
(m),β(m)) :=

∮

γ

dλ

2 i π

λk U (m)(λ, t(m))R(m)(λ,β(m))

(λ− β
(m)
i ) (λ − β

(m)
m )q

(54)

Now, for any given i = 1, . . . ,m the system (46) implies







F
(m)
i (t(m),β(m)) = 0,

F
(m)
m,j (t

(m),β(m)) = 0, j = 2, . . . , q + 1,

and, as a consequence, we deduce the following system of q homogeneous linear equations for the
q functions Ii,k(t

(m),β(m))

q−j+1
∑

k=0

cj,k(β
(m)) Ii,k(t

(m),β(m)) = 0, j = 1, . . . , q + 1.

Because of the linear independence of the polynomials (53) these equations are linearly indepen-
dent and, therefore, all the functions Ii,k(t

(m),β(m)) vanish. Finally, from (52) we conclude that

Ii,0(t
(m),β(m)) = 0 is equivalent to F

(m+2 q)
i (t(m+2 q),β(m+2 q)) = 0 and the statement follows.

5 Examples

dcKdV1 hierarchy

The hodograph equation for the dcKdV1 hierarchy with tn = 0 for all n ≥ 3 reduce to

8x+ 12 t1 β1 + 15 t2 β
2
1 = 0. (55)

The singular variety Msing
1,1 for (55) is determined by adding to (55) the equation

2 t1 + 5 t2 β1 = 0, (56)

so that for t2 6= 0 we have β1 = − 2 t1
5 t2

. Substituting this result in (55) we find a constraint for the

flow parameters

x =
3

10

t21
t2
,

which is the shock region for the solution of (55) given by

β1 =
2

15 t2

(

− 3 t1 +
√

3 (3 t21 − 10 t2 x)
)

. (57)

There are two sectors Msing
1,1,k (k = 1, 2) in Msing

1,1

Msing
1,1,1 : x = t1 = t2 = 0, β1 arbitrary;

(58)

Msing
1,1,2 : (x, t1, t2, β1) such that t2 6= 0, x =

3

10

t21
t2

and β1 = −2

5

t1
t2

14



To see the relationship with the dcKdV3 hierarchy we notice that

x(3) = t1, t
(3)
1 = t2,

and

β(3 = (β1, β1, β1) = −2

5

x(3)

t
(3)
1

(1, 1, 1),

which is a 3-reduced solution of the first flow (25) of the dcKdV3 hierarchy.

The dcKdV1 hodograph equation with tn = 0 for all n ≥ 6 is

693 t5 β
5
1 + 630 t4 β

4
1 + 560 t3 β

3
1 + 480 t2 β

2
1 + 384 t1 β1 + 256x = 0.

Let us first consider the singular variety Msing
1,1 with tn = 0 for all n ≥ 4. It is is determined by

the equations
560 t3 β

3
1 + 480 t2 β

2
1 + 384 t1 β1 + 256x = 0,

1680 t3 β
2
1 + 960 t2 β1 + 384 t1 = 0.

Thus an open subset of Msing
1,1 can be parametrized by the equations

x =
− 25 t32 + 105 t1 t2 t3 +

√
5
√

125 t62 − 1050 t1 t3 t
4
2 + 2940 t21 t

2
2 t

2
3 − 2744 t31 t

3
3

245 t23
,

β1 = −
2

(

− 25 t32 + 70 t1 t2 t3 +
√
5
√
(
5 t22 − 14 t1 t3

)3
)

35 t3
(
14 t1 t3 − 5 t22

) .

It determines the following 3-reduced solution of the two first flows of the dcKdV3 hierachy (x(3) =

t1, t
(3)
1 = t2, t

(3)
2 = t3)

β
(3)
1 = β

(3)
2 = β

(3)
3 = −

2

(

−25 (t
(3)
1 )3 + 70x(3) t

(3)
1 t

(3)
2 +

√
5

√
(

5 (t
(3)
1 )2 − 14x(3) t

(3)
2

)3
)

35 t
(3)
2

(

14x(3) t
(3)
2 − 5 (t

(3)
1 )2

) .

Next, for the sector Msing
1,2 if we set tn = 0 for all n ≥ 5, we obtain the equations

630 t4 β
4
1 + 560 t3 β

3
1 + 480 t2 β

2
1 + 384 t1 β1 + 256x = 0,

2520 t4 β
3
1 + 1680 t3 β

2
1 + 960 t2 β1 + 384 t1 = 0,

7560 t4 β
2
1 + 3360 t3 β1 + 960 t2 = 0.
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From these equations we find

t1 =
5
(

− 49 t33 + 189 t2 t3 t4 +
√
7
√

343 t63 − 2646 t2 t4 t
4
3 + 6804 t22 t

2
3 t

2
4 − 5832 t32 t

3
4

)

1701 t24
,

x =

5

(

− 98 t43 + 378 t2 t4 t
2
3 + 2

√
7
√
(
7 t23 − 18 t2 t4

)3
t3 − 243 t22 t

2
4

)

10206 t34
,

β1 = −
2

(

− 49 t33 + 126 t2 t3 t4 +
√
7
√
(
7 t23 − 18 t2 t4

)3
)

63 t4
(
18 t2 t4 − 7 t23

) .

Then the associated 5-reduced solution of the two first flows of the dcKdV5 hierarchy (x(5) = t2,

t
(5)
1 = t3, t

(5)
2 = t4) is given by

βi = −
2

(

− 49 (t
(5)
1 )3 + 126x(5) t

(5)
1 t

(5)
2 +

√
7

√
(

7 (t
(5)
1 )2 − 18x(5) t

(5)
2

)3
)

63 t
(5)
2

(

18x(5) t
(5)
2 − 7 (t

(5)
1 )2

) , i = 1, . . . , 5.

dcKdV2 hierarchy

Let us consider the hodograph equations for the dcKdV2 hierarchy with tn = 0 for all n ≥ 3. From
(42) we have that they take the form







8x+ 4t1(3β1 + β2) + 3t2
(
5β21 + 2β1β2 + β22

)
= 0,

8x+ 4t1(β1 + 3β2) + 3t2
(
β21 + 2β1β2 + 5β22

)
= 0.

(59)

The singular variety Msing
2 is determined by (59) together with the additional condition

(det(∂βiβj
Wm(t,β)) = 0)

−(2t1 + 3t2(β1 + β2))
2 + 9(2t1 + t2(5β1 + β2))(2t1 + t2(β1 + 5β2)) = 0. (60)

There elements of Msing
2 are

x = t1 = t2 = 0, (β0, β1) arbitrary;

(61)

(x, t1, t2, β1, β2) such that t2 6= 0, x =
t21
3 t2

and β1 = β2 = − t1
3 t2

The subvarieties Msing
2,q are all equal and given by

x = t1 = t2 = 0, (β0, β1) arbitrary with β0 6= β1.
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Notice that the constraint x =
t21
3 t2

determines the shock region for the following solution of

(59)

β1 =
− t1 +

√
2
√

t21 − 3 t2 x

3 t2
, β2 =

− t1 −
√
2
√

t21 − 3 t2 x

3 t2
. (62)

Let us now consider the system of hodograph equations (42) for the dcKdV2 hierarchy with

tn = 0 for all n ≥ 4. The singular variety Msing
2 is now determined by (42) and the condition

(det(∂βiβj
Wm(t,β)) = 0)

32t21 + 96t2(β1 + β2)t1 + 702t23β
2
1β

2
2 + 72

(
3t22 + t1t3

)
β1β2 + 12

(
3t22 + 13t1t3

) (
β21 + β22

)
+

486t2t3
(
β2β

2
1 + β22β1

)
+ 90t2t3

(
β31 + β32

)
+ 180t23

(
β2β

3
1 + β32β1

)
+ 45t23

(
β41 + β42

)
= 0.

One finds the following six sectors in Msing
2

1. x =
−9t32 + 36t1t3t2 + (8t1t3 − 3t22)

√

9t22 − 24t1t3
72t23

, β1 = β2 = −3t2 +
√

9t22 − 24t1t3
12t3

,

2. x =
−9t32 + 36t1t3t2 − (8t1t3 − 3t22)

√

9t22 − 24t1t3
72t23

, β1 = β2 =
−3t2 +

√

9t22 − 24t1t3
12t3

,

3. x =
−45t3t

3
2 + 180t1t

2
3t2 +

√
15(8t1t3 − 3t22)

√

t23
(
3t22 − 8t1t3

)

360t33
,

β1 = −
5t2t3 +

√
15
√

t23
(
3t22 − 8t1t3

)

20t23
, β2 =

−3t2t3 +
√
15
√

t23
(
3t22 − 8t1t3

)

12t23
,

4. x =
−45t3t

3
2 + 180t1t

2
3t2 −

√
15(8t1t3 − 3t22)

√

t23
(
3t22 − 8t1t3

)

360t33
,

β1 = −
3t2t3 +

√
15
√

t23
(
3t22 − 8t1t3

)

12t23
, β2 =

−5t2t3 +
√
15
√

t23
(
3t22 − 8t1t3

)

20t23
,
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5. x =
−45t3t

3
2 + 180t1t

2
3t2 −

√
15(8t1t3 − 3t22)

√

t23
(
3t22 − 8t1t3

)

360t33
,

β1 =
−5t2t3 +

√
15
√

t23
(
3t22 − 8t1t3

)

20t23
, β2 = −

3t2t3 +
√
15
√

t23
(
3t22 − 8t1t3

)

12t23

6. x =
−45t3t

3
2 + 180t1t

2
3t2 +

√
15(8t1t3 − 3t22)

√

t23
(
3t22 − 8t1t3

)

360t33
,

β1 =
−3t2t3 +

√
15
√

t23
(
3t22 − 8t1t3

)

12t23
, β2 = −

5t2t3 +
√
15
√

t23
(
3t22 − 8t1t3

)

20t23
.

It is easy to see that Msing
2,1 is given by the sectors 5 and 6. To check the connection between

these sectors and the dcKdV4 hierarchy it is enough to set

x(4) = t1, t
(4)
1 = t2, t

(4)
2 = t3, β(4) = (β1, β2, β2, β2),

and it is immediate to prove that β(4)(t(4)) verifies the equations of the first flow of the dcKdV4

hierarchy

∂ βi

∂t
(4)
1

=
(

βi +
1

2

4∑

k=1

βk

) ∂ βi

∂x(4)
, i = 1, . . . , 4.
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