Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation

B. Konopelchenko ${ }^{1}$, L. Martínez Alonso ${ }^{2}$ and E. Medina ${ }^{3}$
${ }^{1}$ Dipartimento di Fisica, Universitá di Lecce and Sezione INFN 73100 Lecce, Italy
${ }^{2}$ Departamento de Física Teórica II, Universidad Complutense E28040 Madrid, Spain
${ }^{3}$ Departamento de Matemáticas, Universidad de Cádiz
E11510 Puerto Real, Cádiz, Spain

March 16, 2010

Abstract

It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies describe critical and degenerate critical points of a scalar function which obeys the Euler-PoissonDarboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock type singularities are presented.

Key words: Integrable systems. Hodograph equations. Euler-PoissonDarboux equation.
PACS number: 02.30.Ik.

1 Introduction

In the present paper we study hierarchies of hydrodynamical systems describing quasiclassical deformations of hyperelliptic curves $[1,2]$

$$
\begin{equation*}
p^{2}=u(\lambda), \quad u(\lambda):=\lambda^{m}-\sum_{i=0}^{m-1} \lambda^{i} u_{i}, \quad m \geq 1 \tag{1}
\end{equation*}
$$

These hierarchies are of interest for several reasons. First, there are hierarchies of important hydrodynamical type systems among them. For $m=1$ one has the Burgers-Hopf hierarchy [3, 4] associated with the dispersionless KdV equation $u_{t}=\frac{3}{2} u u_{x}$. For $m=2$ it is the hierarchy of higher equations for the 1-layer Benney system (classsical long wave equation)

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+v_{x}=0 \tag{2}\\
v_{t}+(u v)_{x}=0 .
\end{array}\right.
$$

The system (2) and the corresponding hierarchy are quasiclassical limits of the nonlinear Schrödinger (NLS) equation and the NLS hierarchy [5]. For $m \geq 3$ these hierarchies turn to describe the singular sectors of the above $m=1,2$ hierarchies [1].

Second, all these hierarchies are the dispersionless limits of integrable coupled KdV (cKdV) hierarchies [6]-[8] associated to Schrödinger spectral problems

$$
\begin{equation*}
\partial_{x x} \psi=v(\lambda, x) \psi, \tag{3}
\end{equation*}
$$

with potentials which are polynomials in the spectral parameter λ

$$
v(\lambda, x):=\lambda^{m}-\sum_{i=0}^{m-1} \lambda^{i} v_{i}(x) \quad m \geq 1
$$

The cKdV hierarchies have been studied in [6]-[8], they have bi-Hamiltonian structures and, as a consequence of this property, the dispersionless expansions of their solutions possess interesting features such as the quasi-triviality property [9]-[10]. Moreover, the cKdV hierarchies arise also in the study of the singular sectors of the KdV and AKNS hierarchies [11, 12]. Henceforth we will refer to the hierarchies of hydrodynamical systems associated with the curves (1) for a fixed m as the m-th dispersionless coupled $\mathrm{KdV}\left(\mathrm{dcKdV}_{m}\right)$ hierarchies. The Hamiltonian structures of the dcKdV_{m} hierarchies have been studied in [13]. At last, it should be noticed that the dcKdV_{m} hierarchies are closely connected with the higher genus Whitham hierarchies introduced in [14].

In our analysis of the hodograph equations for the dcKdV_{m} hierarchies we use Riemann invariants β_{i} (roots of the polynomial $u(\lambda)$ in (1)) which provide a specially convenient system of coordinates. We show that the dcKdV_{m} hodograph equations have the form

$$
\begin{equation*}
\frac{\partial W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{i}}=0, \quad i=1, \ldots, m \tag{4}
\end{equation*}
$$

where $\boldsymbol{t}=\left(t_{1}, t_{2}, \ldots\right)$ are times of the hierarchy and

$$
\begin{equation*}
W_{m}(\boldsymbol{t}, \boldsymbol{\beta}):=\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{\sum_{n \geq 0} t_{n} \lambda^{n}}{\sqrt{\prod_{i=1}^{m}\left(1-\beta_{i} / \lambda\right)}} . \tag{5}
\end{equation*}
$$

Here γ denotes a large positively oriented circle $|\lambda|=r$. Thus, the hodograph solutions of the dcKdV_{m} hierarchies describe critical points of the functions $W_{m}(\boldsymbol{t}, \boldsymbol{\beta})$. These functions turn to be very special as they satisfy a well-known system of equations in differential geometry: the Euler-Poisson-Darboux (EPD) equations [15]

$$
\begin{equation*}
2\left(\beta_{i}-\beta_{j}\right) \frac{\partial^{2} W_{m}}{\partial \beta_{i} \partial \beta_{j}}=\frac{\partial W_{m}}{\partial \beta_{i}}-\frac{\partial W_{m}}{\partial \beta_{j}} . \tag{6}
\end{equation*}
$$

The system (6) has also appeared in the theory of the Whitham equations arising in the small dispersion limit of the KdV equations [17]-[19], and in the theory of hydrodynamic chains [20].

We also study the singular sectors $\mathcal{M}_{m}^{\text {sing }}$ of the spaces of hodograph solutions for the dcKdV_{m} hierarchies. They are given by the points $(\boldsymbol{t}, \boldsymbol{\beta})$ such that

$$
\begin{equation*}
\operatorname{rank}\left(\frac{\partial^{2} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{i} \partial \beta_{j}}\right)<m \tag{7}
\end{equation*}
$$

The varieties $\mathcal{M}_{m}^{\text {sing }}$ provide us with special classes of degenerate critical points of the function W_{m} within the general theory of critical points developed by V. I. Arnold and others about fourty years ago [23,24]. The use of equations (4)-(6) simplify drastically the analysis of the structure of these singular sectors. In particular, we prove that there is a nested sequence of subvarieties

$$
\begin{equation*}
\mathcal{M}_{m}^{\operatorname{sing}} \supset \mathcal{M}_{m, 1}^{\operatorname{sing}} \supset \mathcal{M}_{m, 2}^{\operatorname{sing}} \supset \cdots \mathcal{M}_{m, q}^{\operatorname{sing}} \supset \cdots \tag{8}
\end{equation*}
$$

which represents subsets of the singular sector $\mathcal{M}_{m}^{\operatorname{sing}}$ of the $\mathrm{dcKdV}{ }_{m}$ hierarchy with increasing singular degree q, such that each $\mathcal{M}_{m, q}^{\operatorname{sing}}$ is determined by a class of hodograph solutions of the dcKdV ${ }_{m+2 q}$ hierarchy.

The paper is organized as follows. The dcKdV ${ }_{m}$ hierarchies are described in Section 2. Equations (4)-(6) are derived in Section 3. Section 4 deals with the analysis of the singular sectors of the dcKaV_{m} hierarchies in terms of their associated hodograph equations. The relation between singular points of the $d c K d V_{m}$ hodograph equations and solutions of higher dcKdV ${ }_{m+2 q}$ hodograph equations is stated in Section 4. Some concrete examples involving shock singularities of the Burgers-Hopf equation and the 1-layer Benney system are presented in Section 5.

2 The dcKdV ${ }_{m}$ hierarchies

Given a positive integer $m \geq 1$ we consider the set M_{m} of algebraic curves (1). For $m=2 g+1$ (odd case) and $m=2 g+2$ (even case) these curves are, generically, hyperelliptic Riemann surfaces of genus g. We will denote by $\boldsymbol{q}=\left(q_{1}, \ldots, q_{m}\right)$ any of the two sets of parameters $\boldsymbol{u}:=\left(u_{0}, \ldots, u_{m-1}\right)$ or $\boldsymbol{\beta}:=\left(\beta_{1}, \ldots, \beta_{m}\right)$ which determine the curves (1)

$$
\begin{equation*}
u(\lambda)=\lambda^{m}-\sum_{i=0}^{m-1} \lambda^{i} u_{i}=\prod_{i=1}^{m}\left(\lambda-\beta_{i}\right) \tag{9}
\end{equation*}
$$

Obviously, for any fixed $\boldsymbol{\beta}$ all the permutations $\sigma(\boldsymbol{\beta}):=\left(\beta_{\sigma(1)}, \ldots, \beta_{\sigma(m)}\right)$ represent the same element of M_{m}. Note also that

$$
\begin{equation*}
u_{i}=(-1)^{m-i-1} \mathrm{~s}_{m-i}(\boldsymbol{\beta}), \tag{10}
\end{equation*}
$$

where s_{k} are the elementary symmetric polynomials

$$
\mathrm{s}_{k}=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq m} \beta_{i_{1}} \cdots \beta_{i_{k}}
$$

We next introduce the dcKdV_{m} hierarchy as a particular systems of commuting flows

$$
\boldsymbol{q}(\boldsymbol{t}), \quad \boldsymbol{t}:=\left(x:=t_{0}, t_{1}, t_{2}, \ldots\right)
$$

on M_{m}. In order to define these flows we use the set \mathcal{L} of formal power series

$$
f(z)=\sum_{n=-\infty}^{+\infty} c_{n} z^{n}
$$

where

$$
z:=\lambda^{1 / 2} \text { for } m=2 g+1 ; \quad z:=\lambda \text { for } m=2 g+2
$$

For any given $m \geq 1$ a distinguished element of \mathcal{L} is provided by the branch of $p=\sqrt{u(\lambda)}$ such that as $z \rightarrow \infty$ has an expansion of the form

$$
\begin{cases}p(z, \boldsymbol{q})=z^{2 g+1}\left(1+\sum_{n \geq 1} \frac{b_{n}(\boldsymbol{q})}{z^{2 n}}\right), & m=2 g+1 \tag{11}\\ p(z, \boldsymbol{q})=z^{g+1}\left(1+\sum_{n \geq 1} \frac{b_{n}(\boldsymbol{q})}{z^{n}}\right), & m=2 g+2\end{cases}
$$

We define the following splittings $\mathcal{L}=\mathcal{L}_{(+, \boldsymbol{q})} \bigoplus \mathcal{L}_{(-, \boldsymbol{q})}$

$$
\begin{equation*}
f_{(+, \boldsymbol{q})}(z):=\left(\frac{f(z)}{p(z, \boldsymbol{q})}\right)_{\oplus} p(z, \boldsymbol{q}), \quad f_{(-, \boldsymbol{q})}(z):=\left(\frac{f(z)}{p(z, \boldsymbol{q})}\right)_{\ominus} p(z, \boldsymbol{q}) \tag{12}
\end{equation*}
$$

where f_{\oplus} and f_{\ominus} stand for the standard projections on positive and strictly negative powers of z, respectively

$$
f_{\oplus}(z):=\sum_{n=0}^{N} c_{n} z^{n}, \quad f_{\ominus}(z):=\sum_{n=-\infty}^{-1} c_{n} z^{n}
$$

The dcKdV V_{m} flows $\boldsymbol{q}(\boldsymbol{t})$ are characterized by the following condition: There exists a family of functions $S(z, \boldsymbol{t}, \boldsymbol{q}(\boldsymbol{t}))$ in \mathcal{L} satisfying

$$
\begin{equation*}
\partial_{t_{n}} S(z, \boldsymbol{t}, \boldsymbol{q}(\boldsymbol{t}))=\Omega_{n}(z, \boldsymbol{q}(\boldsymbol{t})), \quad n \geq 0 \tag{13}
\end{equation*}
$$

where

$$
\Omega_{n}(z, \boldsymbol{q}):=\left(\lambda(z)^{n+m / 2}\right)_{(+, \boldsymbol{q})}=\left\{\begin{array}{ll}
\left(z^{2 n+2 g+1}\right)_{(+, \boldsymbol{q})}, \quad m=2 g+1 \tag{14}\\
\left(z^{n+g+1}\right)_{(+, \boldsymbol{q})}, & m=2 g+2,
\end{array} \quad n \geq 0\right.
$$

We notice that

$$
\begin{equation*}
\Omega_{n}(z, \boldsymbol{q})=\left(\lambda^{n} R(\lambda(z), \boldsymbol{q})\right)_{\oplus} p \tag{15}
\end{equation*}
$$

where R is the generating function

$$
\begin{equation*}
R(\lambda, \boldsymbol{q}):=\sqrt{\frac{\lambda^{m}}{u(\lambda)}}=\sum_{n \geq 0} \frac{R_{n}(\boldsymbol{q})}{\lambda^{n}}, \quad \lambda \rightarrow \infty . \tag{16}
\end{equation*}
$$

The coefficients $R_{n}(\boldsymbol{q})$ are polynomials in the coordinates \boldsymbol{q}, for example

$$
R_{0}=1, \quad R_{1}=\frac{1}{2} u_{m-1}, \quad R_{2}=\frac{1}{2} u_{m-2}+\frac{3}{8} u_{m-1}^{2}, \quad \ldots
$$

Functions S which satisfy (13) will be referred to as action functions of the dcKdV_{m} hierarchy. This kind of generating functions S has been already used in the theory of dispersionless integrable systems (see e.g. [14]). It can be proved [1] that (13) is a compatible system of equations for S. In fact its general solution will be determined in the next section. We notice that for $n=0$ the equation (13) reads

$$
\begin{equation*}
\partial_{x} S(z, \boldsymbol{t}, \boldsymbol{q}(\boldsymbol{t}))=p(z, \boldsymbol{q}(\boldsymbol{t})), \tag{17}
\end{equation*}
$$

so that (13) is equivalent to the system

$$
\begin{equation*}
\partial_{t_{n}} p(z, \boldsymbol{q}(t))=\partial_{x} \Omega_{n}(z, \boldsymbol{q}(\boldsymbol{t})), \quad n \geq 0 . \tag{18}
\end{equation*}
$$

We will henceforth refer to the dcKdV_{m} hierarchy for $m=2 g+1$ and $m=2 g+2$ as the BurgersHopf $\left(\mathrm{BH}_{g}\right)$ and the dispersionless Jaulent-Miodek $\left(\mathrm{dJM}_{g}\right)$ hierarchies, respectively. Observe that both hierarchies, BH_{g} and dJM_{g} determine deformations of hyperelliptic Riemann surfaces of genus g. In our work we will always consider an arbitrary but finite number of these flows.

Since $u=u(\lambda(z), \boldsymbol{q})=p(z, \boldsymbol{q})^{2}$, the operator $J=J(\lambda, u)$ defined by

$$
\begin{aligned}
& J:=2 p \cdot \partial_{x} \cdot p=2 u \partial_{x}+u_{x}, \\
& J=\sum_{i=0}^{m} \lambda^{i} J_{i}, \quad J_{m}=2 \partial_{x}, \quad J_{i}=-\left(2 u_{i} \partial_{x}+u_{i, x}\right), \quad u_{m}:=-1,
\end{aligned}
$$

satisfies $J R=0$. Then from (18) it follows that

$$
\begin{equation*}
\partial_{n} u=J\left(\lambda^{n} R(\lambda, \boldsymbol{u})\right)_{\oplus}=-J\left(\lambda^{n} R(\lambda, \boldsymbol{u})\right)_{\ominus} \tag{19}
\end{equation*}
$$

which constitutes the dcKdV_{m} hierarchy in terms of the coordinates u_{i}

$$
\begin{equation*}
\partial_{n} u_{i}=\sum_{l-k=i, k \geq 1} J_{l} R_{n+k}(\boldsymbol{u}), \quad i=0, \ldots, m-1 . \tag{20}
\end{equation*}
$$

From (18) it also follows that

$$
\partial_{t_{n}} \log p(z, \boldsymbol{q})=\frac{\partial_{x}\left[\left(\lambda(z)^{n} R(\lambda(z), \boldsymbol{q})\right)_{\oplus} p\right]}{p(z, \boldsymbol{q})}
$$

and then, identifying the residues of both sides at $\lambda=\beta_{i}$, we get

$$
\begin{equation*}
\partial_{n} \beta_{i}=\omega_{n, i}(\boldsymbol{\beta}) \partial_{x} \beta_{i}, \quad i=1, \ldots, m \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{n, i}(\boldsymbol{\beta}):=\left.\left(\lambda^{n} R(\lambda, \boldsymbol{\beta})\right)_{\oplus}\right|_{\lambda=\beta_{i}} . \tag{22}
\end{equation*}
$$

The systems (21) are the equations of the dcKdV_{m} hierarchy in terms of the coordinates β_{i}. Observe that we have two $\mathrm{dcKdV}{ }_{m}$ hierarchies, BH_{g} and dJM_{g}, which determine deformations of hyperelliptic Riemann surfaces of genus g. It can be shown $[2,13]$ that the dcKdV_{m} flows are bi-Hamiltonian systems.

We next present some examples of interesting flows in the dcKdV_{m} hierarchies. The dcKdV ${ }_{1}$ hierarchy is associated to the curve

$$
p^{2}-u(\lambda)=0, \quad u(\lambda)=\lambda-v, \quad v:=u_{0}=\beta_{1} .
$$

The corresponding flows are given by

$$
\partial_{t_{n}} v=c_{n} v^{n} v_{x}, \quad c_{n}:=\frac{(2 n+1)!!}{2^{n} n!}, \quad n \geq 1
$$

and constitute the Burgers-Hopf hierarchy BH_{0}. In particular the t_{1}-flow is the Burgers-Hopf equation

$$
\partial_{t} v=\frac{3}{2} v v_{x}
$$

which is in turn the dispersionless limit of the KdV equation.
The $\mathrm{dcKdV}_{2}\left(\mathrm{dJM}_{0}\right)$ hierarchy is associated to the curve

$$
\begin{gathered}
p^{2}-u(\lambda)=0, \quad u(\lambda)=\lambda^{2}-\lambda u_{1}-u_{0}=\left(\lambda-\beta_{1}\right)\left(\lambda-\beta_{2}\right), \\
u_{1}=\beta_{1}+\beta_{2}, \quad u_{0}=-\beta_{1} \beta_{2} .
\end{gathered}
$$

The t_{1}-flow of this hierarchy is given by the disperssionless Jaulent-Miodek system

$$
\left\{\begin{array}{l}
\partial_{t_{1}} u_{0}=u_{0} u_{1 x}+\frac{1}{2} u_{1} u_{0 x}, \tag{23}\\
\partial_{t_{1}} u_{1}=u_{0 x}+\frac{3}{2} u_{1} u_{1 x}
\end{array}\right.
$$

which under the changes of dependent variables

$$
u=-u_{1}, \quad v=u_{0}+\frac{u_{1}^{2}}{4}
$$

becomes the 1-layer Benney system (2). In terms of the Riemann invariants β_{1} and β_{2}

$$
u=-\left(\beta_{1}+\beta_{2}\right), \quad v=\left(\beta_{1}-\beta_{2}\right)^{2} / 4
$$

the system (2) takes the well-known form

$$
\left\{\begin{array}{l}
\partial_{t_{1}} \beta_{1}=\frac{1}{2}\left(3 \beta_{1}+\beta_{2}\right) \beta_{1 x} \tag{24}\\
\partial_{t_{1}} \beta_{2}=\frac{1}{2}\left(3 \beta_{2}+\beta_{1}\right) \beta_{2 x}
\end{array}\right.
$$

For $v>0$ the 1-layer Benney system is hyperbolic while for $v<0$ it is elliptic.
Finally, we consider the BH_{1} hierarchy. Its associated curve is given by

$$
\begin{aligned}
& p^{2}-u(\lambda)=0, \quad u(\lambda)=\lambda^{3}-\lambda^{2} u_{2}-\lambda u_{1}-u_{0}=\left(\lambda-\beta_{1}\right)\left(\lambda-\beta_{2}\right)\left(\lambda-\beta_{3}\right), \\
& u_{1}=\beta_{1}+\beta_{2}+\beta_{3}, \quad u_{2}=-\left(\beta_{1} \beta_{2}+\beta_{1} \beta_{3}+\beta_{2} \beta_{3}\right), \quad u_{3}=\beta_{1} \beta_{2} \beta_{3} .
\end{aligned}
$$

The first flow takes the forms

$$
\left\{\begin{array} { l }
{ \partial _ { t _ { 1 } } u _ { 0 } = \frac { 1 } { 2 } u _ { 2 } u _ { 0 x } + u _ { 0 } u _ { 2 x } , } \tag{25}\\
{ \partial _ { t _ { 1 } } u _ { 1 } = u _ { 0 x } + \frac { 1 } { 2 } u _ { 2 } u _ { 1 x } + u _ { 1 } u _ { 2 x } , } \\
{ \partial _ { t _ { 1 } } u _ { 2 } = u _ { 1 x } + \frac { 3 } { 2 } u _ { 2 } u _ { 2 x } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\partial_{t_{1}} \beta_{1}=\frac{1}{2}\left(3 \beta_{1}+\beta_{2}+\beta_{3}\right) \beta_{1 x} \\
\partial_{t_{1}} \beta_{2}=\frac{1}{2}\left(\beta_{1}+3 \beta_{2}+\beta_{3}\right) \beta_{2 x} \\
\partial_{t_{1}} \beta_{3}=\frac{1}{2}\left(\beta_{1}+\beta_{2}+3 \beta_{3}\right) \beta_{3 x}
\end{array}\right.\right.
$$

3 Hodograph equations for dcKdV_{m} hierarchies and the Euler-Poisson-Darboux equation

Let us introduce the function

$$
\begin{equation*}
W_{m}(\boldsymbol{t}, \boldsymbol{q}):=\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} U(\lambda, \boldsymbol{t}) R(\lambda, \boldsymbol{q})=\sum_{n \geq 0} t_{n} R_{n+1}(\boldsymbol{q}) \tag{26}
\end{equation*}
$$

where γ denotes a large positively oriented circle $|\lambda|=r, U(\lambda, \boldsymbol{t}):=\sum_{n \geq 0} t_{n} \lambda^{n}$ and $R(\lambda, \boldsymbol{q})$ is the function defined in (16).

Theorem 1. If the functions $\boldsymbol{q}(\boldsymbol{t})=\left(q_{1}\left(\boldsymbol{t}, \ldots, q_{m}(\boldsymbol{t})\right)\right.$ satisfy the system of hodograph equations

$$
\begin{equation*}
\frac{\partial W_{m}(\boldsymbol{t}, \boldsymbol{q})}{\partial q_{i}}=0, \quad i=1, \ldots, m \tag{27}
\end{equation*}
$$

then $\boldsymbol{q}(\boldsymbol{t})$ is a solution of the dcKd V_{m} hierarchy.
Proof. We are going to prove that the function

$$
\begin{equation*}
S(z, \boldsymbol{t}, \boldsymbol{q}(\boldsymbol{t}))=\sum_{n \geq 0} t_{n} \Omega_{n}(z, \boldsymbol{q}(\boldsymbol{t}))=(U(\lambda(z), \boldsymbol{t}) R(\lambda(z), \boldsymbol{q}(\boldsymbol{t})))_{\oplus} p(z, \boldsymbol{q}(\boldsymbol{t})), \tag{28}
\end{equation*}
$$

is an action function for the $d c \mathrm{KdV} V_{m}$ hierarchy. By differentiating (28) with respect to t_{n} we have that

$$
\begin{equation*}
\partial_{n} S=\Omega_{n}+\left(U \partial_{n} R\right)_{\oplus} p+(U R)_{\oplus} \partial_{n} p, \tag{29}
\end{equation*}
$$

We now use the coordinates $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{m}\right)$ so that we may take advantage of the identities

$$
\begin{equation*}
\partial_{\beta_{i}} p=-\frac{1}{2} \frac{p}{\lambda-\beta_{i}}, \quad \partial_{\beta_{i}} R=\frac{1}{2} \frac{R}{\lambda-\beta_{i}} . \tag{30}
\end{equation*}
$$

Thus we deduce that

$$
\begin{equation*}
\left(U \partial_{n} R\right)_{\oplus} p+(U R)_{\oplus} \partial_{n} p=\frac{1}{2} \sum_{i=1}^{m}\left[\left(\frac{U R}{\lambda-\beta_{i}}\right)_{\oplus}-\frac{(U R)_{\oplus}}{\lambda-\beta_{i}}\right] p \partial_{n} \beta_{i} . \tag{31}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\frac{\partial W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{i}}=\frac{1}{2} \oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{U(\lambda, \boldsymbol{t}) R(\lambda, \boldsymbol{\beta})}{\lambda-\beta_{i}}=\frac{1}{2} \oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{(U(\lambda, \boldsymbol{t}) R(\lambda, \boldsymbol{\beta}))_{\oplus}}{\lambda-\beta_{i}} . \tag{32}
\end{equation*}
$$

Hence the hodograph equations (27) can be written as

$$
\begin{equation*}
\left.(U(\lambda, \boldsymbol{t}) R(\lambda, \boldsymbol{\beta}(\boldsymbol{t})))_{\oplus}\right|_{\lambda=\beta_{i}}=0, \quad i=1, \ldots, m . \tag{33}
\end{equation*}
$$

Thus we have that $\left(U(\lambda, \boldsymbol{t}) R(\lambda, \boldsymbol{\beta}(\boldsymbol{t}))_{\oplus}\right.$ is a polynomial in λ which vanish at $\lambda=\beta_{i}(\boldsymbol{t})$ for all i. As a consequence

$$
\frac{(U R)_{\oplus}}{\lambda-\beta_{i}}=\left(\frac{(U R)_{\oplus}}{\lambda-\beta_{i}}\right)_{\oplus}=\left(\frac{U R}{\lambda-\beta_{i}}\right)_{\oplus} .
$$

Then from (29) and (31) we deduce that $\partial_{n} S=\Omega_{n}$ and therefore the statement follows.

Using (26) we obtain that the hodograph equations (27) can be expressed as

$$
\begin{equation*}
\sum_{n \geq 0} t_{n} \frac{\partial R_{n+1}(\boldsymbol{q})}{\partial q_{i}}=0, \quad i=1, \ldots, m \tag{34}
\end{equation*}
$$

Furthermore, from (21), (22) and (33) the hodograph equations (27) can be also written as [1]

$$
\begin{equation*}
\sum_{n \geq 0} t_{n} \omega_{n, i}(\boldsymbol{\beta})=0, \quad i=1, \ldots, m, \tag{35}
\end{equation*}
$$

which represent the hodograph transform for the dcKdV_{m} hierarchy of flows in hydrodynamic form.

Notice also that we may shift the time parameters $t_{n} \rightarrow t_{n}-c_{n}$ in (34) to get solutions depending on an arbitrary number of constants.

It is easy to see that the generating function

$$
R(\lambda, \boldsymbol{\beta}):=\sqrt{\frac{\lambda^{m}}{u(\lambda)}}=\sqrt{\frac{\lambda^{m}}{\prod_{i=1}^{m}\left(\lambda-\beta_{i}\right)}},
$$

is a symmetric solution of the EPD equation

$$
\begin{equation*}
2\left(\beta_{i}-\beta_{j}\right) \frac{\partial^{2} R}{\partial \beta_{i} \partial \beta_{j}}=\frac{\partial R}{\partial \beta_{i}}-\frac{\partial R}{\partial \beta_{j}} . \tag{36}
\end{equation*}
$$

Consequently, the same property is satisfied by $W(\boldsymbol{t}, \boldsymbol{\beta})$ for all \boldsymbol{t}. Thus, we have proved

Theorem 2. The solutions $(\boldsymbol{t}, \boldsymbol{\beta})$ of the hodograph equations

$$
\begin{equation*}
\frac{\partial W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{i}}=0, \quad i=1, \ldots, m \tag{37}
\end{equation*}
$$

are the critical points of the solution

$$
W_{m}(\boldsymbol{t}, \boldsymbol{\beta}):=\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{U(\lambda, \boldsymbol{t})}{\sqrt{\prod_{i=1}^{m}\left(1-\beta_{i} / \lambda\right)}}
$$

of the EPD equation

$$
\begin{equation*}
2\left(\beta_{i}-\beta_{j}\right) \frac{\partial^{2} W_{m}}{\partial \beta_{i} \partial \beta_{j}}=\frac{\partial W_{m}}{\partial \beta_{i}}-\frac{\partial W_{m}}{\partial \beta_{j}} \tag{38}
\end{equation*}
$$

Let us denote by \mathcal{M}_{m} the variety of points $(\boldsymbol{t}, \boldsymbol{\beta}) \in \mathbb{C}^{\infty} \times \mathbb{C}^{m}$ which satisfy the hodograph equations (37). From (32) it is clear that for any permutation σ of $\{1, \ldots, m\}$ the functions

$$
\begin{equation*}
F_{i}(\boldsymbol{t}, \boldsymbol{\beta}):=\frac{\partial W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{i}} \tag{39}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
F_{i}(\boldsymbol{t}, \sigma(\boldsymbol{\beta}))=F_{\sigma(i)}(\boldsymbol{t}, \boldsymbol{\beta}) \tag{40}
\end{equation*}
$$

Then, it is clear that \mathcal{M}_{m} is invariant under the action of the group of permutations

$$
(\boldsymbol{t}, \boldsymbol{\beta}) \in \mathcal{M}_{m} \Longrightarrow(\boldsymbol{t}, \sigma(\boldsymbol{\beta})) \in \mathcal{M}_{m}
$$

If $(\boldsymbol{t}, \boldsymbol{\beta})$ is a solution of (37) such that $\beta_{i} \neq \beta_{j}$ for all $i \neq j$ then it will be called an unreduced solution of (37). In this case the EPD equation (38) implies that

$$
\begin{equation*}
\frac{\partial^{2} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{i} \partial \beta_{j}}=0, \quad \forall i \neq j \tag{41}
\end{equation*}
$$

Given $2 \leq r \leq m$, a solution $(\boldsymbol{t}, \boldsymbol{\beta})$ of (37) such that exactly r of its components are equal will be called a r-reduced solution of (37).

The formulation (27) of the hodograph equations for the $\mathrm{dcK}_{\mathrm{C}} \mathrm{V}_{m}$ hierarchies allows us to apply the theory of critical points of functions to analyze the solutions of these hierarchies, while (38) indicates that the functions W_{m} are of a very special class.

The EPD equation (38) arose in the study of cyclids [15], where solutions W of the above form have been found too. Much later it appeared in the theory of Whitham equations describing the small dispersion limit of the KdV equation $[17,19]$.

We note that hodograph equations of a form close to (27) have been presented in [20] and [22]. Furthermore, linear equations of the EPD type and their connection with hydrodynamic chains have been studied in [21] too.

Finally, we emphasize that the functions W_{m} depend on the parameters t_{1}, t_{2}, \ldots (times of the hierarchy). Since "degenerate critical points appear naturally in cases when the functions depend on parameters " $[23,24]$, one should expect the existence of families of degenerate critical points for the functions W_{m}. Their connection with the singular sectors in the spaces of solutions for dcKdV ${ }_{m}$ will be considered in the next section.

To illustrate the statements given above we next present some simple examples. For the dcKdV ${ }_{2}$ hierarchy we have

$$
\begin{aligned}
W_{2}(\boldsymbol{t}, \boldsymbol{\beta}) & =\frac{x}{2}\left(\beta_{1}+\beta_{2}\right)+\frac{t_{1}}{8}\left(3 \beta_{1}^{2}+2 \beta_{1} \beta_{2}+3 \beta_{2}^{2}\right)+\frac{t_{2}}{16}\left(5 \beta_{1}^{3}+3 \beta_{1}^{2} \beta_{2}+3 \beta_{1} \beta_{2}^{2}+5 \beta_{2}^{3}\right) \\
& +\frac{t_{3}}{128}\left(35 \beta_{1}^{4}+20 \beta_{1}^{3} \beta_{2}+18 \beta_{1}^{2} \beta_{2}^{2}+20 \beta_{1} \beta_{2}^{3}+35 \beta_{2}^{4}\right)+\cdots
\end{aligned}
$$

The hodograph equations with $t_{n}=0$ for $n \geq 4$, take the form

$$
\left\{\begin{array}{l}
8 x+4 t_{1}\left(3 \beta_{1}+\beta_{2}\right)+3 t_{2}\left(5 \beta_{1}^{2}+2 \beta_{1} \beta_{2}+\beta_{2}^{2}\right)+\frac{t_{3}}{8}\left(140 \beta_{1}^{3}+60 \beta_{1}^{2} \beta_{2}+36 \beta_{1} \beta_{2}^{2}+20 \beta_{2}^{3}\right)=0 \tag{42}\\
8 x+4 t_{1}\left(\beta_{1}+3 \beta_{2}\right)+3 t_{2}\left(\beta_{1}^{2}+2 \beta_{1} \beta_{2}+5 \beta_{2}^{2}\right)+\frac{t_{3}}{8}\left(140 \beta_{2}^{3}+60 \beta_{2}^{2} \beta_{1}+36 \beta_{2} \beta_{1}^{2}+20 \beta_{1}^{3}\right)=0
\end{array}\right.
$$

For the dcKdV_{3} hierarchy we have

$$
\begin{aligned}
W_{3}(\boldsymbol{t}, \boldsymbol{\beta})= & \frac{x}{2}\left(\beta_{1}+\beta_{2}+\beta_{3}\right)+\frac{t_{1}}{8}\left(3 \beta_{1}^{2}+3 \beta_{2}^{2}+3 \beta_{3}^{2}+2 \beta_{1} \beta_{2}+2 \beta_{1} \beta_{3}+2 \beta_{2} \beta_{3}\right) \\
+ & \frac{t_{2}}{16}\left(5 \beta_{1}^{3}++5 \beta_{2}^{3}+5 \beta_{3}^{3}+3 \beta_{1}^{2} \beta_{2}+3 \beta_{1}^{2} \beta_{3}+3 \beta_{1} \beta_{2}^{2}+3 \beta_{2}^{2} \beta_{3}+3 \beta_{1} \beta_{3}^{2}\right. \\
& \left.+3 \beta_{2} \beta_{3}^{2}+2 \beta_{1} \beta_{2} \beta_{2}\right)+\cdots
\end{aligned}
$$

The hodograph equations with $t_{n}=0$ for $n \geq 3$ are

$$
\left\{\begin{array}{l}
8 x+4 t_{1}\left(3 \beta_{1}+\beta_{2}+\beta_{3}\right)+t_{2}\left(15 \beta_{1}^{2}+3 \beta_{2}^{2}+3 \beta_{3}^{2}+6 \beta_{1} \beta_{2}+6 \beta_{1} \beta_{3}+2 \beta_{2} \beta_{3}\right)=0 \tag{43}\\
8 x+4 t_{1}\left(\beta_{1}+3 \beta_{2}+\beta_{3}\right)+t_{2}\left(3 \beta_{1}^{2}+15 \beta_{2}^{2}+3 \beta_{3}^{2}+6 \beta_{1} \beta_{2}+2 \beta_{1} \beta_{3}+6 \beta_{2} \beta_{3}\right)=0 \\
8 x+4 t_{1}\left(\beta_{1}+\beta_{2}+3 \beta_{3}\right)+t_{2}\left(3 \beta_{1}^{2}+3 \beta_{2}^{2}+15 \beta_{3}^{2}+2 \beta_{1} \beta_{2}+6 \beta_{1} \beta_{3}+6 \beta_{2} \beta_{3}\right)=0
\end{array}\right.
$$

4 Singular sectors of dcKdV_{m} hierarchies

We say that $(\boldsymbol{t}, \boldsymbol{\beta}) \in \mathcal{M}_{m}$ is a regular point if it is a nondegenerate critical point of the function W_{m}. That it is to say, if it satisfies [23, 24]

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial^{2} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{i} \partial \beta_{j}}\right) \neq 0 \tag{44}
\end{equation*}
$$

The set of regular points of \mathcal{M}_{m} will be denoted by $\mathcal{M}_{m}^{\text {reg }}$ and the points of its complementary set $\mathcal{M}_{m}^{\operatorname{sing}}:=\mathcal{M}_{m}-\mathcal{M}_{m}^{\text {reg }}$, where the second differential of W_{m} is a degenerate quadratic form, will be called singular points. We will also refer to $\mathcal{M}_{m}^{\text {reg }}$ and $\mathcal{M}_{m}^{\text {sing }}$ as the regular and singular sectors of the dcKdV_{m} hierarchy. So $\mathcal{M}_{m}^{\text {sing }}$ describes families of degenerate critical points of the
function W_{m}. Near a regular point the variety $\mathcal{M}_{m}^{\text {reg }}$ can be uniquely described as $(\boldsymbol{t}, \boldsymbol{\beta}(\boldsymbol{t})$) where $\boldsymbol{\beta}(\boldsymbol{t})$ is a solution of the dcKdV_{m} hierarchy.

The aim of this section is to analyze the structure of $\mathcal{M}_{m}^{\operatorname{sing}}$ by taking advantage of the special properties of the set of coordinates $\boldsymbol{\beta}$.

In general, the singular sectors of dcKdV_{m} hierarchies with $m \geq 2$ contain both reduced and unreduced points. For example, the hodograph equations (42) of the dcKdV_{2} hierarchy have reduced singular points given by ($x, t_{1}, t_{2}, t_{3}, \beta_{1}=\beta_{2}$) where

$$
72 x t_{3}^{2}=-9 t_{2}^{2}+36 t_{1} t_{2} t_{3}+\left(8 t_{1} t_{3}-3 t_{2}^{2}\right) \sqrt{9 t_{2}^{2}-24 t_{1} t_{3}},
$$

and

$$
\beta_{1}=\beta_{2}=-\frac{3 t_{2}+\sqrt{9 t_{2}^{2}-24 t_{1} t_{3}}}{12 t_{3}} .
$$

Furthermore, there are also unreduced singular points $\left(x, t_{1}, t_{2}, t_{3}, \beta_{1}, \beta_{2}\right)$ determined by the constraint

$$
360 x t_{3}^{3}=-45 t_{3} t_{2}^{3}+180 t_{1} t_{3}^{2} t_{2}+\sqrt{15}\left(8 t_{1} t_{3}-3 t_{2}^{2}\right) \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}
$$

and

$$
\beta_{1}=\frac{-3 t_{2} t_{3}+\sqrt{15} \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{12 t_{3}^{2}}, \quad \beta_{2}=-\frac{5 t_{2} t_{3}+\sqrt{15} \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{20 t_{3}^{2}}
$$

From (41) it follows at once that
Theorem 3. Let $(\boldsymbol{t}, \boldsymbol{\beta})$ be an unreduced solution of the hodograph equations (37), then $(\boldsymbol{t}, \boldsymbol{\beta})$ is a singular point if and only if at least one of the derivatives

$$
\frac{\partial^{2} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{i}^{2}}, \quad i=1, \ldots, m
$$

vanishes.
Notice that since the function W_{m} satisfies the EPD equation (38), its partial derivatives at unreduced points $(\boldsymbol{t}, \boldsymbol{\beta})$

$$
\frac{\partial^{q} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{1}^{q_{1}} \cdots \partial \beta_{m}^{q_{m}}}, \quad q:=q_{1}+\cdots+q_{m}
$$

can always be expressed as a linear combination of diagonal derivatives $\partial_{\beta_{i}}^{k_{i}} W_{m}$ with $k_{i} \leq q_{i}$. Thus, for each vector $\boldsymbol{q}=\left(q_{1}, \ldots, q_{m}\right) \in \mathbb{N}^{m}$ with at least one $q_{i} \geq 1$ it is natural to introduce an associated subvariety $\mathcal{M}_{m, \boldsymbol{q}}^{\operatorname{sing}}$ of $\mathcal{M}_{m}^{\operatorname{sing}}$ defined as the set of unreduced solutions $(\boldsymbol{t}, \boldsymbol{\beta})$ of the hodograph equations (37) such that

$$
\begin{equation*}
\frac{\partial^{k_{i}} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{i}^{k_{i}}}=0, \quad \forall k_{i} \leq q_{i}+1 . \tag{45}
\end{equation*}
$$

In particular, for $\boldsymbol{q}=(0, \ldots, 0, q)$ with $q \geq 1$ we denote by $\mathcal{M}_{m, q}^{\operatorname{sing}}$ the subvariety associated to $\boldsymbol{q}=(0, \ldots, 0, q)$. That is to say, $\mathcal{M}_{m, q}^{\operatorname{sing}}$ is the set of solutions $(\boldsymbol{t}, \boldsymbol{\beta})$ of the hodograph equations (37) such that

$$
\begin{equation*}
\frac{\partial^{2} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{m}^{2}}=\frac{\partial^{3} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{m}^{3}}=\ldots=\frac{\partial^{q+1} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})}{\partial \beta_{m}^{q+1}}=0 . \tag{46}
\end{equation*}
$$

These subvarieties define a nested sequence

$$
\begin{equation*}
\mathcal{M}_{m}^{\operatorname{sing}} \supset \mathcal{M}_{m, 1}^{\operatorname{sing}} \supset \mathcal{M}_{m, 2}^{\operatorname{sing}} \supset \cdots \mathcal{M}_{m, q}^{\operatorname{sing}} \supset \cdots \tag{47}
\end{equation*}
$$

and represent sets of points whose singular degree increases with q. Moreover, due to the covariance of the functions $F_{i}=\partial_{\beta_{i}} W_{m}$ under permutations there is no need of introducing alternative sequences of the form (46) based on systems of equations corresponding to the remaining coordinates β_{j} for $j \neq m$.

The next result states that the varieties $\mathcal{M}_{m, q}^{\operatorname{sing}}$ of the $d c K d V_{m}$ hierarchy are closely related to the $(2 q+1)$-reduced solutions of the $\mathrm{dcKdV}_{m+2} q$ hierarchy.

Notice that given $2 \leq r \leq m$, the hodograph equations for r-reduced solutions

$$
\beta_{m-r+1}=\beta_{m-r+2}=\ldots=\beta_{m}
$$

of the dcKdV_{m} hierarchy reduce to the system

$$
F_{i}(\boldsymbol{t}, \boldsymbol{\beta})=0, \quad i=1, \ldots, m-r+1
$$

of $m-r+1$ equations for the $m-r+1$ unknowns $\left(\beta_{1}, \ldots, \beta_{m-r+1}\right)$. Now we prove
Theorem 4. If $(\boldsymbol{t}, \boldsymbol{\beta}) \in \mathcal{M}_{m, q}^{\operatorname{sing}}$ where $\boldsymbol{t}=\left(t_{0}, t_{1}, \ldots\right)$ and $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{m}\right)$, then if we define

$$
\boldsymbol{t}^{(m+2 q)}:=\left(t_{q}, t_{q+1}, \ldots\right), \quad \boldsymbol{\beta}^{(m+2 q)}:=(\beta_{1}, \ldots, \beta_{m}, \overbrace{\beta_{m}, \ldots, \beta_{m}}^{2 q}),
$$

it follows that $\left(\boldsymbol{t}^{(m+2 q)}, \boldsymbol{\beta}^{(m+2 q)}\right)$ is a $(2 q+1)$-reduced solution of the hodograph equations for the $d c K d V_{m+2 q}$ hierarchy.

Proof. To proof this statement we will use superscripts (m) and $(m+2 q)$ to distinguish objects corresponding to different hierarchies. By assumption we have that

$$
\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right) \in \mathcal{M}_{m, q}^{\operatorname{sing}}
$$

Thus, taking (30) into account, we have that (46) can be rewritten as

$$
\begin{cases}F_{i}^{(m)}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right):=\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{U^{(m)}\left(\lambda, \boldsymbol{t}^{(m)}\right) R^{(m)}\left(\lambda, \boldsymbol{\beta}^{(m)}\right)}{\lambda-\beta_{i}^{(m)}}=0, & i=1, \ldots, m \tag{48}\\ F_{m, j}^{(m)}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right):=\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{U^{(m)}\left(\lambda, \boldsymbol{t}^{(m)}\right) R^{(m)}\left(\lambda, \boldsymbol{\beta}^{(m)}\right)}{\left(\lambda-\beta_{m}^{(m)}\right)^{j}}=0, & j=2, \ldots, q+1\end{cases}
$$

Now a $(2 q+1)$-reduced solution of the hodograph equations for the $\operatorname{dcKdV}_{m+2}$ is characterized by

$$
\begin{equation*}
F_{i}^{(m+2 q)}\left(\boldsymbol{t}^{(m+2 q)}, \boldsymbol{\beta}^{(m+2 q)}\right):=\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{U^{(m+2 q)}\left(\lambda, \boldsymbol{t}^{(m+2 q)}\right) R^{(m+2 q)}\left(\lambda, \boldsymbol{\beta}^{(m+2 q)}\right)}{\lambda-\beta_{i}^{(m+2 q)}}=0 \tag{49}
\end{equation*}
$$

where $i=1, \ldots, m$. But it is clear that

$$
\begin{equation*}
R^{(m+2 q)}\left(\lambda, \boldsymbol{\beta}^{(m+2 q)}\right)=\frac{\lambda^{q}}{\left(\lambda-\beta_{m}^{(m)}\right)^{q}} R^{(m)}\left(\lambda, \boldsymbol{\beta}^{(m)}\right) \tag{50}
\end{equation*}
$$

Hence if we set

$$
t_{i}^{(m+2 q)}:=t_{i+q}^{(m)}, \quad i \geq 0,
$$

we have

$$
\begin{equation*}
U^{(m)}\left(\lambda, \boldsymbol{t}^{(m)}\right)=x^{(m)}+\lambda t_{1}^{(m)}+\cdots+\lambda^{q-1} t_{q-1}^{(m)}+\lambda^{q} U^{(m+2 q)}\left(\lambda, \boldsymbol{t}^{(m+2 q)}\right) . \tag{51}
\end{equation*}
$$

Then it follows that

$$
\begin{equation*}
F_{i}^{(m+2 q)}\left(\boldsymbol{t}^{(m+2 q)}, \boldsymbol{\beta}^{(m+2 q)}\right)=\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{U^{(m)}\left(\lambda, \boldsymbol{t}^{(m)}\right) R^{(m)}\left(\lambda, \boldsymbol{\beta}^{(m)}\right)}{\left(\lambda-\beta_{i}^{(m)}\right)\left(\lambda-\beta_{m}^{(m)}\right)^{q}}, \quad i=1, \ldots, m . \tag{52}
\end{equation*}
$$

Furthermore, for any given $i=1, \ldots, m$ we have

$$
\begin{aligned}
& F_{i}^{(m)}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right)=\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{U^{(m)}\left(\lambda, \boldsymbol{t}^{(m)}\right) R^{(m)}\left(\lambda, \boldsymbol{\beta}^{(m)}\right)}{\lambda-\beta_{i}^{(m)}} \\
& =\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{\left(\lambda-\beta_{m}^{(m)}\right)^{q} U^{(m)}\left(\lambda, \boldsymbol{t}^{(m)}\right) R^{(m)}\left(\lambda, \boldsymbol{\beta}^{(m)}\right)}{\left(\lambda-\beta_{i}^{(m)}\right)\left(\lambda-\beta_{m}^{(m)}\right)^{q}} \\
& =\sum_{k=0}^{q} c_{1, k}\left(\boldsymbol{\beta}^{(m)}\right) I_{i, k}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& F_{m, j}^{(m)}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right)=\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{U^{(m)}\left(\lambda, \boldsymbol{t}^{(m)}\right) R^{(m)}\left(\lambda, \boldsymbol{\beta}^{(m)}\right)}{\left(\lambda-\beta_{m}^{(m)}\right)^{j}} \\
& =\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{\left(\lambda-\beta_{i}^{(m)}\right)\left(\lambda-\beta_{m}^{(m)}\right)^{q-j} U^{(m)}\left(\lambda, \boldsymbol{t}^{(m)}\right) R^{(m)}\left(\lambda, \boldsymbol{\beta}^{(m)}\right)}{\left(\lambda-\beta_{i}^{(m)}\right)\left(\lambda-\beta_{m}^{(m)}\right)^{q}} \\
& =\sum_{k=0}^{q-j+1} c_{j, k}\left(\boldsymbol{\beta}^{(m)}\right) I_{i, k}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right), \quad j=2, \ldots, q+1 .
\end{aligned}
$$

where the functions $c_{j, k}\left(\boldsymbol{\beta}^{(m)}\right)$ are the coefficients of the polynomials

$$
\left\{\begin{array}{l}
\left(\lambda-\beta_{m}^{(m)}\right)^{q}=\sum_{k=0}^{q} c_{1 k}\left(\boldsymbol{\beta}^{(m)}\right) \lambda^{k} ; \tag{53}\\
\left(\lambda-\beta_{i}^{(m)}\right)\left(\lambda-\beta_{m}^{(m)}\right)^{q-j}=\sum_{k=0}^{q-j+1} c_{j k}\left(\boldsymbol{\beta}^{(m)}\right) \lambda^{k}, \quad j=2, \ldots, q+1 .
\end{array}\right.
$$

and

$$
\begin{equation*}
I_{i, k}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right):=\oint_{\gamma} \frac{\mathrm{d} \lambda}{2 i \pi} \frac{\lambda^{k} U^{(m)}\left(\lambda, \boldsymbol{t}^{(m)}\right) R^{(m)}\left(\lambda, \boldsymbol{\beta}^{(m)}\right)}{\left(\lambda-\beta_{i}^{(m)}\right)\left(\lambda-\beta_{m}^{(m)}\right)^{q}} \tag{54}
\end{equation*}
$$

Now, for any given $i=1, \ldots, m$ the system (46) implies

$$
\left\{\begin{array}{l}
F_{i}^{(m)}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right)=0, \\
F_{m, j}^{(m)}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right)=0, \quad j=2, \ldots, q+1,
\end{array}\right.
$$

and, as a consequence, we deduce the following system of q homogeneous linear equations for the q functions $I_{i, k}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right)$

$$
\sum_{k=0}^{q-j+1} c_{j, k}\left(\boldsymbol{\beta}^{(m)}\right) I_{i, k}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right)=0, \quad j=1, \ldots, q+1
$$

Because of the linear independence of the polynomials (53) these equations are linearly independent and, therefore, all the functions $I_{i, k}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right)$ vanish. Finally, from (52) we conclude that $I_{i, 0}\left(\boldsymbol{t}^{(m)}, \boldsymbol{\beta}^{(m)}\right)=0$ is equivalent to $F_{i}^{(m+2 q)}\left(\boldsymbol{t}^{(m+2 q)}, \boldsymbol{\beta}^{(m+2 q)}\right)=0$ and the statement follows.

5 Examples

dcKdV ${ }_{1}$ hierarchy

The hodograph equation for the dcKdV_{1} hierarchy with $t_{n}=0$ for all $n \geq 3$ reduce to

$$
\begin{equation*}
8 x+12 t_{1} \beta_{1}+15 t_{2} \beta_{1}^{2}=0 . \tag{55}
\end{equation*}
$$

The singular variety $\mathcal{M}_{1,1}^{\operatorname{sing}}$ for (55) is determined by adding to (55) the equation

$$
\begin{equation*}
2 t_{1}+5 t_{2} \beta_{1}=0 \tag{56}
\end{equation*}
$$

so that for $t_{2} \neq 0$ we have $\beta_{1}=-\frac{2 t_{1}}{5 t_{2}}$. Substituting this result in (55) we find a constraint for the flow parameters

$$
x=\frac{3}{10} \frac{t_{1}^{2}}{t_{2}},
$$

which is the shock region for the solution of (55) given by

$$
\begin{equation*}
\beta_{1}=\frac{2}{15 t_{2}}\left(-3 t_{1}+\sqrt{3\left(3 t_{1}^{2}-10 t_{2} x\right)}\right) . \tag{57}
\end{equation*}
$$

There are two sectors $\mathcal{M}_{1,1, k}^{\operatorname{sing}}(k=1,2)$ in $\mathcal{M}_{1,1}^{\operatorname{sing}}$

$$
\begin{array}{ll}
\mathcal{M}_{1,1,1}^{\mathrm{sing}}: & x=t_{1}=t_{2}=0, \quad \beta_{1} \text { arbitrary } \\
\mathcal{M}_{1,1,2}^{\mathrm{sing}}: & \left(x, t_{1}, t_{2}, \beta_{1}\right) \text { such that } t_{2} \neq 0, x=\frac{3}{10} \frac{t_{1}^{2}}{t_{2}} \text { and } \beta_{1}=-\frac{2}{5} \frac{t_{1}}{t_{2}} \tag{58}
\end{array}
$$

To see the relationship with the dcKdV_{3} hierarchy we notice that

$$
x^{(3)}=t_{1}, \quad t_{1}^{(3)}=t_{2}
$$

and

$$
\boldsymbol{\beta}^{(3}=\left(\beta_{1}, \beta_{1}, \beta_{1}\right)=-\frac{2}{5} \frac{x^{(3)}}{t_{1}^{(3)}}(1,1,1)
$$

which is a 3-reduced solution of the first flow (25) of the dcKdV_{3} hierarchy.
The dcKdV V_{1} hodograph equation with $t_{n}=0$ for all $n \geq 6$ is

$$
693 t_{5} \beta_{1}^{5}+630 t_{4} \beta_{1}^{4}+560 t_{3} \beta_{1}^{3}+480 t_{2} \beta_{1}^{2}+384 t_{1} \beta_{1}+256 x=0
$$

Let us first consider the singular variety $\mathcal{M}_{1,1}^{\operatorname{sing}}$ with $t_{n}=0$ for all $n \geq 4$. It is is determined by the equations

$$
\begin{aligned}
& 560 t_{3} \beta_{1}^{3}+480 t_{2} \beta_{1}^{2}+384 t_{1} \beta_{1}+256 x=0 \\
& 1680 t_{3} \beta_{1}^{2}+960 t_{2} \beta_{1}+384 t_{1}=0
\end{aligned}
$$

Thus an open subset of $\mathcal{M}_{1,1}^{\operatorname{sing}}$ can be parametrized by the equations

$$
\begin{aligned}
& x=\frac{-25 t_{2}^{3}+105 t_{1} t_{2} t_{3}+\sqrt{5} \sqrt{125 t_{2}^{6}-1050 t_{1} t_{3} t_{2}^{4}+2940 t_{1}^{2} t_{2}^{2} t_{3}^{2}-2744 t_{1}^{3} t_{3}^{3}}}{245 t_{3}^{2}} \\
& \beta_{1}=-\frac{2\left(-25 t_{2}^{3}+70 t_{1} t_{2} t_{3}+\sqrt{5} \sqrt{\left(5 t_{2}^{2}-14 t_{1} t_{3}\right)^{3}}\right)}{35 t_{3}\left(14 t_{1} t_{3}-5 t_{2}^{2}\right)}
\end{aligned}
$$

It determines the following 3-reduced solution of the two first flows of the dcKdV hierachy $\left(x^{(3)}=\right.$ $\left.t_{1}, t_{1}^{(3)}=t_{2}, t_{2}^{(3)}=t_{3}\right)$

$$
\beta_{1}^{(3)}=\beta_{2}^{(3)}=\beta_{3}^{(3)}=-\frac{2\left(-25\left(t_{1}^{(3)}\right)^{3}+70 x^{(3)} t_{1}^{(3)} t_{2}^{(3)}+\sqrt{5} \sqrt{\left(5\left(t_{1}^{(3)}\right)^{2}-14 x^{(3)} t_{2}^{(3)}\right)^{3}}\right)}{35 t_{2}^{(3)}\left(14 x^{(3)} t_{2}^{(3)}-5\left(t_{1}^{(3)}\right)^{2}\right)}
$$

Next, for the sector $\mathcal{M}_{1,2}^{\operatorname{sing}}$ if we set $t_{n}=0$ for all $n \geq 5$, we obtain the equations

$$
\begin{aligned}
& 630 t_{4} \beta_{1}^{4}+560 t_{3} \beta_{1}^{3}+480 t_{2} \beta_{1}^{2}+384 t_{1} \beta_{1}+256 x=0 \\
& 2520 t_{4} \beta_{1}^{3}+1680 t_{3} \beta_{1}^{2}+960 t_{2} \beta_{1}+384 t_{1}=0 \\
& 7560 t_{4} \beta_{1}^{2}+3360 t_{3} \beta_{1}+960 t_{2}=0
\end{aligned}
$$

From these equations we find

$$
\begin{aligned}
& t_{1}=\frac{5\left(-49 t_{3}^{3}+189 t_{2} t_{3} t_{4}+\sqrt{7} \sqrt{343 t_{3}^{6}-2646 t_{2} t_{4} t_{3}^{4}+6804 t_{2}^{2} t_{3}^{2} t_{4}^{2}-5832 t_{2}^{3} t_{4}^{3}}\right)}{1701 t_{4}^{2}}, \\
& x=\frac{5\left(-98 t_{3}^{4}+378 t_{2} t_{4} t_{3}^{2}+2 \sqrt{7} \sqrt{\left(7 t_{3}^{2}-18 t_{2} t_{4}\right)^{3}} t_{3}-243 t_{2}^{2} t_{4}^{2}\right)}{10206 t_{4}^{3}}, \\
& \beta_{1}=-\frac{2\left(-49 t_{3}^{3}+126 t_{2} t_{3} t_{4}+\sqrt{7} \sqrt{\left(7 t_{3}^{2}-18 t_{2} t_{4}\right)^{3}}\right)}{63 t_{4}\left(18 t_{2} t_{4}-7 t_{3}^{2}\right)} .
\end{aligned}
$$

Then the associated 5 -reduced solution of the two first flows of the dcKdV 5 hierarchy $\left(x^{(5)}=t_{2}\right.$, $\left.t_{1}^{(5)}=t_{3}, t_{2}^{(5)}=t_{4}\right)$ is given by

$$
\beta_{i}=-\frac{2\left(-49\left(t_{1}^{(5)}\right)^{3}+126 x^{(5)} t_{1}^{(5)} t_{2}^{(5)}+\sqrt{7} \sqrt{\left(7\left(t_{1}^{(5)}\right)^{2}-18 x^{(5)} t_{2}^{(5)}\right)^{3}}\right)}{63 t_{2}^{(5)}\left(18 x^{(5)} t_{2}^{(5)}-7\left(t_{1}^{(5)}\right)^{2}\right)}, \quad i=1, \ldots, 5
$$

dcKdV ${ }_{2}$ hierarchy

Let us consider the hodograph equations for the dcKdV_{2} hierarchy with $t_{n}=0$ for all $n \geq 3$. From (42) we have that they take the form

$$
\left\{\begin{array}{l}
8 x+4 t_{1}\left(3 \beta_{1}+\beta_{2}\right)+3 t_{2}\left(5 \beta_{1}^{2}+2 \beta_{1} \beta_{2}+\beta_{2}^{2}\right)=0 \tag{59}\\
8 x+4 t_{1}\left(\beta_{1}+3 \beta_{2}\right)+3 t_{2}\left(\beta_{1}^{2}+2 \beta_{1} \beta_{2}+5 \beta_{2}^{2}\right)=0
\end{array}\right.
$$

The singular variety $\mathcal{M}_{2}^{\operatorname{sing}}$ is determined by (59) together with the additional condition $\left(\operatorname{det}\left(\partial_{\beta_{i} \beta_{j}} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})\right)=0\right)$

$$
\begin{equation*}
-\left(2 t_{1}+3 t_{2}\left(\beta_{1}+\beta_{2}\right)\right)^{2}+9\left(2 t_{1}+t_{2}\left(5 \beta_{1}+\beta_{2}\right)\right)\left(2 t_{1}+t_{2}\left(\beta_{1}+5 \beta_{2}\right)\right)=0 . \tag{60}
\end{equation*}
$$

There elements of $\mathcal{M}_{2}^{\text {sing }}$ are

$$
\begin{align*}
& x=t_{1}=t_{2}=0, \quad\left(\beta_{0}, \beta_{1}\right) \text { arbitrary } \\
& \left(x, t_{1}, t_{2}, \beta_{1}, \beta_{2}\right) \text { such that } t_{2} \neq 0, x=\frac{t_{1}^{2}}{3 t_{2}} \text { and } \beta_{1}=\beta_{2}=-\frac{t_{1}}{3 t_{2}} \tag{61}
\end{align*}
$$

The subvarieties $\mathcal{M}_{2, q}^{\operatorname{sing}}$ are all equal and given by

$$
x=t_{1}=t_{2}=0, \quad\left(\beta_{0}, \beta_{1}\right) \text { arbitrary with } \beta_{0} \neq \beta_{1} .
$$

Notice that the constraint $x=\frac{t_{1}^{2}}{3 t_{2}}$ determines the shock region for the following solution of

$$
\begin{equation*}
\beta_{1}=\frac{-t_{1}+\sqrt{2} \sqrt{t_{1}^{2}-3 t_{2} x}}{3 t_{2}}, \quad \beta_{2}=\frac{-t_{1}-\sqrt{2} \sqrt{t_{1}^{2}-3 t_{2} x}}{3 t_{2}} . \tag{59}
\end{equation*}
$$

Let us now consider the system of hodograph equations (42) for the dcKdV_{2} hierarchy with $t_{n}=0$ for all $n \geq 4$. The singular variety $\mathcal{M}_{2}^{\text {sing }}$ is now determined by (42) and the condition $\left(\operatorname{det}\left(\partial_{\beta_{i} \beta_{j}} W_{m}(\boldsymbol{t}, \boldsymbol{\beta})\right)=0\right)$

$$
\begin{gathered}
32 t_{1}^{2}+96 t_{2}\left(\beta_{1}+\beta_{2}\right) t_{1}+702 t_{3}^{2} \beta_{1}^{2} \beta_{2}^{2}+72\left(3 t_{2}^{2}+t_{1} t_{3}\right) \beta_{1} \beta_{2}+12\left(3 t_{2}^{2}+13 t_{1} t_{3}\right)\left(\beta_{1}^{2}+\beta_{2}^{2}\right)+ \\
\quad 486 t_{2} t_{3}\left(\beta_{2} \beta_{1}^{2}+\beta_{2}^{2} \beta_{1}\right)+90 t_{2} t_{3}\left(\beta_{1}^{3}+\beta_{2}^{3}\right)+180 t_{3}^{2}\left(\beta_{2} \beta_{1}^{3}+\beta_{2}^{3} \beta_{1}\right)+45 t_{3}^{2}\left(\beta_{1}^{4}+\beta_{2}^{4}\right)=0 .
\end{gathered}
$$

One finds the following six sectors in $\mathcal{M}_{2}^{\text {sing }}$

1. $x=\frac{-9 t_{2}^{3}+36 t_{1} t_{3} t_{2}+\left(8 t_{1} t_{3}-3 t_{2}^{2}\right) \sqrt{9 t_{2}^{2}-24 t_{1} t_{3}}}{72 t_{3}^{2}}, \quad \beta_{1}=\beta_{2}=-\frac{3 t_{2}+\sqrt{9 t_{2}^{2}-24 t_{1} t_{3}}}{12 t_{3}}$,
2. $x=\frac{-9 t_{2}^{3}+36 t_{1} t_{3} t_{2}-\left(8 t_{1} t_{3}-3 t_{2}^{2}\right) \sqrt{9 t_{2}^{2}-24 t_{1} t_{3}}}{72 t_{3}^{2}}, \quad \beta_{1}=\beta_{2}=\frac{-3 t_{2}+\sqrt{9 t_{2}^{2}-24 t_{1} t_{3}}}{12 t_{3}}$,
3. $x=\frac{-45 t_{3} t_{2}^{3}+180 t_{1} t_{3}^{2} t_{2}+\sqrt{15}\left(8 t_{1} t_{3}-3 t_{2}^{2}\right) \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{360 t_{3}^{3}}$,

$$
\beta_{1}=-\frac{5 t_{2} t_{3}+\sqrt{15} \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{20 t_{3}^{2}}, \quad \beta_{2}=\frac{-3 t_{2} t_{3}+\sqrt{15} \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{12 t_{3}^{2}},
$$

4. $x=\frac{-45 t_{3} t_{2}^{3}+180 t_{1} t_{3}^{2} t_{2}-\sqrt{15}\left(8 t_{1} t_{3}-3 t_{2}^{2}\right) \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{360 t_{3}^{3}}$,

$$
\beta_{1}=-\frac{3 t_{2} t_{3}+\sqrt{15} \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{12 t_{3}^{2}}, \quad \beta_{2}=\frac{-5 t_{2} t_{3}+\sqrt{15} \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{20 t_{3}^{2}},
$$

5. $x=\frac{-45 t_{3} t_{2}^{3}+180 t_{1} t_{3}^{2} t_{2}-\sqrt{15}\left(8 t_{1} t_{3}-3 t_{2}^{2}\right) \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{360 t_{3}^{3}}$,

$$
\begin{aligned}
& \beta_{1}=\frac{-5 t_{2} t_{3}+\sqrt{15} \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{20 t_{3}^{2}}, \quad \beta_{2}=-\frac{3 t_{2} t_{3}+\sqrt{15} \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{12 t_{3}^{2}} . \\
& \text { 6. } x=\frac{-45 t_{3} t_{2}^{3}+180 t_{1} t_{3}^{2} t_{2}+\sqrt{15}\left(8 t_{1} t_{3}-3 t_{2}^{2}\right) \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{360 t_{3}^{3}}, \\
& \beta_{1}=\frac{-3 t_{2} t_{3}+\sqrt{15} \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{12 t_{3}^{2}}, \quad \beta_{2}=-\frac{5 t_{2} t_{3}+\sqrt{15} \sqrt{t_{3}^{2}\left(3 t_{2}^{2}-8 t_{1} t_{3}\right)}}{20 t_{3}^{2}} .
\end{aligned}
$$

It is easy to see that $\mathcal{M}_{2,1}^{\operatorname{sing}}$ is given by the sectors 5 and 6 . To check the connection between these sectors and the dcKdV_{4} hierarchy it is enough to set

$$
x^{(4)}=t_{1}, \quad t_{1}^{(4)}=t_{2}, \quad t_{2}^{(4)}=t_{3}, \quad \boldsymbol{\beta}^{(4)}=\left(\beta_{1}, \beta_{2}, \beta_{2}, \beta_{2}\right),
$$

and it is immediate to prove that $\left.\boldsymbol{\beta}^{(4)} \boldsymbol{t}^{(4)}\right)$ verifies the equations of the first flow of the dcKaV_{4} hierarchy

$$
\frac{\partial \beta_{i}}{\partial t_{1}^{(4)}}=\left(\beta_{i}+\frac{1}{2} \sum_{k=1}^{4} \beta_{k}\right) \frac{\partial \beta_{i}}{\partial x^{(4)}}, \quad i=1, \ldots, 4
$$

Acknowledgements

The authors wish to thank the Spanish Ministerio de Educación y Ciencia (research project FIS2008-00200/FIS) for its finantial support. B. K. is thankful to the Departamento de Física Teórica II for the kind hospitality.

References

[1] Y. Kodama and B.G. Konopelchenko, J. Phys. A: Math. Gen. 35, L489-L500 (2002)
[2] B.G. Konopelchenko and L. Martínez Alonso, J. Phys. A: Math. Gen. 37, 7859 (2004)
[3] G. B. Whitham, Linear and nonlinear waves, Wiley-Interscience, New York (1976)
[4] B. A. Dubrovin and S. P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys 44, 35 (1989)
[5] V. E. Zakharov, Func. Anal. Appl. 14, 89 (1980)
[6] L. Martinez Alonso, J. Math. Phys. 21, 2342 (1980)
[7] M. Antonowicz and A. P. Fordy, Phys. D 28, no. 3, 345 (1987)
[8] M. Antonowicz and A. P. Fordy, J. Phys. A : Math. Gen. 21, L269 (1988)
[9] B. Dubrovin, S. Liu and Y. Zhang, Commun. Pure. Appl. Math. 59559 (2006)
[10] B. Dubrovin, S. Liu and Y. Zhang, Commun. Math. Phys. 267117 (2006)
[11] M. Mañas, L. Martínez Alonso and E. Medina, J. Phys. A : Math. Gen. 30, 4815 (1997)
[12] B. Konopelchenko and L. Martínez Alonso and E. Medina, J. Phys. A : Math. Gen. 32, 3621 (1997)
[13] E. V. Ferapontov and M. V. Pavlov, Physica D 52, 211 (1991)
[14] I. M. Krichever, Commun. Pure. Appl. Math. 47437 (1994)
[15] G. Darboux, Lecons sur la theorie general des surfaces II, Gauthier Villars (1915)
[16] V. R. Kudashev and S. E. Sharapov, Phys. Lett. A 154,445 (1991); Theor. Math. Phys. 87, 40 (1991)
[17] F. R. Tian, Commun. Pure. Appl. Math. 461093 (1993)
[18] F. R. Tian, Duke Math. J. 74203 (1994)
[19] T. Grava, Commun. Pure. Appl. Math. 55395 (2002)
[20] M. V. Pavlov, J. Math. Phys. 444134 (2003)
[21] M. V. Pavlov, Hamiltonian formulation of electroforesis equations. Integrable hydrodynamic equations Preprint, Landau Inst. Theor. Phys., Chernogolovsca (1987)
[22] B. Dubrovin, T. Grava and C. Klein, J. Nonlinear Science 1957 (2009)
[23] V. I. Arnold,Func. Anal. Appl. 6 no.4, 3 (1972) ; Russian Math. Surveys 29 no. 2, 10 (1974); Russian Math. Surveys 30 no. 5, 3 (1975)
[24] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of differentiable maps Birkhäuser Boston, Inc. (1985)
[25] B. Konopelchenko, L. Martínez Alonso and E. Medina, Singular sectors in the hodograph transform for the 1-layer Beney systems and it associated hierarchy. In preparation

