
ar
X

iv
:1

00
3.

25
79

v1
  [

nl
in

.C
D

] 
 1

2 
M

ar
 2

01
0

ON STABILITY OF ROLLS

NEAR THE ONSET OF CONVECTION
IN A LAYER WITH STRESS-FREE BOUNDARIES

Olga Podvigina∗

International Institute of Earthquake Prediction Theory
and Mathematical Geophysics,

84/32 Profsoyuznaya St, 117997 Moscow, Russian Federation;

UNS, CNRS, Laboratoire Cassiopée, Observatoire de la Côte d’Azur
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Abstract

We consider a classical problem of linear stability of convective rolls in
a plane layer with stress-free horizontal boundaries near the onset of con-
vection. The problem has been studied by a number of authors, who have
shown that rolls of wave number k are unstable with respect to perturbations
of different types, if some inequalities relating k and the Rayleigh number R
are satisfied. The perturbations involve a large-scale mode. Certain asymp-
totic dependencies between wave numbers of the mode and overcriticality are
always assumed in the available proofs of instability. We analyse the stabil-
ity analytically following the approach of Podvigina (2008) without making a
priori assumptions concerning asymptotic relations between small parameters
characterising the problem. Instability of rolls to short-scale modes is also
considered. Therefore, our analytical results on stability to space-periodic
perturbations are exhaustive; they allow to identify the areas in the (k,R)
plane, where convective rolls are stable near the onset. The analytical results
are compared with numerical solutions to the eigenvalue problem determining
stability of rolls.
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1 Introduction

We consider Boussinesq convection in a plane horizontal layer heated from below
with stress-free horizontal boundaries. For small Rayleigh numbers R, i.e. for small
temperature differences between the lower and upper boundaries, the fluid is not
moving and the heat is transported by thermal diffusion only. As R exceeds the
critical value Rs, the fluid motion sets in. The motion takes the form of rolls. We
denote by ks the horizontal wave number of the mode becoming unstable the first.
(By a horizontal wave number we understand the length of the horizontal component
of the wave vector.) In this paper we study analytically and numerically stability of
rolls of a horizontal wave number close to ks for the Rayleigh number slightly above
Rs.

Instability of rolls in a convective layer was studied analytically by a number of
authors. An instability of rolls specific for stress-free boundaries is known, which
does not occur in a layer whose one or both horizontal boundaries are rigid. Its
presence relies on existence of a slowly decaying large-scale mode. Zippelius and
Siggia (1982, 1983) were the first to study the instability of this kind. In the leading
order the unstable mode is a sum of a large-scale mode and of two short-scale modes
with wave vectors close to the one of the perturbed rolls. In the study of stability
of rolls in a rotating convective layer it was called small angle instability (Cox and
Matthews 2000).

By deriving amplitude equations, Zippelius and Siggia obtained sufficient condi-
tions for instability of rolls, in particular, they found that for P < 0.782 (P denoting
the Prandtl number) no stable rolls existed near the onset. Their results were ques-
tioned by Busse and Bolton (1984), who found boundaries for instabilities of rolls
by direct calculations of the unstable mode, and claimed that no stable rolls were
present near the onset only for P < 0.543. Their results were confirmed by Bernoff
(1994), who studied instability of rolls applying Ginzburg-Landau equations.

The conflict between the results of Zippelius and Siggia (1982, 1983) and Busse
and Bolton (1984) was resolved by Mielke (1997), who studied stability of rolls by
means of Lyapunov-Schmidt reduction and showed that instability boundaries had
been found in these papers for different unstable modes. The problem of stability
of rolls involves five small parameters: two wave numbers of the large scale mode,
overcriticality, the difference between the wave number of perturbed rolls and the
critical wave number, and the growth rate (depending on the first four). Zippelius
and Siggia postulated asymptotic relations between the parameters, different from
those postulated by Busse and Bolton, and hence different instability modes were
examined.

However, in all these studies some asymptotic relations between the small pa-
rameters of the problem were assumed, and thus stability only to selected types of
perturbations was studied. Hence, only instability of rolls was proven (as it is dis-
cussed in introduction and conclusion in Mielke (1997) and also section 3 of Bernoff
(1994). The question, whether other unstable modes corresponding to other asymp-
totic scalings exist, remains open. Another question asked by Busse and Bolton
(1984) and Bernoff (1994) and not answered by previous studies is whether enough
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terms of asymptotic expansions were taken into account. For four independent small
parameters this is a hard question!

In the present paper both difficulties are resolved. We do not assume any asymp-
totic relations between the small parameters, hence instability with respect to all
perturbations of the small-angle type is examined. An unstable mode is represented
as a series in small parameters, with estimates for the remainder. (Estimates for
omitted terms were not given before.) A condition for instability has the form
of inequalities. We demonstrate that in these inequalities the omitted terms are
asymptotically smaller than the terms retained in the analysis.

We also study instability to perturbations of a different kind, which are in the
leading order convective rolls with the horizontal wave number close to the criti-
cal one, and a finite angle between wave vectors of the perturbed rolls and of the
perturbation, which we call a finite angle instability.

Furthermore, we show that stability to all considered perturbations implies sta-
bility to a much wider class of doubly periodic in horizontal directions perturbations.
We show, that the domain of the linearisation operator, acting on vector fields sat-
isfying the assumed boundary conditions on the horizontal boundaries and doubly
periodic in horizontal directions, splits into a direct sum of invariant subspaces.
Thus investigation of instability is reduced to detection of instability modes in these
invariant subspaces. Any instability mode in such a subspace is either of a small
angle or finite angle type. Therefore, our study of instabilities of rolls with respect
to perturbations which are doubly periodic in some directions in the (x, y) plane is
complete: we demonstrate stability of rolls for which instability is not detected in
our analysis. This is also a novel feature of our investigation: all previous papers
focused exclusively on instability.

We estimate analytically the asymptotics of the most unstable mode and its
growth rate on different parts of the (k, R) plane and calculate the instability bound-
aries estimating the orders of the neglected terms (which was not yet done in liter-
ature).

We are using notation and some results of Podvigina (2008), referred to as
OP2008, where instability of flows in a rotating convective layer with stress-free
boundaries was studied.

Stability of rolls in a layer with stress-free boundaries was studied by direct
computations of dominant eigenvalues by Bolton and Busse (1985). Their numerical
results agree well with the theoretical predictions of Busse and Bolton (1984), in
particular, they found that for P = 0.71 rolls are stable near the onset. However,
Mielke (1997) claimed that stable rolls near the onset for P < 0.782 are absent;
he did not comment on the disagreement with the numerical results of Bolton and
Busse (1985). In contrast to (Bolton and Busse 1985), our computations of stability
modes indicate that rolls are unstable at the onset for P < 0.782, albeit in a small
neighbourhood of the point (ks, R

s) on the (k, R) plane. For P decreasing below
0.782, the right boundary of the area of stable rolls slowly moves to the left, away
from the point (ks, R

s).
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2 The onset of convection

Boussinesq thermal convection satisfies the Navier-Stokes equation

∂v

∂t
= v × (∇× v) + P∇2v + PRθez −∇p, (1)

the incompressibility condition
∇ · v = 0 (2)

and the heat transfer equation

∂θ

∂t
= −(v · ∇)θ + vz +∇2θ (3)

where v is the flow velocity and θ is the deviation of the flow temperature from
the linear profile. R and P are dimensionless parameters, the Rayleigh and Prandtl
numbers, respectively. Stress-free horizontal boundaries held at fixed temperature
are assumed:

∂vx
∂z

=
∂vy
∂z

= vz = 0, θ = 0 at z = 0, 1. (4)

The trivial solution (v, θ) = (0, 0) describing pure thermal conduction loses
stability to perturbations of wave number k at R = Rc(k), where

Rc(k) = a3k−2, a = k2 + π2. (5)

The critical horizontal wave number ks for the onset of convection is π/
√
2, the

respective critical value Rs = 27π4/4.
We employ four-dimensional vectors

W ≡ (Wflow,Wtemp) = (v, θ). (6)

For a Rayleigh number slightly above the critical value,

R = Rc + ε2, (7)

a solution to (1)-(4) can be represented as a power series

U =

∞∑

j=1

εjUj . (8)

The first two terms of the solution representing rolls are

U1 = b




−πk−1 cosπz sin kx
0

sin πz cos kx
a−1 sin πz cos kx


 (9)

(U1 is an eigenvector of the linearisation of (1)-(3) ),

U2 = b2




0
0
0

−(8πa)−1 sin 2πz


 , (10)

where
8a = Rcb

2. (11)
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3 Invariant subspace

We study stability of rolls of wave number k, which is close to the critical one;

α = k − ks (12)

is thus a small parameter.
Stability of (8) is controlled by eigenvalues of the linear operator L, a linearisation

of (1)-(3) near the steady state. The operator can be expanded in a series

L =

∞∑

j=0

εjLj . (13)

Here the first term is

L0(v, θ) = (P∇2v + PRcθez −∇p, vz +∇2θ). (14)

We consider the eigenvalue problem

LW = λW. (15)

In OP2008 a three-dimensional invariant subspace of L was considered, and the
problem of stability of rolls was reduced to the analysis of eigenvalues of L in this
subspace. Denote by Wj, j = 1, 2, 3, a basis in this subspace and by A the matrix
Aij of the restriction of L on the subspace:

LWj =

3∑

i=1

AijWi, j = 1, 2, 3. (16)

We expand the basis and the matrix in power series in ε:

Wj =

∞∑

l=0

εlWj,l, (17)

Aij =
∞∑

l=0

εlAij,l. (18)

The coefficients in the series (17) and (18) depend on δx and δy, which are small
perturbations of the horizontal component of the wave vector (k, 0, π): δx ≪ k and
δy ≪ k. (The two small parameters are involved in the definition of the three-
dimensional invariant subspace of L, see OP2008.)

Vector fields Wj,0 are eigenfunctions of L0:

L0Wj,0 = λj,0Wj,0, (19)

the leading order approximations of Wj,0 in δx and δy were derived in OP2008:

W1,0 =




−δy sin(δxx+ δyy)
δx sin(δxx+ δyy)

0
0


 , (20)
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W2,0 =




−πs+k
−1
+ cos πz sin((k + δx)x+ δyy)

−πδyk
−2
+ cosπz sin((k + δx)x+ δyy)

sin πz cos((k + δx)x+ δyy)
a−1
+ sin πz cos((k + δx)x+ δyy)


+O((k2

+−k2)2, α(k2
+−k2)), (21)

W3,0 =




−πs−k
−1
− cos πz sin((k − δx)x− δyy)

πδyk
−2
− cos πz sin((k − δx)x− δyy)
sin πz cos((k − δx)x− δyy)

a−1
− sin πz cos((k − δx)x− δyy)


+O((k2

−−k2)2, α(k2
−−k2)) (22)

(the expression for W1,0 is exact). Here it is denoted k± = ((k ± δx)
2 + δ2y)

1/2,

s± = (k ± δx)k
−1
± and a± = k2

± + π2. W1,0 is a large-scale horizontal mode.
The paper is mainly concerned with the eigenvalue problem (15) in the three-

dimensional invariant subspace, discussed above, where the eigenfunction W and
the operator L take the forms (17) and (18), respectively. The case of an unstable
mode from this subspace is called small angle instability, because the angles between
the wave vector (k, 0, π) of perturbed rolls and the wave vectors (k + δx, δy, π) of
short-scale components of perturbation (W2,0 and W3,0 in the leading order) are
small. In section 5 we also study stability with respect to perturbations of the form
of rolls at an angle ξ to the perturbed ones, where ξ is finite (and not asymptotically
small). In the remaining part of the section it is shown that any growing mode of
L belongs to one of these two classes.

Consider the space F(δx, δy) of 4-component vector fields of the form (6), such
that Wflow and Wtemp

(i) are linear combinations of harmonics with wave vectors (m1k + δx, δy, m2π) or
(m1k − δx,−δy, m2π), where m1 and m2 are integer,
(ii) are symmetric about the vertical axis, i.e.

(v(x, y, z), θ(x, y, z)) = (−vx(−x,−y, z),−vy(−x,−y, z), vz(−x,−y, z), θ(−x,−y, z)),

(iii) satisfy the boundary conditions (4),
(iv) Wflow is divergence-free.
It was shown in OP2008 that F is L-invariant for any (not necessarily small) δx and
δy.

Let the subspace F̃(δx, δy) be defined like we have defined F(δx, δy), but omitting
the condition (ii). Such subspaces also are L-invariant. We consider perturbations
which are doubly periodic on the (x, y) plane. Let the domain of L be comprised
of 4-component vector fields, for which (iii) and (iv) are satisfied, and which have
the same double periodicity on the (x, y) plane. The domain can be split into a
sum of invariant spaces F̃(δx, δy); hence we can assume that a mode belongs to
such an invariant subspace. Any mode can be represented as a sum of a symmet-
ric and an antisymmetric vector field; each of these vector fields is itself a mode,
since the subspaces of symmetric and an antisymmetric vector fields are L-invariant.
Moreover, in a coordinate system with the origin shifted by half a period, π/δy, in
the y−direction (this shift does not affect rolls, since they are independent of the
y coordinate) the antisymmetric modes become symmetric. In the case δy = 0, if
integer m and n such that δx/k = (2m + 1)/(2n) exist, the shift of the origin by
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l = 2πn/k = π(3m + 1)/δx along the x−direction turns a symmetric mode into an
antisymmetric one. For a given k and δx the ratio (2m+ 1)/(2n) can be arbitrary
close to δx/k. Consequently, without any loss of generality we consider henceforth
only modes belonging to F .

Eigenvalues of (13) are perturbations of the ones of L0. Positive or slightly
negative eigenvalues of L0 are associated with eigenvectors, whose wave vectors are
either (δx, δy, 0) (large-scale mode) or (k cos ξ, k sin ξ, π) with k close to ks (see, e.g.,
discussion in Bernoff 1994). The latter eigenvectors are (9) rotated by the angle ξ
about a vertical axis; we denote them by U(k, ξ). Consider an eigenvector W of
L which belongs to some F . The vector field W0 = limε→0W can be one of the
following:
(a) W0 = a1W1,0 + a2W2,0 + a3W3,0 (with at least one aj 6= 0 and Wj,0 defined by
(20)-(22) );
(b) W0 = U(k, ξ) with k close to ks, ξ = O(1) and ξ ± 2π/3 = O(1);
(c) W0 = a1U(k, ξ1)+a2U(k, ξ2) with k close to ks, ξ1−2π/3 = o(1) and ξ2+2π/3 =
o(1).
In case (a) small-angle instability takes place studied in section 4, in cases (b) and
(c) finite angle instability considered in section 5. Therefore, we examine all types
of possibly growing perturbations.

4 Stability of rolls: analytical results

It is shown in Appendix B that in order to study stability of rolls with respect to
perturbations from the subspace constructed above, it suffices to check, whether (for
a given P , ε and α) there exist such δx and δy that the following inequalities are
satisfied:

detA > 0 (23)

or
S(A)trA− detA > 0 (24)

where

S(A) = A11A22 − A12A21 + A11A33 − A13A31 + A22A33 −A23A32

is the sum of the three second order minors. The matrix A has an eigenvalue with
a positive real part, if and only if at least one of the inequalities is satisfied for some
δ’s.

It is calculated in Appendix A, that in the leading order

detA = D0 + ε2D1 + ε4D2 + αD3 + α2D4 + αε2D5, (25)
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where

D0 = d01δ
6
x + d02δ

4
xδ

2
y + d03δ

2
xδ

6
y + d04δ

10
y ,

D1 = (δ2x + δ2y)
−1(d11δ

6
x + d12δ

4
xδ

2
y + d13δ

2
xδ

4
y + d14δ

8
y),

D2 = (δ2x + δ2y)
−1(d21δ

2
xδ

2
y + d22δ

4
y),

D3 = d31δ
2
xδ

4
y + d32δ

8
y ,

D4 = (δ2x + δ2y)(d41δ
2
x + d42δ

4
y),

D5 = d51δ
2
xδ

2
y(δ

2
x + δ2y)

−1 + d52δ
4
y ;

S(A)trA− detA = E0 + ε2E1 + ε4E2 + α2E3 + αε2E4, (26)

where

E0 = e01δ
6
x + e02δ

4
xδ

2
y + e03δ

2
xδ

4
y + e04δ

8
y ,

E1 = (δ2x + δ2y)
−1(e11δ

6
x + e122δ

4
xδ

2
y + e13δ

2
xδ

4
y + e14δ

6
y),

E2 = (δ2x + δ2y)
−1(e21δ

4
x + e22δ

2
xδ

2
y + e23δ

4
y),

E3 = e3δ
4
x

E4 = e4δ
2
xδ

2
y(δ

2
x + δ2y)

−1.

The values of dij and eij are given by expressions (67) and (69) in Appendix A.
To investigate stability of rolls we consider exhaustively different asymptotic

relations between α and ε and different signs of α. We also consider two limit values
of the Prandtl number.

Examples of areas on the (k, R) plane where rolls are stable are shown on Fig. 1
for several values of P . The area of stable rolls found numerically (see section 8)
is shaded; the instability boundaries determined analytically are shown by lines.
We use the standard notation (Busse and Bolton 1984; Bernoff 1994; Mielke 1997;
Getling 1998) for the instability modes and respective instability boundaries. For
a skew-varicose (SV) mode the associated eigenvalue is real, and for an oscillatory
skew-varicose (OSV) mode the associated eigenvalues are complex; both modes exist
for δx ∼ δy. A zigzag (ZZ) mode emerges for δx = 0 and the associated eigenvalue is
real. The mode responsible for the instability for P < 0.782 exists for δy ≫ δx 6= 0
and the associated eigenvalue is real; it is also called a skew-varicose mode (see, e.g.,
Mielke 1997). To distinguish this skew-varicose mode from the SV mode, we label
the former SV2.

4.1 The case α2 ≪ ε4

Let δ2x ≫ δ2y and δ2x ≪ ε2. Then in the leading order

detA = ε4d21δ
2
y . (27)
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d21 is positive for all P (see (67) ), hence detA > 0 as well, implying that for
the assumed δ’s the matrix has a positive real eigenvalue and the rolls suffer from
monotonous instability (it can be shown that oscillatory instability does not emerge
in this case).

4.2 The case α > 0

Assume again δ2x ≫ δ2y and δ2x ≪ ε2. In the leading order the determinant now
includes α−dependent terms:

detA = ε4d21δ
2
y + αD3 + α2D4 + αε2D5.

However, for α > 0 the terms involving α are positive. The first term is positive, as
discussed in the previous subsection, hence rolls are also monotonously unstable in
this case.

4.3 The case α < 0, P < P1 ≈ 0.782, α2 ∼ ε4

Denote by P1 the Prandtl number which is the solution to the equation

d13 = 2(d02d22)
1/2,

i.e.
− P 2 + 2P + 2 = 2(2P 2(P + 1))1/2. (28)

The solution is

P1 = (3− 2
√
2)(1 +

√
7 + 4

√
2) ≈ 0.782

(cf. Zippelius and Siggia 1982). If δ2x ≪ δ2y , δ
2
x ≫ δ4y and α2 ≪ ε2, the sum of

asymptotically largest terms in (25) is

d02δ
4
xδ

2
y + ε2d13δ

2
xδ

2
y + ε4d22δ

2
y , (29)

which is positive for P < P1. Hence, for P < P1 and the assumed α’s rolls are
unstable.

4.4 The case α < 0, P > P1, α
2 ∼ ε4

Re-write (25) as detA = D1 +D2, where

D1 = D0 + ε2D1 + ε4d22δ
4
y(δ

2
x + δ2y)

−1 + αD3 + α2D4 + αε2d52δ
4
y (30)

D2 = ε2(ε2d21 + αd51)δ
2
xδ

2
y(δ

2
x + δ2y)

−1. (31)

As proved in Appendix C, D1 < 0 for P > P1 and the assumed α’s. D2 > 0 if

SV : ε2 > −αf1, f1 =
d51
d21

=
108

7
π2k. (32)
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For ε2 ≫ δ2x ≫ δ2y D2 is asymptotically larger than D1, hence (32) yields a boundary
for monotonous instability of rolls.

Represent (26) as S(A)trA− detA = E1 + E2, where

E1 = E0 + ε2E1 + α2E3 (33)

E2 = ε2(ε2E2 + αE4). (34)

E1 < 0 for P > P1 and assumed α’s. E2 > 0 if

e22 + e4
α

ε2
> 2(e21e23)

1/2,

i.e.
OSV : ε2 < −αf2, f2 = − e4

2(e21e23)1/2 − e22
= (35)

108(P + 1)2π2k

(P + 3)(3P 2 + 2P + 2) + 3P 2(P + 1)1/2(P + 5)1/2
.

For ε2 ≫ δ2x and ε2 ≫ δ2y , E2 is asymptotically larger than E1, hence (35) is a
condition for instability.

4.5 The case α < 0, α2 ≫ ε4

Assuming, as above, ε2 ≫ δ2x and ε2 ≫ δ2y , we find that ε2αE4 > 0 is asymptotically
the largest term in (34). Hence, rolls are unstable.

4.6 The case α < 0, α2 ∼ ε2 and large P

For P → ∞, f1 in (32) has a finite limit, and f2 in (35) vanishes. Hence, for
P sufficiently large the instability under the condition (35) can compete with the
instability occurring for α ∼ ε. As shown in Appendix D, for large P , detA > 0, if

ZZ : ε2 < f3α
2, f3 =

9π2P 2

2(P + 1)
. (36)

4.7 The case α < 0, α2 ∼ ε4 and P slightly smaller than P1

Mielke (1997) showed that for P < P1 rolls near the onset are always unstable. More
precisely, the following has been proved: for such P there exists a neighbourhood
of the point (ks, R

s) in the (k, R) plane, such that for a given R rolls of horizontal
wave number k (where they exist) are unstable. The question, how the area where
rolls are stable is modified, as P becomes smaller than P1, has not been addressed in
literature. We show below that the area of stable rolls does not disappear abruptly
and it still exists near the onset, but its boundary does not include the point (ks, R

s)
(cf. figs. 1a,b and figs. 1c-f). As P decreases, the area of stable rolls moves away
from this point, because the SV2 boundary moves to the left.

In the search of the horizontal scale ratios for which (25) is positive for P < P1,
it was assumed in section 4.3 that δ2y ≫ δ2x ≫ δ4y and then in the leading order detA
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is given by (29). For P slightly smaller than P1 the expression (29) can be of the
same order as other terms in (25) not far from the onset. Consider a new small
parameter β = P1 − P . The maximum of (29) is admitted for

δ2x = −d13ε
2

2d02
≡ qε2, (37)

and the maximum is equal to

−ε4δ2y
4(−(−P 2 + 2P + 2)2 + 8P 2(P + 1))

81π4P (P + 1)2
≈ d6ε

4δ2yβ,

where

d6 =
4(−2(−2P1 + 2)(−P 2

1 + 2P1 + 2) + 24P 2
1 + 16P1)

81π4P1(P1 + 1)2
≈ 5.0 · 10−3.

For δx defined by (37) in the leading order the determinant is

ε2(ε2(ε2(d01 + d02)q
3 + ε2d12q

2 + ε2d21q + αd51q) + ε2d6δ
2
yβ + (d03q + d14)δ

6
y) (38)

which is a cubic polynomial of δ2y . Its maximum is admitted, when

δ4y = − ε2d6β

3(d03q + d14)
, (39)

and the maximum of (38) is

ε4s3(ε
2s1 + εβ3/2s2 + α),

where

s3 = d51q ≈ 0.0299, s1 = s−1
3 ((d01 + d02)q

3 + d12q
2 + d21q) ≈ 0.00279,

s2 =
2

3
d6s

−1
3

( −d6
3(d03q + d14)

)1/2

≈ 0.0876.

The maximum is positive for

α > −ε2s1 − εβ3/2s2. (40)

However, the boundary of the SV2 instability defined by (40) turns out to be in
a poor agreement with the numerical results discussed in section 8. For P = 0.6
and P = 0.7 (figs. 1a,b) the right boundary (40) of the area of stable rolls is shifted
far to the left compared to the computed one. The SV2 boundary defined by the
condition maxδx,δy detA = 0 with all leading terms in (66) retained is still shifted
too far to the left. The asymptotics fails because the values (37) and (39) of δx and
δy, respectively, are of the order of 0.1 for the considered overcriticalities ε2 ∼ 1,
while the asymptotic analysis is applicable for infinitesimally small δx and δy. (For
example, as we have found numerically, for P = 0.7 the intersection of the SV and
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SV2 boundaries is at α = −0.00172 and ε2 = 0.583. The respective values (37) and
(39) are δx = 0.126 and δy = 0.413. For the SV2 dominant mode on the stability
boundary the computed values are also large, δx = 0.124 and δy = 0.332, which
surprisingly do not differ much from the values obtained analytically.)

Consequently, we follow an alternative approach and assume that the SV2 in-
stability boundary can be described as an equation, where it suffices to retain two
first non-vanishing terms in the Taylor expansion in ε and β. The condition for the
instability thus takes the form

SV2 : α > ε2h1 + εβh2, (41)

for some coefficients h1 and h2, which can be determined numerically. The intersec-
tions of the SV2 boundary with the SV and OSV boundaries have been computed
for P = 0.6 and P = 0.7 (see figs. 1a,b). The minimum (over the coefficients hi) of
the maximum (over the four points of intersection) relative error is equal to 0.14, it
is admitted for

h1 = −0.0012 and h2 = −0.018 . (42)

By the relative error we understand the ratio |(αc−αt)/αc|, where αc is the computed
value (see section 8) and αt is found from (41) at the points of intersection. We have
also computed several points on the SV2 boundary in the regions of other instabilities
of rolls, employing the fact that the respective (local) maximum of λ over δx and δy
is admitted for δy much larger than for the other instabilities. The computed values
agree well with (41), (42) (see figs. 1a,b). Fitting of s1 and s2 in (40) yields a much
higher (about 0.5) minimum of the maximum over the four points relative error.

5 The finite angle case

To analyse stability of rolls of horizontal wave number k to rolls of wave number
kp, which are rotated by angle ξ with finite ξ, we use center manifold reduction
with the center eigenspace spanned by eigenvectors (9) with wave vectors (k, 0, π)
and (kp cos ξ, kp sin ξ, π). We perform the reduction like in (Podvigina and Ashwin
2007). Here only results of calculations are presented. Periodicity in horizontal
directions of the considered rolls implies that periodicity cells are parallelograms
(and not squares as ibid).

Restricted to the two-dimensional (C2) center manifold, the system has the form

ż1 = λ1z1 + z1(A1|z1|2 + A2|z2|2),

ż2 = λ2z2 + z2(A3|z1|2 + A4|z2|2),
(43)

where z1 and z2 are coordinates in the center manifold, along the directions (k, 0, π)
and (kp cos ξ, kp sin ξ, π), respectively. The reduction is performed for R = Rc(k).
We are interested in kp close to k (otherwise λ2 is of the order of one and negative
and thus the rolls (z1, 0) are stable near the onset).
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For ε defined by (7) and kp close to k, the coefficients of linear terms in (43) are

λ1 = P (P + 1)−1k2a−2ε2,

λ2 = P (P + 1)−1

(
k2a−2ε2 − 4(kp − k)2 − 8α(kp − k)

)
.

For small kp − k the differences A1 −A4 and A2 −A3 are small, coefficients of cubic
terms in (43) are

A1 ∼ A4 = − 0.125P

(P + 1)
,

A3 ∼ A2 = − 0.125P

(P + 1)
−a(1 − cos2 ξ)

3(P + 1)

(
(1−cos ξ)

2aq+ + 2Pa2

P∆+

+(1+cos ξ)
2aq− + 2Pa2

P∆−

)

− π2

2(P + 1)

(
(1− cos ξ)2

Pq+ + 3h+a

∆+

+ (1 + cos ξ)2
Pq− + 3h−a

∆−

)
,

where
h± = 2k2(1± cos ξ), q± = 4π2 + h±, ∆± = q3± − Rh±.

The amplitude of emerging rolls is

|z1|2 = −λ1/A1,

and four eigenvalues of (43) linearised around the steady state are

− 2λ1, λ2 + A3|z1|2, 0, 0, (44)

hence the instability condition is

ε2k2a−2(1− Amax
3 /A1)− 4(k − kp)

2 − 8α(k − kp) > 0,

i.e. instability occurs if

ε2 < f5α
2, f5 = − 4A1a

2

k2(A1 − Amax
3 )

,

where by Amax
3 we have denoted the maximum of A3 in ξ.

For a finite P the instability boundary is below the boundary defined by (35).
For large P , the limits of A1 and A3 are finite, hence f5 < f3, and finite-angle
instabilities do not affect the area of stability of rolls. The instability with respect
to rolls rotated by ξ = π/2 is called the cross-roll instability. Note that the maximum
of A3 can be admitted for a ξ 6= π/2, but we do not consider here the problem of
maximisation of A3 in ξ.

For ξ close to 2π/3 the center eigenspace also involves rolls with the direction
of the axes rotated by −2π/3. The system restricted to the three-dimensional (C3)
center manifold is

ż1 = λ1z1 + z1(A1|z1|2 + A2|z2|2 +B1|z3|2),

ż2 = λ2z2 + z2(A3|z1|2 + A4|z2|2 +B2|z3|2),

ż3 = λ2z3 + z3(A5|z1|2 + A6|z2|2 +B3|z3|2).

(45)

However, the eigenvalues determining stability of rolls are (44), examined above.

13



6 Growth rates

In this section we find orders of growth rates of the dominant unstable modes. If
entries of the matrix A are of different orders, it is possible to calculate dominant
eigenvalues, like it was in the case of rotating layer in OP2008. In the present
problem often almost all entries of A turn out to have the same asymptotics, and
only orders of growth rates can be determined. Also we find orders of coefficients
aj , j =1,2,3, of the most unstable mode

W = a1W̃1 + a2W̃2 + a3W̃3. (46)

Unstable modes (or instabilities) can be roughly categorised into five different
types2:

SV : δx ∼ δy

SV2 : δx ≪ δy

OSV : δx ∼ δy

ZZ : δx = 0

E− l : 2kδx + δ2y = −2kα

Similarly to section 4, we consider different asymptotic relations between α and
ε. Our findings are summarised in Table 1, where

ξ1 =
(P 2 − 2P − 2)2 − 8P 2(P + 1)

9π2(P + 1)2P
, ξ2 =

4(2k)1/2

3π(P + 1)1/2
, ξ3 =

4P

(P + 1)
, ξ4 =

8

9π2P
.

2
E-l stands for Eckhaus-like instability. Maximisation of the growth rate in δx and δy yields

only the horizontal wave number of the most unstable mode, see OP2008 and section 6.5. The
conventional Eckhaus instability is a particular case of the E-l instability for δy = 0.
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Table 1. Possibly dominant instability modes for various asymptotic relations be-
tween α and ε and values of P . The last column presents eigenvalues, when they
can be calculated, or their orders of magnitude otherwise. (Hence, often it remains
unclear which mode is dominant.)

Relations Conditions for Type of δx and δy Eigenvalues

between α and ε existence the mode

α2 ≪ ε4 none SV δx ∼ δy ∼ ε λ ∼ ε2

P < P1 SV2 δx ≪ δy, δx ∼ ε λ = ξ1ε
2

α2 ∼ ε4 ε2 > −f1α SV δx ∼ δy ∼ ε λ ∼ ε2

P < P1 SV2 δx ≪ δy, δx ∼ ε λ = ξ1ε
2

ε2 < −f2α OSV δx ∼ δy ∼ ε Re(λ) ∼ ε2

ε4 ≪ α2 ≪ ε4/3 α > 0 SV δ2x ∼ δ2y ≪ εα1/2 λ = ξ2εα
1/2

or α < 0, OSV δ2x ∼ δ2y ∼ εα1/2 Re(λ) ∼ εα1/2

α2 ∼ ε4/3 ε2 < −f2α

α2 ∼ ε2 α < 0, ZZ δx = 0, δy ∼ ε λ = −ξ4ε
2 + ξ3α

2

ε2 > −f2α,

ε2 < f3α
2

α2 ≫ ε4/3 none E-l 2kδx + δ2y = −2kα λ = ξ3α
2

6.1 The case α2 ≪ ε4

In this case there exists a growing mode

SV : λ ∼ ε2, for δ2x ∼ δ2y ∼ ε2,

since it can be easily shown that detA > 0 for some

δ2x ∼ δ2y ∼ ε2. (47)

If (47) holds, trA ∼ ε2, SA ∼ ε4 and detA ∼ ε6, implying that eigenvalues are ∼ ε2.

For the assumed dependence of δ’s on ε, after the change of variables W̃2 → εW̃2

all coefficients (except for Ã32) become of the same order in ε, implying that for the
associated eigenmode a1/a2 ∼ a3/a2 ∼ ε.

For P < P1 the expression (66) can be positive also, if δ2y ≫ δ2x ∼ ε2. For
δ2x + δ2y ≫ ε, the matrix (65) has an eigenvalue close to −P (δ2x + δ2y). In the leading
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order the associated eigenvector is W̃1+ ξ2W̃2+ ξ3W̃3, where ξ2 = Ã21/(Ã11− Ã22)

and ξ3 = Ã31/(Ã11− Ã33). Two remaining eigenvalues are eigenvalues of the matrix


 Ã22 − ξ2Ã12 Ã23 − ξ2Ã13

Ã32 − ξ3Ã12 Ã33 − ξ3Ã13


 . (48)

In the leading order they are

λ = −C4(4k
2δ2x + δ4y + 4αkδ2y)− ε2C3 + ε2C5δ

2
y

(3δ2x − δ2y)

(δ2x + δ2y)
2

(49)

±
[
ε4
(
C3+C5δ

2
y

(3δ2x − δ2y)

(δ2x + δ2y)
2

)2

+4C4k
2δ2x(δ

2
y+2αk)

(
ε2C5

δ2y
(δ2x + δ2y)

2
−4C4(δ

2
y+2αk)

)]1/2
,

where

C5 =
b2π2

2k2P
.

Calculating their maxima in δx and δy we find the most unstable mode:

SV2 : λ = ε2
(P 2 − 2P − 2)2 − 8P 2(P + 1)

9π2(P + 1)2P
, for

δ2x = ε2
8(P + 1)2 − (P 2 − 2P − 2)2

18(P + 1)P 2
, δy ≫ δx.

These relations between δ’s, ε and λ imply that the associated eigenvector (a1, a2, a3)

of the matrix Ã (65) has components with the asymptotics a1/a2 ∼ ε2δ−1
y and

a3/a2 ∼ ε.

6.2 The case α2 ∼ ε4

Dominant eigenvalues and asymptotic relations between the coefficients a1, a2, a3 for
the eigenmodes SV and SV2 are the same as above. The SV mode is growing if (32)
holds, and SV2 if P < P1.

A growing oscillatory mode can exist, if (35) holds true. As discussed in Ap-
pendix B, condition (24) does not guarantee its existence. However, if such mode
exists for all α2 ≫ ε4, α < 0, (see section 6.4), by continuity it exists for some
α2 ∼ ε4. The maximal growth rate of the mode

OSV : Re(λ) ∼ ε2

is admitted for
δ2x ∼ δ2y ∼ ε2.

By the same arguments as for the SV mode, for the OSV eigenmode with the
maximal growth rate and a1/a2 ∼ a3/a2 ∼ ε.
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6.3 The case ε4/3 ≫ α2 ≫ ε4, α > 0

We employ the same change of variables as in section 6.1, and maximisation in δx
and δy yields the maximal growth rate for SV modes

SV : λ =
1

2P 1/2
d
1/2
51 εα1/2 =

4(2k)1/2

3π(P + 1)1/2
εα1/2, for δ2x = δ2y ≪ εα1/2. (50)

The eigenmode coefficients have the asymptotics a1/a2 ∼ εα−1/2 and a3/a2 ∼
ε2(α1/2δx)

−1. The SV2 mode has the growth rate O(ε2, α2), which is asymptoti-
cally smaller than (50).

6.4 The case ε4/3 ≫ α2 ≫ ε4, α < 0

For the dominant oscillatory mode the maximal growth rate and (δx, δy) for which
it is admitted are:

OSV : Re(λ) ∼ εα1/2, at δ2x ∼ δ2y ∼ εα1/2. (51)

This can be obtained by the following arguments. Assume

δ2x ∼ δ2y ≪ εα1/2. (52)

Consider the cubic equation det(λI−A) = 0. The assumption (52) implies, by virtue
of the standard formulae for roots of cubic equations, existence of complex roots
with a positive Reλ ∼ (detA)1/3 ∼ ε2αδ2xδ

2
y(δ

2
x+ δ2y)

−1. Since this holds true for any

(δx, δy) satisfying (52), this relation remains true for a δ2x ∼ δ2y ∼ εα1/2. The last two
asymptotic relations imply that the associated eigenvector (a1, a2, a3) of the matrix

Ã (65) has components with the asymptotics a1/a2 ∼ α1/2 and a3/a2 ∼ α3/4ε−1/2.
For the SV2 mode the growth rate is ∼ ε2 or ∼ α2, i.e. it is asymptotically smaller
than (51).

6.5 The case α2 ≫ ε4/3

Maximisation of (49) in δx and δy yields that the maximal growth rate

E− l : λ = 4C4k
2α2 (53)

is admitted for
(k2

± − k2) = −2αk;

the associated eigenvectors are either W2 or W3. (Note that growth rates are
asymptotically smaller than (53), unless δ2x + δ2y ≫ ε; if this asymptotic relation
is satisfied, (49) employed in maximisation is valid, see section 6.1.) Alternatively,
(53) can be obtained directly from (64). For the OSV mode Re(λ) ∼ ε4/3, which is
asymptotically smaller, than (53).
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6.6 The case α2 ∼ ε4/3

The maximal growth rate is O(α2) ∼ O(ε4/3). For α > 0 it is given by (50), if

ε2 > α3 9π2P

2k(P + 1)
,

or by (53) otherwise. For α < 0 it is either (51), or (53).

6.7 The case α2 ∼ ε2, α < 0 and large P

As noted in section 4.7, in the limit P → ∞ the ZZ instability with δx = 0 competes
with the OSV instability and becomes of importance near the onset. If δx = 0 and
δy ≫ ε, the eigenvalues of the matrix A are

λ1 = −Pδ2y , λ2 = −2ε2C3 − C4ξ, λ3 = −ε2b2
π2

4Pk2
− C4ξ,

where
ξ = αkδ2y + δ4y/4.

For large P , λ3 > λ2, maximisation of λ3 in δy yields the maximal growth rate

λmax = −ε2b2
π2

4Pk2
+ 4C4k

2α2.

The associated eigenvector has asymptotics a1/a3 ∼ 1 and a2 = 0.

7 Asymptotics of neglected terms in equations for

stability boundaries

Expressions (32), (35) and (36) determining stability of rolls are only asymptotically
correct. In this section we estimate the asymptotic order of errors in calculation of
boundaries, relying on the known orders of the remainder terms in (66) and (68).

In the course of derivation of an equation defining the SV instability boundary,
detA has been expressed in section 4.4 as a sum of D1 (30) and D2 (31), where D1

is negative and involves terms O(δ6+ε2δ4+ε4δ4yδ
−2) (here δ2 = δ2x+ δ2y ) and D2 can

be positive and involves terms O(ε4δ2xδ
2
yδ

−2). The inequality (32) is a restatement
of the condition D2 > 0. Near the boundary ε2 ≫ δ2x ≫ δ2y must be satisfied so
that the sum (31) were positive. Under this condition D1 is asymptotically smaller
than D2 and hence asymptotic corrections to D1 do not affect the boundary. Upon
reintroduction of the terms omitted in (66), that are not asymptotically smaller than
D1, (31) becomes

D2 = ε2
(
ε2(d21 +O(ε2, α)) + α(d51 +O(ε2, α))

)
δ2xδ

2
y(δ

2
x + δ2y)

−1

and thus the equation for the boundary takes the form

SV : ε2 > −αf1 +O(α2). (54)
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Since at the boundary the factor in front of δ2xδ
2
yδ

−2 vanishes, it can be shown using
this analysis that the condition

max
δx,δy

detA = 0,

defining the boundary, implies δx = δy = 0.
The OSV instability boundary (35) has been found from the condition that E2

(34) vanishes. By the same arguments as above, near the boundary ε2 ≫ δ2x ∼ δ2y
must be satisfied for the sum of E1 and E2 to be positive and hence asymptotic
corrections to E1 again do not affect the boundary. With the omitted terms of (68)
reintroduced, (34) becomes

E2 = ε2
(
δ2x+δ2y)

−1(ε2(e21+O(ε2, α))δ4x+(ε2e22+αe4+O(ε4, α2))δ2xδ
2
y+ε2(e23+O(ε2, α))δ4y

)
.

This expression results in the equation for the instability boundary in the form

OSV : ε2 < −αf2 +O(α2). (55)

Again, it can be shown that at the boundary δx = δy = 0.
In Appendix D the ZZ instability boundary is calculated from the condition that

max
δy

detA = 0,

where detA is given by (78). Since on the boundary α2 ∼ ε2, the equation with the
omitted terms reintroduced takes the form

max
δy

(
−δ2y(2ε

2C3 + C4ξ)(ε
2b2

π2

4k2
+ PC4ξ) + O(δ14y , α2δ8y , α

6δ2y)
)
= 0. (56)

The maximum is attained for

δ2y = 2αk +O(α2)

and the condition for the instability is thus

ZZ : ε2 < f3α
2 +O(α3).

8 Stability of rolls: numerical results

To examine stability of rolls of wave number k, we solve numerically (with an adapted
version of the code of Zheligovsky 1993) the problem (15) for the eigenfunction

W = eiδxx+iδyy

m=M∑

m=−M

n=N∑

n=0




w1
mne

imkx cosπnz

w2
mne

imkx cosπnz

w3
mne

imkx sin πnz

w4
mne

imkx sin πnz




. (57)
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In computations, the cut off of the series at N = M = 15 suffices (the spectrum of
the solution in the Fourier space decays by at least 12 orders of magnitude). Location
of the maximum of Re(λ) in δx and δy has been determined with the precision of
10−4 (or 2 · 10−5, if δx and δy are below 0.01) which allows us to find correctly at
least two significant digits of λ.

The dominant eigenvalues of (15),(57) and the values of δx and δy where the
maximum is admitted are shown on fig. 2 for P = 2 and k = 2.15 (thin vertical
line on fig. 1c). In the interval 658.5 ≤ R ≤ 658.8, i.e. for a small overcriticality,
the Eckhaus mode with δy = 0 is dominant, the values of δx and λ are close to the
ones given in the Table (according to the Table, λ = 0.0136 and δx = 0.071). In the
interval 658.9 ≤ R ≤ 670 the dominant eigenvalues are complex, they are associated
with the OSV eigenmode. The change of the type of the dominant mode implies
a discontinuity of δ’s. In the interval 658.9 ≤ R ≤ 661, Re(λ) depends linearly
on ε = (R − Rc)

1/2, in agreement with the Table (in fact, for smaller R, where the
instability is subdominant, this asymptotics for the eigenvalue of the OSV mode was
also confirmed numerically), as predicted in section 6. For higher R the dependence
is different, because, as noted in section 7, near the SV and OSV boundaries δx
and δy become asymptotically smaller than ε, while in section 6 we have assumed
δx = O(ε) and δy = O(ε). In agreement with section 7, we observe that Re(λ), δx and
δy vanish at ROSV and RSV, where ROSV and RSV denote the critical values of R for
the OSV and SV instabilities. In the interval (ROSV, RSV), where rolls are stable, the
maximal growth rate is zero, admitted for δx = δy = 0. For R > RSV the SV mode
is dominant. Near ROSV and RSV, Re(λ) ∼ (ROSV − R)2 and Re(λ) ∼ (RSV − R)2,
respectively (while no power law asymptotics has been found for δx and δy, except
for δy is almost linear near RSV). Consequently, the SV and OSV boundaries are
found by linear extrapolation of (Re(λ))1/2 through two computed points close to
the boundary. Near the ZZ and SV2 boundaries λ depends on R linearly, and we
find the instability boundary by linear interpolation.

The areas of stable rolls found numerically are shown on fig. 1 for several values of
P . The difference between the SV, OSV and ZZ boundaries predicted theoretically
and found numerically agrees with the estimations of the remainder terms obtained
in section 7. For small α and ε, the theoretical and numerical boundaries visually
coincide, and the discrepancy remains small on increasing α. The area of stable
rolls found numerically is shifted up compared to the one determined analytically,
indicating that the contribution of the omitted terms is positive for OSV and ZZ
instabilities, and negative for the SV instability.

In view of the good agreement of the analytical and numerical results for these
three boundaries, the disagreement for the SV2 boundary is surprising. A possible
explanation is that the omitted in (66) terms involving δx (which are of no impor-
tance for the SV and ZZ instabilities for which δx = 0 – e.g., Cε2δ4xδ

2
y) can turn

out to be relatively strongly negative and come into play already at ε = 1. A more
plausible explanation is that for the SV2 mode the employed asymptotic expansions
of the operator of linearisation L, its eigenvectors and eigenvalues are valid for much
smaller α and ε than for other instabilities, because the values of δx and δy at the
SV2 boundary, maximising the eigenvalue, are relatively large. Note, that the same
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asymptotic expansion was employed in other analytic studies of the problem, cited
in the Introduction.

9 Conclusion

We have presented a complete analytical study of stability of rolls near the onset of
convection to perturbations, which are doubly periodic in horizontal directions. In
all earlier studies only instabilities of rolls to certain classes of perturbations were
shown.

In pursuit of this goal, we have, first, shown that without any loss of generality
any instability mode is responsible for either the small-angle, or finite-angle insta-
bility. Second, for the small-angle instability modes we have derived inequalities
determining regions of stability of rolls. The problem involves four small param-
eters; while deriving the instability conditions we have considered all asymptotic
relations between the small parameters. Finally, we have calculated boundaries for
the finite-angle instability; it turns out that consideration of finite-angle instability
modes does not modify the region of stability of rolls.

In our analysis only the asymptotically largest terms have been taken into ac-
count. A question often arises, whether enough terms of asymptotic expansions have
been calculated at various intermediate stages. In (65) orders of the omitted terms
in the matrix are given, implying that the omitted terms in expressions (66) and
(68), used here to analyse stability, are irrelevant sufficiently close to onset.

This small-angle instability of rolls was studied before, and the SV, OSV and ZZ
instability boundaries found here coincide with the earlier results. Our novel results
concerning the stability boundaries include the following ones: We have examined
the dependence of the SV2 boundary on P for 0.543 < P < 0.782. For decreasing
P , the boundary of the region of stable rolls on the (k, R) plane moves to the left
away from the point (ks, R

s). We have established the asymptotics of the maximum
growth rates and the associated eigenmodes (see (46) ) considering exhaustively dif-
ferent relations between α and ε. We have derived asymptotic equations describing
the regions of the instabilities and estimated remainders in these equations.

The approach that we have followed can be applied to study instabilities of
stripe patterns with respect to large-scale perturbations in a generic system, where
a large-scale neutral mode exists. Existence of the invariant subspace relies only
on the structure of equations of convection, where the linear part preserves wave
vectors and nonlinearity is of the second order. Equations ((61) and (63)) defining
the entries of matrixA are general, they remain valid for any other system defined by
arbitrary mappings Lj. Stability is analysed by examining the inequalities (23) and
(24). This analysis is, perhaps, the most difficult part. It may change significantly
for other systems with different asymptotics of the entries of the matrix A, resulting
in different asymptotics involved in the inequalities defining instability regions.
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A Calculation of the matrix A
In this Appendix we calculate in the leading order the entries of the matrix A of
the restriction of L on the invariant subspace spanned by Wj, j = 1, 2, 3, and
expressions for detA and S(A)trA− detA used to deduce the stability properties
of rolls. The matrix, the operator and the basis are expanded in a power series in ε,
whose coefficients depend on small parameters α, δx and δy. Note that by virtue of
(21),(22) the action of the mapping (δx, δy) → (−δx,−δy) amounts to permutation
of indices W2,0 ↔ W3,0. Consequently,

A12(δx, δy) = A13(−δx,−δy), A21(δx, δy) = A31(−δx,−δy),

A23(δx, δy) = A32(−δx,−δy), A22(δx, δy) = A33(−δx,−δy).
(58)

Vector fields Wj,0 (20)-(22), representing terms of order zero in ε in the series
(17), are eigenfunctions of L0:

L0Wj,0 = λj,0Wj,0, (59)

hence Ajj,0 = λj,0 and Aij,0 = 0 for i 6= j. The following relations were established
in OP2008:

λ1,0 = −P (δ2x + δ2y),

λj,0 = −C4((k
2
± − k2)2 + 4αk(k2

± − k2)) + O((k2
± − k2)3, α2(k2

± − k2)), j = 2, 3,

C4 = 3P (4gk2)−1, g =
1

4
((2π2 − k2)k−2 + 3P ).

Here and below in this Appendix, plus is assumed in place of ± for j = 2, and minus
for j = 3.

The second and third terms of the series (13) are

L1(v, θ) = (Uflow
1 × (∇× v) + v × (∇×Uflow

1 ),−(Uflow
1 · ∇)θ − (v · ∇)Utemp

1 ),

L2(v, θ) = (Uflow
2 × (∇× v) + v × (∇×Uflow

2 ) + Pθez,−(Uflow
2 · ∇)θ − (v · ∇)Utemp

2 ).

(60)
The ε order entries of the matrix are calculated from the relation

L0Wj,1 + L1Wj,0 = λj,0Wj,1 +

3∑

i=1

Aij,1Wi,0. (61)
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Since the operator L0 is self-adjoint with respect to the scalar product

(w1,w2) = wflow
1 ·wflow

2 + PRcw
temp
1 ·wtemp

2 , (62)

the scalar product of (61) with Wi,0 yields

Aij,1 = (Wi,0,Wi,0)
−1(L1Wj,0,Wi,0),

which gives the O(ε) terms of the matrix

Aj1,1 = ±1
2
kbδy + bC2δxδy +O(δ3, αδ2),

A1j,1 = (δ2x + δ2y)
−1(−bδxδyπ

2(2k2)−1 ± bπ2(4k3)−1δy(3δ
2
x − δ2y) + O(δ4, αδ3)),

where j = 2, 3 and C2 = (Pk2 + π2)(P + 1)−1(π2 + k2)−1. The remaining entries
Aij,1 vanish. We use the notation O(δN) = O(

∑N
n=0 δ

n
xδ

N−n
y ).

Approximations to Wj,1 for j = 2, 3 are also found from (61). The O(ε2) entries
are calculated using the equation

L0Wj,2 + L1Wj,1 + L2Wj,0 = λj,0Wj,2 +
3∑

i=1

Aij,1Wi,1 +
3∑

i=1

Aij,2Wi,0; (63)

the non-vanishing terms are

Ajj,2 = −C3 ±H1(kπ
2)−1δx +O(δ2, αδ),

Aji,2 = −C3 ±H2(kπ
2)−1δx +O(δ2, αδ),

where i, j = 2, 3, C3 = Pk2(P + 1)−1a−2 and H1 +H2 = 4P (27(P + 1))−1 (in what
follows only this sum is important).

Finally, entries of the matrix A are

A11 = −P (δ2x + δ2y) + O(ε2δ2),

A21 =
1

2
kbεδy + εbC2δxδy +O(εδ3, εαδ2, ε3),

A31 = −1

2
kbεδy + εbC2δxδy +O(εδ3, εαδ2, ε3),

A12 = ε
(
−bπ2

2k2
δxδy +

bπ2

4k3
δy(3δ

2
x − δ2y)

)
(δ2x + δ2y)

−1 +O(εδ2, εαδ, ε3),

A22 = −ε2C3 + ε2
1

kπ2
H1δx − C4

(
(k2

+ − k2)2 + 4αk(k2
+ − k2)

)

+O((k2
+ − k2)3, α2(k2

+ − k2), ε2δ2, ε4),

A32 = −ε2C3 + ε2
1

kπ2
H2δx +O(ε2δ2, ε4),

A13 = ε
(
−bπ2

2k2
δxδy −

bπ2

4k3
δy(3δ

2
x − δ2y)

)
(δ2x + δ2y)

−1 +O(εδ2, εαδ, ε3),

A23 = −ε2C3 − ε2
1

kπ2
H2δx +O(ε2δ2, ε4),

A33 = −ε2C3 − ε2
1

kπ2
H1δx − C4

(
(k2

− − k2)2 + 4αk(k2
− − k2)

)

+O((k2
− − k2)3, α2(k2

− − k2), ε2δ2, ε4).

(64)
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In the new basis W̃1 = W1, W̃2 = W2 +W3, W̃3 = W2 −W3 the matrix of
the operator L is

Ã11 = −P (δ2x + δ2y) + O(ε2δ2),

Ã21 = εbC2δxδy +O(εδ4, εαδ2, ε3),

Ã31 =
1

2
kbεδy +O(εδ3, ε3),

Ã12 = −εbδxδy
π2

k2
(δ2x + δ2y)

−1 +O(εδ2, ε3),

Ã22 = −2ε2C3 − C4(4k
2δ2x + δ4y + 4αkδ2y) + O(α(δ2x + δ4y), δ

4
x, δ

6
y , ε

2δ2, ε4),

Ã32 = −4C4kδx(δ
2
y + 2αk) + ε2

1

kπ2
(H1 −H2)δx +O(α2δx, δ

3
x, δxδ

4
y , ε

2δ3, ε4δ),

Ã13 = ε
bπ2

2k3
δy(3δ

2
x − δ2y)(δ

2
x + δ2y)

−1 +O(εδ3, εαδ, ε3),

Ã23 = −4C4kδx(δ
2
y + 2αk) + ε2

1

kπ2
(H1 +H2)δx +O(α2δx, δ

3
x, δxδ

4
y , ε

2δ3, ε4δ),

Ã33 = −C4(4k
2δ2x + δ4y + 4αkδ2y) + O(α(δ2x + δ4y), δ

4
x, δ

6
y , ε

2δ2, ε4).

(65)
When calculating (65) with the use of (64), relations (58) were employed to estimate
the omitted terms.

From (65) we obtain

detA = d01δ
6
x + d02δ

4
xδ

2
y + d03δ

2
xδ

6
y + d04δ

10
y

+ε2(δ2x + δ2y)
−1(d11δ

6
x + d12δ

4
xδ

2
y + d13δ

2
xδ

4
y + d14δ

8
y)

+ε4(δ2x + δ2y)
−1(d21δ

2
xδ

2
y + d22δ

4
y) + α(d31δ

2
xδ

4
y + d32δ

8
y)

+α2(d41δ
4
x + d42δ

2
xδ

2
y + d43δ

6
y) + αε2(d51δ

2
xδ

2
y(δ

2
x + δ2y)

−1 + d52δ
4
y)

+O(δ2(δ2x + δ4y)
3, ε2δ2xδ

4, ε2δ8y , ε
4δ4, ε6δ2, αδ4y(δ

2
x + δ4y)

2, α2δ2(δ2x + δ4y)
2, αε2δ2y(δ

2
x + δ4y)),

(66)
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where

d01 = − 16P 3

(P + 1)2
, d02 = d01, d03 =

16P 3

π2(P + 1)2
, d04 = − 4P 3

π4(P + 1)2
,

d11 = − 16P 3

9π2(P + 1)2
, d12 =

32P (−3P 2 + 5P + 1)

27π2(P + 1)2
,

d13 =
16P (−P 2 + 2P + 2)

9π2(P + 1)2
, d14 =

−8P (P 2 + 2P + 2)

9π4(P + 1)2
,

d21 =
224P

243π4(P + 1)
, d22 = − 32P

81π4(P + 1)
, d31 =

64P 3k

π2(P + 1)2
,

d32 = − 32P 3k

π4(P + 1)2
, d41 =

16P 3

(P + 1)2
, d42 = d41, d43 = − 32P 3

π2(P + 1)2
,

d51 =
128Pk

9π2(P + 1)
, d52 = −32P (P 2 + 2P + 2)k

9π4(P + 1)2
;

(67)

trAS(A)− detA = e01δ
6
x + e02δ

4
xδ

2
y + e03δ

2
xδ

4
y + e04δ

8
y

+ε2(δ2x + δ2y)
−1(e11δ

6
x + e122δ

4
xδ

2
y + e13δ

2
xδ

4
y + e14δ

6
y)+

ε4(δ2x + δ2y)
−1(e21δ

4
x + e22δ

2
xδ

2
y + e23δ

4
y) + α2e3δ

4
x + αε2e4δ

2
xδ

2
y(δ

2
x + δ2y)

−1

+O(δ4(δ2x + δ4y)
2, ε2δ6, ε4δ4, ε6δ2, αδ4(δ2x + δ4y), αε

2δ2y(δ
2
x + δ4y)),

(68)

where

e01 = −8P 3(P + 5)2

(P + 1)3
, e02 = −16P 3(P + 5)

(P + 1)2
, e03 = − 8P 3

(P + 1)
, e04 = − 4P 3

π2(P + 1)
,

e11 = −4P 3(P 2 + 18P + 65)

9π2(P + 1)3
, e12 =

4P (−9P 4 − 54P 3 − 99P 2 + 20P + 2)

27π2(P + 1)3
,

e13 = −4P (3P 3 + 3P 2 + 22P + 26)

27π2(P + 1)2
, e14 = −4P 2(P 2 + 2P + 4)

9π2(P + 1)
,

e21 = − 16P 3(P + 5)

81π4(P + 1)3
, e22 = −32P (P + 3)(3P 2 + 2P + 2)

273π4(P + 1)3
,

e23 = − 16P 3

81π4(P + 1)2
, e3 = − 512P 3

(P + 1)3
, e4 = − 128Pk

9π2(P + 1)
.

(69)

B A necessary and sufficient condition for exis-

tence of eigenvalues of a 3 × 3 matrix, which

have positive real parts

In this Appendix we show that instead of direct calculation of eigenvalues, in order
to study stability of rolls it suffices to check, whether any of the inequalities (23) or
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(24) is satisfied for some δx and δy.
We start by exposition of three lemmas about eigenvalues of a 3× 3 matrix.

Lemma 1. Let A be a 3 × 3 matrix with real entries. Denote its eigenvalues by λi,
i = 1, 2, 3, and the sum of the second order minors by S(A):

S(A) = A11A22 − A12A21 + A11A33 −A13A31 + A22A33 − A23A32.

Consider the following statements:

S1: max
1≤i≤3

(Reλi) > 0

S2: detA > 0

S3: S(A)trA− detA > 0

Then
(i) S2 ⇒ S1 and (ii) S3 ⇒ S1.

Proof. (i) follows from the identity detA = λ1λ2λ3 (consider separately two cases:
all eigenvalues are real, or two of them are complex conjugate).

Similarly, (ii) follows from the identities

S(A) = λ1λ2 + λ1λ3 + λ2λ3, trA = λ1 + λ2 + λ3

(again, consider separately the two cases).

If in the condition of the Lemma the signs ”>” are replaced by ”≥”, the state-
ments remain true. The modified lemma is referred to as Lemma 1’.

Lemma 2. Let A(x) be a 3× 3 matrix with real entries continuously depending on
x ∈ Ω ⊂ Rn, where Ω is a connected domain in Rn. Denote by λi(x), i = 1, 2, 3 the
eigenvalues of A(x). Suppose

∃ x0 ∈ Ω max
1≤i≤3

Reλi(x0) < 0,

detA 6= 0 ∀x ∈ Ω,

S(A)trA− detA 6= 0, ∀x ∈ Ω.

Then
max
1≤i≤3

Reλi(x) < 0 ∀x ∈ Ω.

Proof. Suppose there exists x1 ∈ Ω such that an eigenvalue of A(x), say, λ1, has a
positive real part. A curve in Ω connects x0 and x1. The eigenvalue λ1 is a continuous
function on this curve (because roots of the cubic equation det(A − λI) = 0 are
continuous functions of its coefficients.) Since Reλ1 has different signs at x0 and
x1, there exists a point x̂ on the curve such that Reλ1(x̂) = 0. If λ1(x̂) = 0, then
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detA(x̂) = 0, and if λ1(x̂) is imaginary, then S(A(x̂))trA(x̂)− detA(x̂) = 0, since
in this case

S(A)trA−detA = Reλ1(2λ
2
3+4Reλ1λ3+2λ1λ̄1) = 2Reλ1((λ3+Reλ1)

2+(Imλ1)
2).

Thus a contradiction with the statement of the lemma is obtained and the lemma
is proved.

Lemma 3. Let A(x) and Ω be the same as in the statement of Lemma 2. Assume

∃ x0 ∈ Ω max
1≤i≤3

Reλi(x0) < 0,

detA 6= 0 ∀x ∈ Ω, (70)

∃ x1 ∈ Ω S(A(x1))trA(x1)− detA(x1) > 0.

Then
∃ x2 ∈ Ω Reλ1(x2) > 0, Imλ1(x2) 6= 0.

Proof. A curve in Ω connects x0 and x1. Let ξ be a parameter along this curve,
ξ = 0 at x0 and ξ = 1 at x1. There exist ξ0, 0 < ξ0 < 1, and ξ1, ξ0 < ξ1 < 1, such
that

S(A(ξ0))trA(ξ0)− detA(ξ0) = 0, (71)

S(A(ξ))trA(ξ)− detA(ξ) > 0 ∀ ξ ∈ (ξ0, ξ1],

S(A(ξ))trA(ξ)− detA(ξ) ≤ 0 ∀ ξ ∈ [0, ξ0].

Suppose all eigenvalues of A(ξ0) are real. By Lemma 1’ all of them are non-
positive in [0, ξ0]. Due to (70) they do not vanish at ξ0, hence they are strictly
negative at ξ0. But then (71) can not be satisfied. Hence the assumption that all
eigenvalues are real is wrong.

Let λ1 and λ2 = λ1 be a pair of complex eigenvalues and λ3 be real. By continuity,
there exists ξ2, ξ2 > ξ0, such that Imλ1(ξ) 6= 0 for all ξ ∈ [ξ0, ξ2]. The expression

S(A)trA− detA = 2Reλ1((λ3 + Reλ1)
2 + (Imλ1)

2)

is positive only if Reλ1 is positive. Consequently, Reλ1(ξ3) > 0 and Imλ1(ξ3) 6= 0.
The lemma is proved.

The Lemmas are applied to investigate stability of rolls.
Let A be the matrix calculated in Appendix A. Assume (δx, δy) is the parameter

x employed in Lemma 2, ε, α and P being fixed. If (23) or (24) is satisfied for some
(δx, δy), Lemma 1 implies existence of an eigenvalue with positive real part.

Suppose (23) and (24) are not satisfied for any δx and δy. For sufficiently large
δx (δ2x ≫ ε2 and δ2x ≫ α2) the matrix has three real negative eigenvalues. Let Ω be
R2 with the origin excluded. Conditions of Lemma 2 are satisfied, hence for any
(δx, δy) all the eigenvalues have negative real parts.

Note that (23) implies that the matrixA has a real eigenvalue with a positive real
part, while (24) does not guarantee that there exist a pair of complex eigenvalues
with a positive real part. However, assume in addition that detA < 0 for all (δx, δy)
(or for all (δx, δy) in a connected region Ω, where conditions of Lemma 3 are satisfied).
Then by Lemma 3 there exists a point (δx, δy) where A has a complex eigenvalue
with a positive real part.
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C A bound for α < 0, P > P1, α
2 ∼ ε4

We prove here that under the conditions, stated in the title of the Appendix,

D0 + ε2D1 + ε4d22δ
4
y(δ

2
x + δ2y)

−1 + αD3 + α2D4 + αε2d52δ
4
y (72)

is negative for all δx and δy.
To begin with, note that the terms involving α are asymptotically small and

therefore are neglected.
Assume δ2y ≫ δ2x. In the leading order (72) is

δ2y(d02δ
4
x + δ2x(ε

2d13 + d03δ
4
y) + ε4d22 + ε2d14δ

4
y + d04δ

8
y). (73)

This is a quadratic polynomial in δ2x, which admits a maximum at

δ2x = −
d03δ

4
y + ε2d13

2d02
. (74)

The maximum is

−
δ2y
4d02

(
ε2(2d03d13 − 4d02d14)δ

4
y + ε4(d213 − 4d02d22)

)
,

where both expressions in the brackets are negative for P > P1.
Now assume δ2x ∼ δ2y or δ2x ≫ δ2y . In the leading order (72) is equal to

(d01δ
6
x+d02δ

4
xδ

2
y)+ε2(d11δ

6
x+d12δ

4
xδ

2
y+d13δ

2
xδ

4
y)(δ

2
x+δ2y)

−1+ε4d22δ
4
y(δ

2
x+δ2y)

−1. (75)

This quadratic polynomial in ε2 can take positive values only if

d11δ
6
x + d12δ

4
xδ

2
y + d13δ

2
xδ

4
y > 0. (76)

If this is satisfied, the maximum (in ε2) of (75) is

− (d11δ
6
x + d12δ

4
xδ

2
y + d13δ

2
xδ

4
y)

2(4d22δ
4
y)

−1 + d01δ
8
x + (d01 + d02)δ

6
xδ

2
y + d02δ

4
xδ

4
y . (77)

In view of the inequalities (76), d11 < 0 and d13 > d12 for P > P1,

d13δ
4
xδ

2
y + d13δ

2
xδ

4
y > d11δ

6
x + d12δ

4
xδ

2
y + d13δ

2
xδ

4
y .

Note that d01 = d02 and d213 < 4d22d02 for P > P1; hence (77) is always negative for
P > P1.

D The large P limit

In this Appendix we calculate an instability boundary, which is important for α < 0
and large P . In the limit of large P the coefficient f2 in (35) vanishes and instability
occurring for α2 ∼ ε2 may compete with the instability defined by (35).
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Suppose α2 ∼ ε2. Then detA > 0 for α < 0, if either δ2x ≫ δ2y or δ2y ≫ δ2x (due
to the presence of the term αε2D5).

Suppose δ2y ≫ δ2x. Represent detA (66) (it is simpler to calculate this directly
from (64) ) as

detA =

− δ2y(2ε
2C3 + C4ξ)(ε

2b2
π2

4k2
+ PC4ξ) (78)

− 2PC4k
4δ4xδ

2
y + αε2b2π2kδ2x (79)

+ δ2xδ
2
y(−PC4k

2(ε2C3 + C4ξ) + 4Pα2k2 +
ε2b2π2

2
), (80)

where
ξ = αkδ2y + δ4y/4.

For δx = 0 the determinant is given by (78). Considering

ε2b2
π2

4k2
+ PC4ξ

as a quadratic polynomial in δ2y , we find that (78) is positive (we are interested in
large P ’s, and for them the instability boundary is defined by the second term in
(78) ) for

ε2 < f3α
2, f3 =

9π2P 2

2(P + 1)
. (81)

Note that
lim
P→∞

f3 = ∞. (82)

For large P and ε not satisfying (81), the contributions to detA from (79) and
(80) are negative (the proof is omitted). Hence if detA < 0 for δx = 0 and all δy, it
remains negative for all δx and δy. Thus (81) is indeed a boundary for stability of
rolls.

For δ2x ≫ δ2y the instability boundary is that of the Eckhaus instability

ε2 < 36α2π2

(or in a more familiar form R−Rs < 3(Rc(k)−Rs) ), which is below the boundary
defined by (81).
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(a) (b)

(c) (d)

(e) (f)

Figure 1. The area of stable rolls (shaded) on the (k, R) plane found numerically
(see section 8) and the instability boundaries found analytically for P = 0.6 (a)
P = 0.7 (b), P = 2 (c) and P = 7 (d), P = 20 (e) and P = 50 (f). Solid line denotes
the onset of convection, dashed lines instability boundaries SV and OSV defined by
(32) and (35), dotted line the ZZ boundary (36) and dashed-dotted line the SV2
boundary (41), (42). Stars mark the points where the SV2 boundary is obtained by
interpolation. Horizontal axis: k, vertical axis: R.
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Figure 2. The dominant growth rate (solid line, left vertical axis) and the values of
δx and δy (dotted and dashed lines, respectively, right axis), where the maximum is
achieved, versus the Rayleigh number (horizontal axis) for P = 2 and k = 2.15 (the
respective crossection is shown by a thin vertical line on fig. 1c).
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