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Controlling Chaotic Transport on Periodic Surfaces
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We uncover and characterize different chaotic transport scenarios on perfect periodic surfaces by
controlling the chaotic dynamics of particles subjected to periodic external forces in the absence of
a ratchet effect. After identifying relevant symmetries of chaotic solutions, analytical estimates in
parameter space for the occurrence of different transport scenarios are provided and confirmed by
numerical simulations. These scenarios are highly sensitive to variations of the system’s asymmetry
parameters, including the eccentricity of the periodic surface and the direction of dc and ac forces,
which could be useful for particle sorting purposes in those cases where chaos is unavoidable.

PACS numbers: 05.45.-a, 05.60.Cd

Introduction.−Controlling the transport of particles
on periodic potential energy surfaces is an old and
ubiquitous problem appearing in different fields such as
physics, chemistry, and biology [1]. Specific examples
include colloidal transport in arrays of optical tweezers
[2], flux creep through type-II superconductors [3], and
Bose-Einstein condensates with periodic pinning sites [4],
among many other. Previous theoretical analysis of the
motion of particles on surfaces [5–10] considered meso-
scopic models owing to the great complexity of the differ-
ent transport scenarios. While non-chaotic regimes have
been widely studied in the context of noisy overdamped
models [11] and the chaotic regime has been mainly con-
sidered when directed transport is induced by symmetry
breaking [9, 12], to the best of our knowledge, the fun-
damental case of deterministic chaotic transport in the
absence of a ratchet effect has not been considered in
detail as yet. The study of such a chaotic transport on
simple periodic surfaces could indeed shed some light on
diverse chaotic phenomena of great complexity appear-
ing for example in magnetotransport on antidot lattices
[13].

Model.−In this Letter, we consider the classical dy-
namics of a dissipative particle moving on a standard
separable periodic potential, with an external force hav-
ing both dc and ac components, and neglecting thermal
effects: m

..
x + ∂V/∂x = −µ

.
x + f0 cos θ + f1x cos (ωxt),

m
..
y + ∂V/∂y = −µ

.
y + f0 sin θ + f1y cos (ωyt), where

an overdot denotes a derivative with respect to t, θ
describes the direction of the dc force f0, µ is the
phenomenological coefficient of friction, and V (x, y) =
V0 [cos (2πx/λx) + cos (2πy/λy)] /2 is the potential with
λx, λy being the characteristic length scales. A main pur-
pose of the present work is a theoretical characterization
of the different chaotic transport (CT) scenarios by pro-
viding analytical estimates of the threshold conditions in
parameter space by using Melnikov analysis (MA). For
the sake of a dimensionless description, we put the equa-

tions of motion into the form

..
rx + sin rx = −γ

.
rx + F0x cos θ + F1x cos (Ωxτ) , (1)

..
ry +

sin ry
a2

= −γ
.
ry +

F0x

a
sin θ +

F1xb

a
cos (cΩxτ) ,(2)

where all variables and parameters are dimensionless,
an overdot denotes a derivative with respect to τ ≡

πt (2V0/m)
1/2

/λx, rx ≡ 2πx/λx ± π, ry ≡ 2πy/λy ± π,

γ ≡ µλx (2mV0)
−1/2

/π, F0x ≡ f0λx/ (πV0), F1x ≡

λxf1x/ (πV0), Ωx ≡ ωxλx [m/ (2V0)]
1/2

/π, a ≡ λy/λx,
b ≡ f1y/f1x, and c ≡ ωy/ωx. It is also assumed
that the system [Eqs. (1)-(2)] satisfies the MA require-
ments, i.e., the dissipation and forcing terms are small-
amplitude perturbations of the underlying conservative
pendula

..
rx,y + sin rx,y = 0 (see [14–16] for general back-

ground). Straightforward application of MA to Eqs. (1)
and (2) yields the Melnikov functions (MFs)

M±
x (τ0) = D±

x ± 2πF1xsech

(

πΩx

2

)

cos (Ωxτ0) , (3)

M±
y (τ0) = D±

y ± 2πabF1xsech

(

πacΩx

2

)

cos (cΩxτ0) ,(4)

respectively, where the positive (negative) sign refers
to the top (bottom) homoclinic orbit of the conserva-
tive pendulum, and D±

x ≡ ±2πF0x cos θ − 8γ, D±
y ≡

±2πaF0x sin θ− 8aγ. Since the MFs (3) and (4) have an
infinity of simple zeros, a main conclusion is that neces-
sary conditions for the onset of chaotic instabilities are,
respectively,

F1x >
min {|D+

x | , |D
−
x |}

2π
cosh

(

πΩx

2

)

, (5)

F1x >
min

{∣

∣D+
y

∣

∣ ,
∣

∣D−
y

∣

∣

}

2πab
cosh

(

πacΩx

2

)

. (6)

Next, one can compare the theoretical predictions and
Lyapunov exponent (LE) calculations [15] with the
caveat that one cannot expect too good a quantita-
tive agreement between the two kinds of results because
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LE provides information concerning solely steady chaos,
while MM is a perturbative method generally related to
transient chaos [16]. To quantify the sorting capabil-
ity associated with the threshold of chaotic transport,
we evaluate the Cartesian components of the velocity,
〈vi〉 = limτ→∞ 〈ri(τ)〉 /τ (i = x, y), where brackets in-
dicate average over initial conditions, and construct the
velocity components parallel and perpendicular to the
external dc force f0,

〈

v‖
〉

= 〈vx〉 cos θ + a 〈vy〉 sin θ, and
〈v⊥〉 = −〈vx〉 sin θ + a 〈vy〉 cos θ, respectively. We char-
acterize the deviation of 〈v〉 from f0 by means of the
quantifier

tanα = 〈v⊥〉 /
〈

v‖
〉

, (7)

where α is the deflection angle [10]. For the sake of
clarity, we shall consider here the case with equal fre-
quencies (c = 1) and both dc and ac forces acting in
the same direction (f1x ≡ f1 cos θ, f1y ≡ f1 sin θ, and
hence b = tan θ). By defining F1 ≡ λxf1/ (πV0), one has
F1x = F1 cos θ and hence Eqs. (5) and (6) reduce to

F1 > F x
1,th ≡

min {|D+
x | , |D

−
x |}

2π |cos θ|
cosh

(

πΩx

2

)

, (8)

F1 > F y
1,th ≡

min
{
∣

∣D+
y

∣

∣ ,
∣

∣D−
y

∣

∣

}

2πa |sin θ|
cosh

(

πaΩx

2

)

, (9)

respectively, where F x
1,th, F

y
1,th are the chaotic threshold

amplitudes.
Symmetry analysis.−Equations (8) and (9) tell us that

the onset of chaos in both directions strongly depends
upon the external force direction θ, which can thus be
used as a high-sensitivity control parameter to suppress
and strength CT in one or the another direction at will.
Specifically, one straightforwardly obtains from Eqs. (8)
and (9) that the chaotic threshold amplitudes exhibit (as
functions of θ) the symmetries:

F x
1,th (π/2± θ) = F x

1,th (π/2∓ θ) , (10)

F y
1,th (π/2± θ) = F y

1,th (π/2∓ θ) , (11)

F x
1,th (π/4± θ) = F y

1,th (π/4∓ θ) , (12)

F x
1,th (3π/4± θ) = F y

1,th (3π/4∓ θ) . (13)

Now, the following remarks are in order. First, Eqs. (10)
and (11) are valid for any spatial potential (a > 0), while
Eqs. (12) and (13) are solely valid for a symmetric po-
tential (a = 1). Second, symmetries (12) and (13) imply
that different transport regimes are expected in the x-
and y-directions as the external force direction deviates
from the “symmetric” angles π/4 and 3π/4, respectively.
Third, in the absence of multistability (i.e., when a sin-
gle attractor exists for all initial conditions), symmetries
(12) and (13) also imply 〈vx〉 (π/4± θ) ≃ 〈vy〉 (π/4∓ θ)
and 〈vx〉 (3π/4± θ) ≃ 〈vy〉 (3π/4∓ θ), respectively, and
hence tanα (as a function of θ) exhibits the symmetry

tanα (π/4 + θ) = − tanα (π/4− θ) , (14)

tanα (3π/4 + θ) = − tanα (3π/4− θ) , (15)

i.e., for a symmetric potential, tanα is an odd function of
θ with respect to the angles π/4 and 3π/4, respectively.
Note that this is no longer the case for an asymmetric
potential according to the first remark.

Numerical results.−Extensive numerical simulations
confirmed all the above theoretical predictions. Thus,
by varying θ one can find different transport regimes
(see Fig. 1, top panel): CT in both directions (as
for θ = {2π/9, 5π/18}), CT in one direction while
intermittent periodic transport (PT) in the other
(as for θ = {π/6, π/3}), PT in both directions (as
for θ = {7π/36, π/4, 11π/36}), and PT in one di-
rection while periodic oscillation in the other (as for
θ = {13π/36, 5π/36}). Since the onset of chaos also
depends upon the particle mass (through the coefficient
of friction, cf. Eqs. (8) and (9)), such an θ-dependence
can therefore be used to sort different particles according
to their mass. For two kinds of particles with different
masses, this means that one can obtain analytical
estimates of the optimal force directions, θopt, from Eqs.
(8) and (9) such that one particle exhibits CT while the
other does not, the remaining parameters being held con-
stant. Numerical experiments confirmed this scenario as
is shown in Figs. 1 (medium panel) and 2. Additionally,
the onset of chaos also depends upon the eccentricity
parameter a (Eq. (9)): Decreasing or increasing a from
1 (symmetric potential) means increasing the potential’s
asymmetry. Thus, the eccentricity of the periodic
potential can also be used as an effective parameter to
control CT on a periodic surface, as in the case of optical
potentials for example [17]. Figure 1 (bottom panel)
shows an illustrative example where typical trajectories
are plotted for increasing values of a from 1. Starting at
a situation where CT occurs in both directions (a = 1),
one finds that increasing the potential’s asymmetry
(a > 1) changes the motion to PT in both directions (as
for a = 1.2). This behaviour changes again to CT in
both directions for higher values of a (as for a = 1.4),
and finally changes to PT in the x-direction while remain
bounded inside a well in the y-direction (as for a = 1.6).
Also, the effectiveness of a fixed external force at sorting
heavy particles is enhanced by breaking the potential
symmetry (recall that γ ∼ m−1/2, see Fig. 2). Figure
3 shows illustrative instances of maximal LEs, Λ+

x and
Λ+
y , which quantify the chaotic dynamics in the x- and

y-directions, respectively, versus θ for two values of the
eccentricity parameter. Remarkably, these diagrams
present relevant symmetries which are coherent with
those of the chaotic threshold amplitudes [Eqs. (10)-
(13), respectively]: Λ+

x (π/2± θ) = Λ+
x (π/2∓ θ),

Λ+
y (π/2± θ) = Λ+

y (π/2∓ θ), Λ+
x (π/4± θ) =

Λ+
y (π/4∓ θ), Λ+

x (3π/4± θ) = Λ+
y (3π/4∓ θ). It is

worth mentioning that this coherence is far from trivial
in the sense that, to the best of our knowledge, there is no
theoretical connection between MA predictions and LEs
for the present system, thus indicating the relevance and

depth of the chaotic threshold symmetries in parameter

space. One typically finds how different chaotic and non-
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FIG. 1: Top panel: Trajectories for a net force applied at
different angles: θ = 13π/36 (a), π/3 (b), 11π/36 (c), 5π/18
(d), π/4 (e), 2π/9 (f), 7π/36 (g), π/6 (h), and 5π/36 (i) for
a = 1 and γ = 0.25. Medium panel: Trajectories for a =
1, θ = 2π/9, and four values of the dimensionless coefficient
of friction: γ = 0.25 (a), 0.3 (b), 0.35 (c), and 0.4 (d). Bottom
panel: Trajectories for θ = 2π/9, γ = 0.25, and four values
of the eccentricity parameter: a = 1 (a), 1.2 (b), 1.4 (c),
and 1.6 (d). Other parameters are: F0x = 0.28, F1 = 1, and
Ωx = 0.68. Dotted lines indicate the direction of the external
force.
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FIG. 2: Deflection angle vs coefficient of friction for two
values of the eccentricity parameter: a = 1 (♦) , 1.5 (N). The
inset shows the deflection angle vs eccentricity parameter for
γ = 0.2. Other parameters are: θ = π/5, F0x = 0.28, F1 =
1,Ωx = 0.68. The solid lines are solely plotted to guide the
eye.
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FIG. 3: Maximal LEs Λ+
x ,Λ

+
y as a function of the angle θ for

two values of the eccentricity parameter: a = 1 (top panel),
1.5 (bottom panel). Other parameters are: F0x = 0.28, F1 =
1, γ = 0.25 and Ωx = 0.68.

chaotic regimes drastically change over certain θ ranges
as the potential becomes asymmetric. For instance, PT
in both directions at θ = {π/4, 3π/4} for a symmetric
potential (a = 1) changes to CT in solely one direction
for an asymmetric potential (a = 1.5) (cf. Fig. 3).
Finally, numerical simulations confirmed the accuracy of
predictions (14) and (15) as is shown in Fig. 4. Starting
with CT in both directions at θ = π/4 for a symmetric
potential (Fig. 4, top panel), one sees that the deflection
of particles increases as θ deviates from π/4 according
to the route described in Fig. 1, top panel. Maximum
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FIG. 4: Deflection angle vs external force direction for
F0x = 0.28, F1 = 1,Ωx = 0.68, two values of the eccentricity
parameter: a = 1 (top panel), 1.5 (bottom panel), and differ-
ent values of the coefficient of friction: γ = 0.25 (♦) , 0.4 (N)
(top panel) and γ = 0.15 (♦) , 0.25 (N) (bottom panel). Also
plotted are the functions − tan θ and cot θ (dashed lines, see
the text ).

deflection occurs at symmetric angles with respect to
π/4, θlowmax, θ

sup
max

(

π/4− θlowmax ≃ θsupmax − π/4
)

, where there
is PT in one direction while periodic oscillation in
the other. For θ > θsupmax

(

θ 6 θlowmax

)

, this transport
regime remains, i.e., 〈vx〉 = 0 (〈vy〉 = 0) and hence
tanα (θ > θsupmax) = cot θ

(

tanα
(

θ 6 θlowmax

)

= − tan θ
)

(cf. Eq. (7)). For an asymmetric potential (Fig. 4,
bottom panel), the dependence of the deflection angle on
the external force direction essentially presents a similar
scenario to that of the symmetric case, but now tanα is
no longer an odd function with respect π/4, as predicted
(cf. third remark).

Conclusions.−To sum, we have demonstrated theoret-
ically and numerically through a simple and general sys-
tem that reliable control of sorting on periodic surfaces
is achieved for chaotic particles by identifying the rele-
vant symmetries of the chaotic threshold in parameter
space. We uncovered and characterized different sort-
ing scenarios associated with symmetric and asymmetric
spatial potentials, which could motivate experiments in
different contexts such as optical and antidot lattices.
Among the most interesting extensions of this work are
the case with the ac and dc forces having different direc-
tions, where preliminary results indicate the presence of
intriguing “absolute negative mobility” phenomena [18],
as well as the study of the effect of noise on the present
transport scenarios: Even very small amounts of noise
may cause both a transition from a bounded state to
a running state and a significative modification of the
chaotic threshold in parameter space [19]. Our current
work is aimed at exploring these cases.
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