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Abstract

In this letter, new exact explicit solutions are obtained for the Liénard equation, and the ap-

plications of the results to the generalized Pochhammer-Chree equation, the Kundu equation and

the generalized long-short wave resonance equations are presented.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) describe various nonlinear phenomena in

natural and applied sciences such as fluid dynamics, plasma physics, solid state physics, optical

fibers, acoustics, mechanics, biology and mathematical finance. It is of significant importance to

construct exact solutions of NLPDEs from both theoretical and practical points of view. Up to now,

many powerful methods for solving NLPDEs have been proposed, such as the inverse scattering

method[1], Bäcklund and Darboux transform[2]-[3], Hirota’s bilinear method[4], truncated painlevé

expansion method[5]-[10], homogeneous balance method[11], variational iteration method[12], ho-

motopy perturbation method[13], tanh-function method[14], Jacobian elliptic function expansion

method[15]-[19], Fan sub-equation method[20]-[22], auxiliary equation method[23]-[25], F-expansion

method[26]-[28]and so on.

The last five methods mentioned above belong to a class of method called subsidiary ordinary

differential equation method(sub-ODE method for short). The sub-ODE method which were often

used the Riccati equation, Jacobian elliptic equation, projective Riccati equation, etc. In this letter,

∗E-mail address: xugq@staff.shu.edu.cn (G.-Q. Xu)
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we choose the Liénard equation

a′′(ξ) + l a(ξ) + ma3(ξ) + n a5(ξ) = 0, lmn 6= 0, (1)

as the subsidiary ordinary differential equation. By means of some proper transformations, a

number of NLPDEs with strong nonlinear terms can be reduced to Eq.(1), thus seeking explicit

exact solutions of these nonlinear equations can be attributed to solve (1). Therefore, to search

for exact solutions of the Liénard equation (1) is a very important job and it has attracted much

attention. For example, Behera and Khare[29] has shown that the exact solution of Eq.(1) can be

expressed in terms of the Weierstrass function. Dey et al.[30] investigated Eq.(1) and established the

exact solution of a one-parameter family of generalized Liénard equation with pth order nonlinearity

by mapping it to the field equation of the φ6-field theory. By means of different methods, Kong[31],

Zhang[32]-[33] and Feng[34]-[36] have given some explicit exact solitary wave solutions of Eq.(1).

In Refs.[32]-[36], Zhang and Feng derived three kinds of solitary wave solutions of Eq.(1) as follows:

If l < 0,m > 0, n ≤ 0 or l < 0,m ≤ 0, n > 0, Eq.(1) possesses the solitary wave solution,

a1(ξ) = ±













4

√

3l2

3m2 − 16nl
sech2

√
−l ξ

2 +

(

−1 +

√
3m√

3m2 − 16nl

)

sech2
√
−l ξ













1

2

. (2)

If l < 0,m > 0 and 3m2 − 16nl = 0, Eq.(1) admits exact solutions,

a2(ξ) = ±
[

−2 l

m
( 1 + tanh(

√
−l ξ )

]
1

2

, a3(ξ) = ±
[

−2 l

m
( 1 − tanh(

√
−l ξ )

]
1

2

. (3)

The various methods used in [29]-[36] are very useful and the applications of the solutions of

the Liénard equation to some important NLPDEs are quite perfect. However, it is natural to ask

whether Eq.(1) can support other new exact solutions. The present letter is motivated by the

desire to improve the work made in [31]-[36] by introducing more solutions of Eq.(1) including all

the solutions given in [31]-[36] but also other formal solutions.

The rest of this letter is organized as follows. In Section 2, we find some new exact solutions

for the Liénard equation (1). In Section 3, we use these special solutions to solve the generalized

Pochhammer-Chree equation, the Kundu equation and the generalized long-short wave resonance

equations. And we conclude the letter in the last section.
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2.New exact solutions of the Liénard equation

Generally speaking, it is difficult to give the general solution of Eq.(1). In what follows, we will

consider some special cases. Based on Refs.[31]-[36], we can have the following solutions of Eq.(1),

a1±(ξ) = ±
[

−4 l

m + ǫ
√

m2 − 16nl/3 cosh(2
√
−l ξ)

]
1

2

, m2 − 16nl/3 > 0, l < 0, (4a)

a2±(ξ) = ±
[

−4 l

m + ǫ
√

16nl/3 −m2 sinh(2
√
−l ξ)

]
1

2

, m2 − 16nl/3 < 0, l < 0, (4b)

a3±(ξ) = ±
[

−2l

m

(

1 + ǫ tanh(
√
−l ξ )

)

]
1

2

, m2 − 16nl/3 = 0, m > 0, l < 0, n < 0, (4c)

a4±(ξ) = ±
[

−2l

m

(

1 + ǫ coth(
√
−l ξ )

)

]
1

2

, m2 − 16nl/3 = 0, m > 0, l < 0, n < 0, (4d)

a5±(ξ) = ±
[

−4 l

m + ǫ
√

m2 − 16nl/3 cos(2
√
l ξ)

]
1

2

, m2 − 16nl/3 > 0, l > 0, (4e)

where ǫ = ±1. It is easily seen that a3±(ξ) reproduces two solutions given in Eq.(3). There is a

tiny symbolic error in the solution a1(ξ)( the coefficient of sech2
√
−l ξ in the numerator of fraction

(2) should be −4
√

3l2

3m2−16nl ). It is easily proved that the correct solution a1(ξ) and the solution

a1±(ξ) with ǫ = 1 are actually the same and only different in the form. And the other solutions

a2±(ξ), a4±(ξ) and a5±(ξ) are firstly reported here.

To our best knowledge, the periodic wave solutions expressed in terms of Jacobian elliptic

function to Eq.(1) have not been considered in existed literature. Now we assume JacobiSN(ξ, r) =

sn(ξ), JacobiCN(ξ, r) = cn(ξ) and JacobiDN(ξ, r) = dn(ξ), and r is the modulus of Jacobian elliptic

functions(0 ≤ r ≤ 1). With the aid of symbolic computation software such as MAPLE, after direct

computations, we find three kinds of elliptic periodic wave solutions of Eq.(1) when the parameter

coefficients l,m, n satisfy certain conditions,

a6±(ξ) = ±
[

−3m

8n

(

1 + ǫ sn

( √
3m

4r
√−n ξ

))]
1

2

, l =
3m2(5r2 − 1)

64n r2
, m > 0, n < 0, (5a)

a7±(ξ) = ±
[

−3m

8n

(

1 + ǫ cn

(√
3m

4r
√
n
ξ

))]
1

2

, l =
3m2(4r2 + 1)

64n r2
, m < 0, n > 0, (5b)

a8±(ξ) = ±
[

−3m

8n

(

1 + ǫ dn

(√
3m

4
√
n
ξ

))]
1

2

, l =
3m2(r2 + 4)

64n
, m < 0, n > 0. (5c)

To our knowledge, the solutions a6±(ξ), a7±(ξ) and a8±(ξ) are firstly presented here.
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It is well known that there are many other Jacobian elliptic functions which can be generated

by sn(ξ), cn(ξ) and dn(ξ). For the sake of simplicity, the solutions in terms of ns(ξ), nd(ξ), nc(ξ),

sc(ξ), cs(ξ), sd(ξ), ds(ξ), cd(ξ), dc(ξ) are not considered here.

3.Applications

Example 1. The generalized Pochhammer-Chree (PC) equation can be written as

utt − uttxx − (a1 u + a3 u
3 + a5u

5)xx = 0, (6)

which describes the propagation of longitudinal deformation waves in an elastic rod[37]. Zhang[32]

and Feng[35] have given some explicit solitary wave solutions of Eq.(6) by means of the method of

solving algebraic equations. Li and Zhang[38] studied the bifurcation problem of travelling wave

solutions for Eq.(6) by using the bifurcation theory of planar dynamical systems.

In order to solve Eq.(6), its solutions may be supposed as:

u(x, t) = u(ξ), ξ = x− v t, (7)

where v is a real constant. Substituting ansatz (7) into Eq.(6) yields,

v2 u′′(ξ) − v2 u(4)(ξ) − (a1 u + a3 u
3 + a5u

5)ξξ = 0, (8)

Integrating Eq.(8) twice and setting the integration constant to zero, we obtain

u′′(ξ) +
a1 − v2

v2
u(ξ) +

a3
v2
u3(ξ) +

a5
v2
u5(ξ) = 0. (9)

Up to now, by means of the ansatz (7), we reduce the generalized PC equation (6) to the Liénard

equation (1) for the case l = a1−v
2

v2
, m = a3

v2
and n = a5

v2
. Substituting the solutions (4a)-(4e) and

the solutions (5a)-(5c) of Eq.(1) into (7), we can obtain a series of exact travelling wave solutions

to Eq.(6) (where ǫ1 = ±1 and ǫ2 = ±1).

When v2 − a1 > 0 and 3a23 − 16a5(a1 − v2) > 0, Eq.(6) has bell-shape solitary wave solution,

u1±(x, t) = ±









4(v2 − a1)

a3 + ǫ1
√

a23 − 16a5(a1 − v2)/3 cosh(
2
√
v2 − a1
v

ξ)









1

2

.

When v2 − a1 > 0 and 3a23 − 16a5(a1 − v2) < 0, Eq.(6) has the singular solitary wave solution,

u2±(x, t) = ±









4(v2 − a1)

a3 + ǫ1
√

16a5(a1 − v2)/3− a23 sinh(
2
√
v2 − a1
v

ξ)









1

2

.
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When a3 > 0, a5 < 0, v2 − a1 > 0 and 3a23 − 16a5(a1 − v2) = 0, Eq.(6) has two kink-shape

solitary wave solutions,

u3±(x, t) = ±
[

2(v2 − a1)

a3

(

1 + ǫ1 tanh

(
√
v2 − a1
v

ξ

))]

1

2

,

u4±(x, t) = ±
[

2(v2 − a1)

a3

(

1 + ǫ1 coth

(
√
v2 − a1
v

ξ

))]

1

2

.

When v2 − a1 < 0 and 3a23 − 16a5(a1 − v2) > 0, Eq.(6) has the trigonometric function solution,

u5±(x, t) = ±









4(v2 − a1)

a3 + ǫ1
√

a23 − 16a5(a1 − v2)/3 cos(
2
√
a1 − v2

v
ξ)









1

2

.

When a5 < 0 and a3 > 0, Eq.(6) has the Jacobian sine function solution,

u6±(x, t) = ±1

2

[

− 3a3
2 a5

(

1 + ǫ1 sn

( √
3 a3

4r v
√−a5

ξ

))]
1

2

,

where v = ǫ2
√

a5 (64 a5r2a1 − 15 a32r2 + 3 a32)/(8 r a5).

When a5 > 0 and a3 < 0, Eq.(6) has two periodic wave solutions. One is

u7±(x, t) = ±1

2

[

− 3a3
2 a5

(

1 + ǫ1 cn

( √
3 a3

4r v
√
a5
ξ

))]
1

2

,

where v = ǫ2
√

a5 (64 a5r2a1 − 12 a32r2 − 3 a32)/(8 ra5). And another one is

u8±(x, t) = ±1

2

[

− 3a3
2 a5

(

1 + ǫ1 dn

( √
3 a3

4v
√
a5
ξ

))]
1

2

,

where v = ǫ2
√

a5 (64 a5a1 − 3 a32r2 − 12 a32)/(8 a5).

Among the above solutions, only u1±(x, t) with ǫ1 = 1 and u3±(x, t) reproduce the results given

in Refs.[32]-[35], and the other solutions have not been found before.

Example 2. Next we consider the Kundu equation,

iut + uxx + β |u|2u + δ |u|4u + iα (|u|2u)x + i s (|u|2)x u = 0, (10)

where β, δ, α, s are real constants. Eq.(10) was derived by Kundu[39] in the study of integrability

and it is an important special case of the generalized complex Ginzburg-Laudau equation[40].

Meanwhile, Eq.(10) and its special cases arise in various physical and mechanical applications,

such as plasma physics, nonlinear fluid mechanics, nonlinear optics and quantum physics. Feng[34]
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derived the explicit exact solitary wave solutions of Eq.(10) by using the algebraic curve method.

Zhang et al.[41] studied the orbital stability of solitary waves for Eq.(10) by means of spectral

analysis.

Assume that Eq.(10) has solutions of the the form

u(x, t) = φ(ξ) ei(ψ(ξ)−ω t), ξ = x − v t, (11)

where ω and v are constants to be determined. Substituting Eq.(11) into Eq.(10) and then sepa-

rating the real part and imaginary part yields,

(ω + vψ′(ξ))φ(ξ) + φ′′(ξ)− φ(ξ)ψ′2(ξ) − αφ3(ξ)ψ′(ξ) + β φ3(ξ) + δ φ5(ξ) = 0, (12a)

− v φ′(ξ) + 2φ′(ξ)ψ′(ξ) + φ(ξ)ψ′′(ξ) + (3α + 2 s)φ2(ξ)φ′(ξ) = 0. (12b)

Letting

ψ′(ξ) = A + B φ2(ξ). (13)

Substituting Eq.(13) into Eq.(12b) and setting the coefficients of φ′(ξ), φ2(ξ)φ′(ξ) to zero, we have

A = v/2, B = −(3α+ 2s)/4. Then Eq.(13) becomes,

ψ′(ξ) =
v

2
− 3α+ 2s

4
φ2(ξ). (14)

Substituting Eq.(14) into Eq.(12a) yields the Liénard equation of the form,

φ′′(ξ) + l φ(ξ) + mφ3(ξ) + nφ5(ξ) = 0, (15)

where l,m, n are given by

l = ω +
v2

4
, m = β − α v

2
, n = δ +

(α− 2s)(3α + 2s)

16
.

By the transformations (11) and (14), the exact solutions of Eq.(10) can be obtained by using

the solutions of Eq.(1) given in Section 2. In the following solutions, ψ(ξ) is given by Eq.(14),

∆1 = (2β − αv)2 − (4ω + v2)(16δ + (α− 2s)(3α + 2s))/3.

When ∆1 > 0, and v2 + 4ω < 0, Eq.(10) has the solitary wave solution,

u1(x, t) = φ(x− v t) ei(ψ(x− v t)−ω t),

φ(ξ) = ±
[

−2(4ω + v2)

2β − αv + ǫ
√
∆1 cosh(

√

−(v2 + 4ω) ξ)

]
1

2

.

When ∆1 < 0, and v2 + 4ω < 0, Eq.(10) has the singular solitary wave solution,

u2(x, t) = φ(x− v t) ei(ψ(x− v t)−ω t),

φ(ξ) = ±
[

−2(4ω + v2)

2β − αv + ǫ
√
−∆1 sinh(

√

−(v2 + 4ω) ξ)

]
1

2

.
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When v2 + 4ω < 0 and α v − 2β < 0, Eq.(10) has two kink-shape solitary wave solutions,

u3(x, t) = φ(x− v t) ei(ψ(x− v t)−ω t),

φ(ξ) = ±
[

v2 + 4ω

α v − 2β

(

1 + ǫ tanh(

√

−(4ω + v2)

2
ξ)

)]
1

2

,

u4(x, t) = φ(x− v t) ei(ψ(x− v t)−ω t),

φ(ξ) = ±
[

v2 + 4ω

α v − 2β

(

1 + ǫ coth(

√

−(4ω + v2)

2
ξ)

)]
1

2

,

where ω is determined by ∆1 = 0.

When ∆1 > 0 and v2 + 4ω > 0, Eq.(10) has the periodic solution of trigonometric function,

u5(x, t) = φ(x− v t) ei(ψ(x− v t)−ω t),

φ(ξ) = ±
[ −2(4ω + v2)

2β − αv + ǫ
√
∆1 cos(

√
v2 + 4ω ξ)

]

1

2

.

When 4sα+ 4s2 − 3α2 − 16δ > 0, 2β − αv > 0, Eq.(10) has the Jacobian elliptic sine function

solution,

u6(x, t) = φ(x− v t) ei(ψ(x− v t)−ω t),

φ(ξ) = ±
[

3(2β − α v)

4sα+ 4s2 − 3α2 − 16δ

(

1 + ǫ sn(

√
3(2β − α v)

2r
√
4sα+ 4s2 − 3α2 − 16δ

ξ)

)]
1

2

,

where ω is determined by r2(v2 + 4ω)(16δ + (3α+ 2 s)(α − 2 s))− 3(β − vα/2)2(5 r2 − 1) = 0.

When 4sα + 4s2 − 3α2 − 16δ < 0, 2β − αv < 0, Eq.(10) has two Jacobian elliptic function

solutions. One is

u7(x, t) = φ(x− v t) ei(ψ(x− v t)−ω t),

φ(ξ) = ±
[

3(2β − α v)

4sα+ 4s2 − 3α2 − 16δ

(

1 + ǫ cn(

√
3(2β − α v)

2r
√
3α2 + 16δ − 4sα− 4s2

ξ)

)]
1

2

,

where ω is determined by r2 (v2 +4ω)(16δ+(3α+2 s)(α− 2 s))− 3 (β − vα/2)2(4 r2+1) = 0. And

another one is

u8(x, t) = φ(x− v t) ei(ψ(x− v t)−ω t),

φ(ξ) = ±
[

3(2β − αv)

4sα+ 4s2 − 3α2 − 16δ

(

1 + ǫ dn(

√
3(2β − αv)

2
√
3α2 + 16δ − 4sα− 4s2

ξ)

)]
1

2

,

where ω is determined by (v2 + 4ω)(16δ + (3α+ 2 s)(α − 2 s))− 3 (β − vα/2)2(r2 + 4) = 0.
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The solutions u1(x, t) with ǫ = 1, u3(x, t), u4(x, t) are same as the results reported in [34]. Other

solutions have not been reported in [34]. In addition, the Kundu equation (10) contains several

important nonlinear models when taking different choices for the parameters α, β, δ and s. For

example, if s = 0, Eq.(10) reduces to the derivative Schrödinger equation[39]

iut + uxx + β |u|2u + δ |u|4u + iα (|u|2u)x = 0; (16)

if δ = 2σ2, α = −2σ, s = 4σ, then Eq.(10) becomes the Gerdjikov-Ivanov equation[42],

iut + uxx + β |u|2u + 2σ2 |u|4u + 2iσ u2 ūx = 0. (17)

Obviously, the explicit exact solutions of Eq.(16) and Eq.(17) can be derived from the above

solutions.

Example 3. Finally we consider the generalized long-short wave resonance equations with strong

nonlinear term,
i St + Sxx = αLS + γ |S|2 S + δ |S|4 S,

Lt + β |S|2x = 0,
(18)

where S is the envelope of the short wave, and L is the amplitude of the long wave and is real. The

parameters α, β, γ and δ are arbitrary real constants. Recently, Shang[43] obtained several kinds

of explicit exact solutions of Eq.(18).

In order to seek the exact solutions of Eq.(18), we introduce the following transformation,

S(x, t) = φ(x, t) ei (k x+ω t+ξ0), (19)

where φ(x, t) is a real-valued function, and k and ω are constants to be determined, ξ0 is an

arbitrary constant. Substituting Eq.(19) into Eq.(18) and then separating the real and imaginary

parts yields,

φxx − (ω + k2)φ − αLφ − γ φ3 − δ φ5 = 0, (20a)

φt + 2 k φx = 0, (20b)

Lt + 2β φφx = 0. (20c)

In view of Eq.(20b) we suppose

φ(x, t) = φ(ξ) = φ(x− 2k t+ ξ1), (21)

where ξ1 is an arbitrary constant. Therefore we also assume

L(x, t) = ψ(ξ) = ψ(x− 2k t+ ξ1). (22)

8



Substituting Eq.(21) into Eq.(20c) yields,

ψ(ξ) =
β φ2(ξ)

2 k
+ C, (23)

where C is an integration constant.

Substituting Eqs.(21)-(23) into Eq.(20a), we have,

φ′′(ξ) + l φ(ξ) + mφ3(ξ) + nφ5(ξ) = 0, (24)

where the parameters l,m, n are given by

l = − (ω + k2 + αC), m = −(γ +
αβ

2 k
), n = − δ. (25)

Similar to Example 1, by means of the transformations (19), (21)-(23), we can also reduce

the generalized long-short wave resonance equations (18) to the Liénard equation (1). Together

with Eq.(21) and Eq.(23), substituting the solutions of the Lienard equation given in Section 2 into

Eq.(19) and Eq.(22) yields abundant periodic wave solutions of the generalized long-short wave

resonance equations (18). In the following eight sets of solutions, ∆2 = (γ +
αβ

2 k
)2 − 16δ (ω+ k2 +

αC)/3, ǫ = ±1, and ξ = x− 2 k t+ ξ1 with k being nonzero arbitrary constant.

When ∆2 > 0 and ω + k2 + αC > 0, Eqs.(18) has a set of bell-shape solitary wave solutions,

L1(x, t) =
4β (ω + k2 + αC)

−2k γ − αβ + 2k ǫ
√
∆2 cosh(2

√
ω + k2 + αC ξ)

+ C,

S1(x, t) = ±







4 (ω + k2 + αC)

−(γ +
αβ

2 k
) + ǫ

√
∆2 cosh(2

√
ω + k2 + αC ξ)







1

2

ei (k x+ω t+ξ0).

When ∆2 < 0, ω + k2 + αC > 0 Eqs.(18) has a set of singular solitary wave solutions,

L2(x, t) =
4β (ω + k2 + αC)

−2k γ − αβ + 2k ǫ
√
−∆2 sinh(2

√
ω + k2 + αC ξ)

+ C,

S2(x, t) = ±







4 (ω + k2 + αC)

−(γ +
αβ

2 k
) + ǫ

√
−∆2 sinh(2

√
ω + k2 + αC ξ)







1

2

ei (k x+ω t+ξ0).

When ∆2 = 0, ω+ k2+αC > 0, and 2kγ+αβ < 0, Eqs.(18) has two sets of kink-shape solitary

wave solutions,

L3(x, t) = −2β (ω + k2 + αC)

2kγ + αβ

(

1 + ǫ tanh(
√
ω + k2 + αC ξ )

)

+ C,

S3(x, t) = ±
[

−4k(ω + k2 + αC)

2kγ + αβ

(

1 + ǫ tanh(
√
ω + k2 + αC ξ )

)

]

1

2

ei (k x+ω t+ξ0),

9



L4(x, t) = −2β (ω + k2 + αC)

2kγ + αβ

(

1 + ǫ coth(
√
ω + k2 + αC ξ )

)

+ C,

S4(x, t) = ±
[

−4k(ω + k2 + αC)

2kγ + αβ

(

1 + ǫ coth(
√
ω + k2 + αC ξ )

)

]

1

2

ei (k x+ω t+ξ0),

When ∆2 > 0 and ω + k2 + αC < 0, Eqs.(18) has a set of trigonometric function solutions,

L5(x, t) =
4β (ω + k2 + αC)

−2k γ − αβ + 2k ǫ
√
∆2 cos(2

√

−(ω + k2 + αC) ξ)
+ C,

S5(x, t) = ±







4 (ω + k2 + αC)

−(γ +
αβ

2 k
) + ǫ

√
∆2 cos(2

√

−(ω + k2 + αC) ξ)







1

2

ei (k x+ω t+ξ0).

When δ > 0 and k(αβ+2kγ) < 0, Eqs.(18) has a set of Jacobian elliptic sine function solutions,

L6(x, t) = −3β (αβ + 2k γ)

32k2 δ

(

1 + ǫ sn(−
√
3 (αβ + 2kγ)

8k r
√
δ

ξ )

)

+ C,

S6(x, t) = ±
[

−3(αβ + 2k γ)

16k δ

(

1 + ǫ sn(−
√
3 (αβ + 2kγ)

8k r
√
δ

ξ )

)]
1

2

ei (k x+ω t+ξ0),

where ω is determined by 64r2δ (ω + k2 + αC)− 3(5r2 − 1) (γ +
αβ

2k
)2 = 0.

When δ < 0, k(αβ + 2kγ) > 0, Eqs.(18) has two sets of Jacobian elliptic function solutions.

One is

L7(x, t) = −3β (αβ + 2k γ)

32k2 δ

(

1 + ǫ cn(−
√
3 (αβ + 2kγ)

8k
√
−δ

ξ )

)

+ C,

S7(x, t) = ±
[

−3(αβ + 2k γ)

16k δ

(

1 + ǫ cn(−
√
3 (αβ + 2kγ)

8k
√
−δ

ξ )

)]
1

2

ei (k x+ω t+ξ0),

where ω is determined by 64r2δ (ω + k2 + αC)− 3(4r2 + 1) (γ +
αβ

2k
)2 = 0. And another one is

L8(x, t) = −3β (αβ + 2k γ)

32k2 δ

(

1 + ǫ dn(−
√
3 (αβ + 2kγ)

8k
√
−δ

ξ )

)

+ C,

S8(x, t) = ±
[

−3(αβ + 2k γ)

16k δ

(

1 + ǫ dn(−
√
3 (αβ + 2kγ)

8k
√
−δ

ξ )

)]
1

2

ei (k x+ω t+ξ0),

where ω is determined by 64δ (ω + k2 + αC)− 3(4 + r2) (γ +
αβ

2k
)2 = 0.

With the aid of Maple, we have checked all solutions by putting them back into the original

Equation.
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4. Conclusions

The Liénard equation is used to describe fluid-mechanical and nonlinear elastic mechanical

phenomena. Moreover, a number of NLPDEs with strong nonlinear terms can be reduced to the

Liénard equation by some proper transformations. Therefore, To search for new special solutions of

the Liénard equation is a very important job. In this letter, we obtain eight kinds of explicit exact

solutions for the Liénard equation, which include solitary wave solutions, periodic wave solutions

in terms of trigonometric function and Jacobian elliptic function. By means of these solutions, we

obtain a variety of explicit exact solutions for the generalized PC equation, the Kundu equation and

the generalized long-short wave resonance equations. These solutions may be important explain

some physical phenomena. The method presented here is also applicable to solve other nonlinear

equations with strong nonlinear terms. For example, the Ablowitz equation[44],

i utt = uxx − 4 i u2 ūx + 8 |u|4 u;

the third-order generalized NLS equation(also called RKL model)[45],

iuz + utt + 2|u|2u+ iαuttt + iβ(|u|2u)t + iγ(|u|4u)t + δ|u|4u = 0,

and the nonlinear equations which were considered in Ref.[32] and Ref.[34].
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