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Abstract

We discuss the Poisson structures, Lax matrices, r-matrices, bi-hamiltonian structures,

the variables of separation and other attributes of the modern theory of dynamical systems

in application to the integrable Euler top and to the nonholonomic Chaplygin ball.

1 Introduction

The main aim of this paper is to prove that the integrable Euler top and the nonholonomic
Chaplygin ball are very similar dynamical systems like birds of a feather flock together. Thus,
on example of these twins, we want to show how all the machinery developed for integrable
systems can be carried to the theory of solvable nonholonomic systems.

The integrable Euler case of rigid body motion with the fixed center of mass (the Euler top)
is relatively simple in the sense that its equations of motion do not linearize on Abelian surfaces,
but on the elliptic curves. Of course, this does not make the Euler top entirely trivial [14]. A
classical description of the Euler top can be found in any textbook on classical mechanics, see,
for instance, [1, 2, 6]. In contrast with this standard approach we will consider the Euler top
on the whole phase space so(3)⋉R

3 instead of only so(3).
The nonholonomic Chaplygin ball [10] is that of a dynamically balanced 3-dimensional ball

that rolls on a horizontal table without slipping or sliding. ’Dynamically balanced’ means that
the geometric center coincides with the center of mass. However, the mass distribution is not
assumed to be homogeneous. The inertia matrix can be any symmetric positive definite three
by three matrix. The no slip, no slide condition is a non-holonomic constraint on the velocities.
The ball is allowed to rotate about its vertical axis. There is a large body of literature dedicated
to the Chaplygin ball, including the study of its generalizations. See [5, 8, 11, 12, 15, 21, 18,
23, 24, 25, 29] and an excellent survey [7] to name just a few references. Of course, this list, as
well as the bibliography of the present paper, is by far incomplete.

This text can be regarded as some mathematical variations on the topic of Kozlov papers
[23, 24, 25] and of Borisov, Mamaev results [5, 7]. All the necessary preliminary physical
information can be found in their papers.

2 Equations of motion

Let γ = (γ1, γ2, γ3) and M = (M1,M2,M3) be the two vectors of coordinates and momenta,
respectively. We postulate that they satisfy to the following differential equations

Ṁ = M × ω , γ̇ = γ × ω . (2.1)

For any vector function ω on the dynamical variables x = γ,M these equations in M = R
3×R

3

have the following integrals of motion

H1 = (γ, γ), H2 = (γ,M), H3 = (M,M) . (2.2)
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Six differential equations can be solved in quadratures if we know its four integrals [17]. So, we
want to add some additional integral to the known integrals H1, H2 and H3 (2.2).

If we assume the existence of the following additional integral of motion

H4 = (M,ω) (2.3)

one gets
dH4

dt
= (M × ω,w) + (M, ω̇) = (M, ω̇) = 0 ,

it means that the derivative ω̇ has to be perpendicular to M . Below we stint ourselves by
second order integrals in momenta M , such as

H4 = (M,AM) and ω = AM . (2.4)

In generic A can be a matrix depending on γ, which has to satisfy to the equation

(M, ẇ) = (A⊤A−1ω,M × ω) + (M, ȦM) = 0 .

This equation can be replaced by the particular system of very simple equations

A⊤A−1 = Id, and (M, ȦM) = 0 , (2.5)

which has two trivial solutions

A1 = A , and A2 = f(γ) γ ⊗ γ , Ȧ1,2 = 0, (2.6)

and one their nontrivial composition

A3 = A+ g(γ)A γ ⊗ γA , (2.7)

Ȧ3 = g(γ)2A (γ ⊗ β + β ⊗ γ)A, β =
(
ηγ − (γ, γ)Aγ

)
×AM . (2.8)

Here A = A⊤ is a numeric symmetric matrix, function g(γ) is equal to

g(γ) =
1

η − (γ,Aγ)
, (2.9)

whereas function f(γ) and parameter η are arbitrary ones.

Remark 1 There are many other solutions of the system (2.5). As an example, linear in
variables γ matrices

A4 = A+B(γ ⊗ c+ c⊗ γ)B⊤

satisfy (2.5), if we impose various restrictions on the numerical entries of matrices A,B and
vector c.

Thus, we obtain the fourth integral of motion H4 (2.4) for the six equations (2.1) at
ω = AkM , k = 1, 2, 3. We proceed by showing that these dynamical systems are solvable in
quadratures in framework of the Euler-Jacobi last multiplier theory [17].

By definition, the Jacobi multiplier µ(x) of (2.1) is a function on dynamical variables
x = γ,M , which has to satisfy to the equation

6∑

i=1

∂

∂xi

µ(x) ẋi = 0, ⇒ µ̇+ µ
3∑

j=1

(
∂

∂γj
(γ × ω)j +

∂

∂Mj

(M × ω)j

)
= 0 .

For the solutions A1,2 (2.6) this equation is trivial

µ̇ = 0 and µ = c, c ∈ R, (2.10)
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but for its combination A3 one gets

2g(γ)µ̇− µġ(γ) = 0 , and µ = c
√
g(γ) . (2.11)

According to [17] the Jacobi’s multiplier is some nontrivial function in the case of constrained
systems only. The integrability conditions of the nonholonomic systems formulated by Kozlov
[24, 25] include the preservation of measure related with the Jacobi multiplier.

Remark 2 Equations (2.1) can be identified with the Euler-Poisson equations describing the
rotation of a rigid body around a fixed point or with the Kirchhoff equations describing the
motion of a solid body in an ideal incompressible fluid.

Vector M is the vector of the kinetic momentum of the body, expressed in the so-called
body frame. This frame is firmly attached to the body, its origin is in the body’s fixed point
and A−1

1 is the tensor of inertia with regard to the fixed point and this body frame.
In the Euler-Poisson case, vector γ is the unit Poisson vector, (γ, γ) = 1, along the gravity

field, with respect to the body frame. In the Kirchhoff case, M and γ are the vectors of the
impulsive momentum and the impulsive force, so (γ, γ) is an arbitrary constant. In both cases
vector ω is the angular velocity of a body, and our first solution A1 in (2.6) is associated with
the integrable Euler case [2, 6].

The second solution A2 is trivial because H4 = f(γ)H2
2 and γ̇ = 0.We will not consider

this case below.
The third solution A3 (2.7) can be related with the nonholonomic Chaplygin ball if we put

η =
1

ma2
,

where m and a are the mass and the radius of the ball respectively. In this case vector M is the
ball’s angular momentum with respect to the point of contact, and A−1 is the corresponding
tensor of inertia.

Dependence of A3 on γ is a sequence of nonholonomic constraints imposed on the system
[10], see also [7] and references within.

To sum up, we can easily get a lot of additional integrals H4 (2.4) of the equations (2.1)
and, therefore, we can solve these differential equations in quadratures without any notion
of the Hamilton structure, integrability by Liouville, the Poisson structure, the Lax matrices,
classical r-matrices etc.

However, this additional and in some sense redundant information can be useful in various
applications, such as the perturbation theory, the quantization theory and so on. Below we
reconstruct this information starting with only integrals.

3 Solvability versus integrability.

In this section our aim is to calculate the Poisson brackets for the given models without any
assumptions on underlying Hamiltonian or conformally Hamiltonian structures of the equations
of motion (2.1) [5, 7]. We will calculate the desired Poisson brackets only assuming that the
foliation Hi = αi is the direct sum of symplectic and lagrangian foliations.

The Jacobi last multiplier theorem [17] ensures that the six equations (2.1) with the four
functionally independent integrals H1, . . . , H4 and the multiplier µ are solvable in quadratures.

On the other hand, according to the Liouville theorem, equations of motion are integrable
in quadratures if we have the necessary number of integrals of motion in the involution with
respect to some Poisson brackets.

In fact [25], the combination of the Jacobi and Liouville theorems gives rise to the following
simple proposition .
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Proposition 1 Solvable equations of motion (2.1) with integrals H1, . . . , H4 and multiplier µ
are integrable by Liouville, if there is the Poisson bivector P such as

• [[P, P ]] = 0, the Jacobi identity,

• PdHi = PdHk = 0, reduction of dimension of the phase space

• {Hl, Hm} = 〈PdHl, dHm〉 = 0, the involution of the integrals .

(3.1)

Here [[., .]] is the Schouten bracket, H1, . . . , H4 are the four integrals (2.2-2.3), and (i, j, l,m) is
the arbitrary permutation of (1, 2, 3, 4).

The first equation in (3.1) guaranties that P is a Poisson bivector. In the second equation we
define two Casimir elements Hi and Hk of P . It is a necessary condition because by fixing
its values one gets the four dimensional symplectic phase space of our dynamical system. The
third equations provides that two remaining integrals Hl and Hm are in the involution with
respect to the Poisson bracket associated with P .

The system (3.1) has infinitely many solutions and, therefore, we have to narrow the search
space and try to get some particular solutions only.

3.1 The linear in momenta Poisson bivectors.

It is natural to suppose that second order polynomials H3,4 in momenta M are the integrals
of motion, whereas H1,2 are the Casimir functions. Moreover, we assume that the entries of P
are the linear functions in momenta M .

Proposition 2 In the hypotheses mentioned above the system of equations (3.1) has the fol-
lowing linear in momenta solutions:

P1 =

(
0 Γ

Γ M

)
, A1 = A,

P2 = (M,Aγ)

(
0 0
0 Γ

)
, A2 = f(γ) γ ⊗ γ ,

P3 =
1√
g(γ)

(
0 Γ

Γ M

)
−
√
g(γ) (M,Aγ)

(
0 0
0 Γ

)
, A3 = A+ g(γ)A γ ⊗ γA .

(3.2)
Here f(γ) is an arbitrary function, g(γ) is given by (2.9) and

Γ =




0 γ3 −γ2
−γ3 0 γ1
γ2 −γ1 0


 , M =




0 M3 −M2

−M3 0 M1

M2 −M1 0


 ,

In generic case H1,2 6= 0 at k = 1, 3 there is only one linear in momenta M solution of (3.1),
whereas at k = 2 we show a particular solution.

At k = 1 and k = 3 the Poisson brackets between variables x = γ,M look like

{Mi,Mj}1 = εijkMk, {Mi, γj}1 = εijkγk {γi, γj}1 = 0, (3.3)

and

{Mi,Mj}3 = εijk

(
Mk√
g(γ)

−
√
g(γ)(M,Aγ)γk

)
, {Mi, γj}3 =

εijkγk√
g(γ)

{γi, γj}3 = 0,

(3.4)
Here εijk is a totally skew-symmetric tensor.
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The first bracket {., .}1 is the well studied Lie-Poisson bracket on the Lie algebra e∗(3).
Indeed, the Euler top can be expressed as a Hamiltonian system on coadjoint orbits of Lie
algebra e(3) of Lie group E(3). The nonholonomic Chaplygin ball is the so-called conformally
Hamiltonian system on special nontrivial deformations of the same orbits.

Remark 3 Of course, we can get similar Poisson bivectors for other solutions of (2.5) as well.
For instance, if w = A4M , where

A4 =




0 0 0
0 0 0
0 0 a+ bγ3


 ,

the integrals H3 and H4 are in the involution with respect to the Poisson brackets associated
with the Poisson bivector

P4 =
η√

ax3 + b

[(
0 Γ

Γ M

)
− aM3

2(ax3 + b)

(
0 0
0 Γ

)]
. (3.5)

It is easy to prove that the equations (2.1) are non Hamiltonian equations with respect to this
Poisson bracket.

According to the second equation in (3.1), the symplectic leaves of the Poisson bivectors
P1 and P3 are topologically equivalent to each other. Below we study the difference between
their symplectic structures.

3.2 Properties of the linear Poisson bivectors.

Let us remind some necessary facts from the Poisson geometry. The Poisson manifold M is
a smooth (or complex manifold) endowed with the Poisson bivector P fulfilling the Jacobi
condition

[[P, P ]] = 0

with respect to the Schouten bracket on the algebra of the multivector fields on M. Other
Poisson bivector P ′ is compatible with P if any of its linear combination P +λP ′ is the Poisson
bivector, i.e. if

[[P, P ′]] = 0 .

The compatible bivectors P ′ are the 2-cocycles in the Poisson-Lichnerowicz cohomology defined
by Poisson bivector P on the Poisson manifold M.

The Poisson-Lichnerowicz cohomology of the Poisson manifold was defined in [27], and it
provides a good framework to express the deformation and the quantization obstructions, see
[39]. For example, the Lie derivative of P along any vector field X

P (X) = LX

(
P
)

⇒ [[P, P (X)]] = 0 (3.6)

is 2-coboundary, i.e. it is a 2-cocycle associated with the Liouville vector field X . If X is such
vector field that the Jacobi condition

[[P (X), P (X)]] = 0

is satisfied, then P (X) (3.6) is called the trivial deformation of the Poisson bivector P .

Remark 4 In the theory of Frobenius manifolds we have another definition of the trivial
deformation. Namely, deformation is called trivial if there exists a formal diffeomorphism
φ : M → M admitting the Taylor expansion, which pulls back P ′ to P .
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The first bivector P1 (3.2) is the well studied Lie-Poisson bivector on the Lie algebra e∗(3)
of Lie group E(3) of Euclidean motions of R3. It is easy to prove that

[[P1, P2]] 6= 0 and [[P1, P3]] = 0 .

It means that P3 is a 2-cocycle in the Poisson-Lichnerowicz cohomology of the Lie algebra
e∗(3) and, moreover, bivectors P1 and P3 have the same Casimir elements, according to their
construction (3.1).

Proposition 3 In the generic case the Poisson bivector

P3 =
1√
g(γ)

(
0 Γ

Γ M

)
−
√
g(γ) (M,Aγ)

(
0 0
0 Γ

)
(3.7)

is a nontrivial deformation of the standard Lie-Poisson bivector P1, i.e. P3 6= LX(P1) for any
X. In fact

P3 = LY

(
P1

)
+

√
g(γ) (γ,M)

2
LZ

(
P1

)
(3.8)

where entries of the vector fields Y =
∑

Y j∂j and Z =
∑

Zj∂j are given by

Y i = Zi = 0, Y i+3 = − Mj√
g(γ)

, Zi+3 =
((

trA · Id−A
)
γ
)

i
, i = 1, 2, 3 .

It is easy to see, that if H2 = (γ,M) = 0 then P3 = LY

(
P1

)
is a trivial deformation with all

the pleasant mathematical and physical consequences, see [27, 39] and [7, 10] respectively.

Remark 5 In the finite-dimensional case local Poisson geometry begins with the splitting
theorem, which says that in the neighborhood of any point in the Poisson manifold M, there
are coordinates (q1, . . . , qk, p1, . . . , pk, C1, . . . , Cℓ) such as

P =

k∑

i=1

∂

∂qi
∧ ∂

∂pi
+

1

2

ℓ∑

i,j=1

ϕij(C)
∂

∂Ci

∧ ∂

∂Cj

and ϕij(0) = 0 .

So, if the compatible bivectors P and P ′ have a common set of Casimirs C1, . . . , Cℓ, we can
identify the Darboux coordinates (q, p) of P with the Darboux coordinates (q′, p′) of P ′ and
obtain the local map φ : M → M, which pulls back P ′ to P .

Below we prove that in our case this local map can be extended to the global one.

Remark 6 If we come back to the general theory, the second Poisson-Lichnerowicz cohomology
group H2

P on M is precisely the set of bivectors P ′ solving [[P, P ′]] = 0 modulo the solutions of
the form P (X) = LX(P ).

We can interpret H2
P as the space of infinitesimal deformations of the Poisson structure

modulo trivial deformations. We should keep in mind that cohomology reflects the topology
of the leaf space and the variation in the symplectic structure as one passes from one leaf to
another [39].

Summing up, we suppose that the linear in momenta Poisson bivector P3 (3.7-3.8) is an
element of the second Poisson-Lichnerowicz cohomology group H2

P of e∗(3). The first time this
bivector has been obtained was in [5] by investigating the nonholonomic Chaplygin ball.

3.3 The r-matrices

For any ω equations (2.1) can be rewritten in the Lax form

dL

dt
= [L,Ω], L = M+

Γ

λ
, λ ∈ R , (3.9)
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if we identify (R3,×) and (so(3), [., .]) by using a well known isomorphism

z = (z1, z2, z3) → Z =




0 z3 −z2

−z3 0 z1
z2 −z1 0



 , (3.10)

where × is a cross product in R
3 and [., .] is a matrix commutator in so(3). As usual [30], the

first Lax matrix L gives rise to three integrals only

−1

2
traceL2 = H3 +

2H2

λ
+

H1

λ2
.

Using this Lax matrix the Poisson brackets {. , .}k can be rewritten in the r-matrix form

{
1

L(λ),
2

L(µ)}k = [r12(λ, µ) ,
1

L]− [r21(λ, µ) ,
2

L(µ) ] . (3.11)

Here
1

L(λ) = L(λ) ⊗ Id ,
2

L(µ) = Id⊗ L(µ) and r12(λ, µ) is a classical r-matrix and

r21(λ, µ) = Pr12(µ, λ) ,

where P is a permutation operator [30].
For the first bracket {. , .}1 (3.3) associated with the bivector P1 (3.2) this r matrix

r12(λ, µ) =
µ

µ− λ

3∑

i=1

Si ⊗ Si , (3.12)

is a well known constant matrix [30]. Here Si form a basis in the space of 3× 3 antisymmetric
matrices

S1 =




0 0 0
0 0 1
0 −1 0



 , S2 =




0 0 −1
0 0 0
1 0 0



 , S3 =




0 1 0
−1 0 0
0 0 0



 .

For the nonholonomic bracket {., .}3 (3.4) associated with the bivector P3 (3.2) the r-matrix
will be a more complicated dynamical r-matrix.

Proposition 4 At k = 3 the Lax matrix for nonholonomic Chaplygin ball (3.9) satisfies the
linear r-matrix algebra (3.11) with the following r-matrix

r12(λ, µ) =
µ

µ− λ

(
1√
g(γ)

− λ
√

g(γ) (M,Aγ)

)
3∑

i=1

Si ⊗ Si . (3.13)

Thus, we obtain a classical r-matrix for the nonholonomic Chaplygin ball. However, it is
dynamical r-matrix meant for a concrete model only and, therefore, we could not make a
substantial profit out of the majority of opportunities of the classical r-matrix method [30].

3.4 Change of the time variable

The notion of the Poisson brackets allows us to rewrite the equations (2.1) in the form of

dx

dτ
= {H,x}k, H =

1

2
H4 . (3.14)

after changing the time variable

dτ = µk dt , µ1,2 = 1, µ3 =
√
g(γ) , (3.15)
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where µk are the Jacobi multipliers (2.10-2.11). Namely this transformation has been used in
the Chaplygin work [10] in order to get the solutions as the functions of the time variable. The
properties of this change of time are discussed in [7, 25].

It is easy to see that for the equations (3.14) the Jacobi multiplier is equal to µ2
k, because

n∑

j=1

∂

∂xj

(
µk · dxj

dt

)
=

n∑

j=1

∂

∂xj

(
µ2
k ·

dxj

dτ

)
= 0 .

So, this systems of equations looks like the Hamiltonian system with respect to the Poisson
brackets {., .}k, but at k = 3 its Jacobi multiplier does not equal to the constant, as it does for
the standard Hamiltonian systems [17].

On the other hand, if we make an inverse transformation

dτ ′ = µ−1
k dt ⇒

n∑

j=1

∂

∂xj

(
µk · dxj

dt

)
=

n∑

j=1

∂

∂xj

(
1 · dxj

dτ ′

)
= 0

we get a system with a constant Jacobi multiplier, but the form of the equations will be non-
Hamiltonian

dx

dτ ′
= µ2{H,x}k .

Remark 7 The systems with the vector field

X = PdH

and the Jacobi multiplier µ(x) depending on x are called conformally Hamiltonian in [7].

So, at k = 3 there are two transformations of the time variable, which reduce either the
form of the equations or the value of the Jacobi multiplier to a habitual form. However, we
can not directly identify these transformations with canonical transformations of the extended
phase space, which change time and the Hamilton function simultaneously [28, 31, 32, 34].

4 Separation of variables at (γ,M) = 0.

Now we address the problem of separation of variables within the theoretical scheme of bi-
hamiltonian geometry [38]. According to [10] we can start with the case (γ,M) = 0 and then
reduce the generic case to this particular one. This reduction is related to the twisted Poisson
maps and its detailed discussion goes beyond the scope of this paper.

Let us remind, that the bi-Hamiltonian manifold M is a smooth (or complex) manifold
endowed with two compatible Poisson bivectors P and P ′. Dynamical systems on M with the
integrals of motion in involution with respect to the both brackets

{Hi, Hj} = {Hi, Hj}′ = 0, i, j = 1, . . . , n, (4.1)

are called bi-integrable systems [38].
In fact, the family of bi-integrable systems coincides with the family of separable systems

because the bi-involutivity of the integrals of motion (4.1) is equivalent to the existence of the
control matrix F defined by

P ′dHi = P

n∑

j=1

Fij dHj , i = 1, . . . , n. (4.2)

The eigenvalues of F are the coordinates of separation, whereas the suitable normalized left
eigenvectors of F form the generalized Stäckel matrix S

F = S−1 diag (q1, . . . , qn)S

8



which defines the separation relations

Φi(qi, pi, H1, . . . , Hn) =

n∑

j=1

Sij(qi, pi)Hj + Ui(qi, pi) = 0 , i = 1, . . . , n . (4.3)

Here the entries of Stäckel matrix Sij and the Stäckel potentials Ui depend only on one pair
(qi, pi) of the canonical variables of separation and, in generis case, on the integrals of motion
[38].

In our case the Stäckel matrix and the Stäckel potentials depend only on variables of
separation, and it allows us to calculate the canonical transformation from the initial variables
γ,M to the variables of separation explicitly.

4.1 Coordinates of separation.

In order to get variables of separation according to the general usage of bi-hamiltonian geometry
firstly we have to calculate the bi-hamiltonian structure for the given system with integrals of
motion H1, . . . , Hn on the Poisson manifold M with the kinematic Poisson bivector P [38].

Proposition 5 Let us introduce vector fields Xk =
∑

Xj
k∂j, k = 1, 3, with the following en-

tries:
X i

k = 0, X i+3
k =

[
γ ×Ak(γ ×M)

]

i
, i = 1, 2, 3 . (4.4)

If (γ,M) = 0 then the Poisson bivectors

P ′
1 = LX1

(
P1

)
and P ′

3 = LX3

(
P3

)

are compatible with the bivectors P1 and P3 (3.2) respectively. These bivectors P ′
k have common

symplectic leaves
P ′
kdH1 = 0, P ′

kdH2 = 0, k = 1, 3, (4.5)

with the initial kinematic bivectors Pk and the integrals of motion H3 = (M,M) and H4 =
(M,AkM) are in the bi-involution

{H3, H4}k = {H3, H4}′k = 0 , (4.6)

with respect to the corresponding Poisson brackets.

Thus, we proved that the Euler top and the nonholonomic Chaplygin ball are bi-integrable
systems at (γ,M) = 0.

If P1,3 are given by (3.2) and P ′
k = LXk

(
Pk

)
(4.4), then control matrices F (1) and F (3) in

P ′
kdH = P

(
F (k)dH

)
, dH =

(
dH3

dH4

)

are equal to

F (k) =

(
0 (A∨

k γ, γ)

−(γ, γ)
((

trAk · Id−Ak

)
γ, γ

)
)

, k = 1, 3 . (4.7)

Here A∨
k = (detAk)Ak

−1 are adjoint or cofactor matrices.

Proposition 6 The Darboux-Nijenhuis variables associated with the bivectors P ′
k and control

matrices F (k) are the roots of their characteristic polynomials

τk(λ) = λ2 −
((

trAk · Id−Ak

)
γ, γ

)
+ (γ, γ)(Ak

∨γ, γ) = 0 . (4.8)

These Darboux-Nijenhuis variables are the variables of separation for the bi-lagrangian foliation
defined by integrals H1, . . . , H4.
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At (γ,M) = 0 the passage from the Euler top to the nonholonomic Chaplygin ball consists of
the replacement of the numerical matrix A1 (2.6) on dynamical one A3 (2.7) in the equations
of motion (2.1), in the Hamiltonian H4 = (M,AkM) and equations (4.4,4.7,4.8) only.

On the face of it we could get more complicated passage for the conjugated momenta, such
as the kinematic Poisson bivectors Pk (3.2) are completely different. Nevertheless, in the next
section we prove that the separated momenta can be obtained in a common way as well.

Remark 8 The simplicity of this passage is a sequence of the equation (3.8)

P3 = LY (P1),

properties of the Lie derivative L and of the vector fields Y and Xk.

4.2 Elliptic coordinates

If axes of the body frame attached to the body coincide with the principal inertia axes of the
body then the tensor of inertia A−1 is diagonal and

A =




a1 0 0
0 a2 0
0 0 a3


 .

Moreover, if we put (γ, γ) = 1, then by dividing τ(λ) on det(A − λ Id) we get the standard
definitions of variables of separation.

Proposition 7 In the above-mentioned hypotheses the variables of separation u, v and u, v are
zeroes of the functions

e1(λ) =
γ2
1

λ− a1
+

γ2
2

λ− a2
+

γ2
3

λ− a3
=

(λ − u)(λ− v)

(λ− a1)(λ − a2)(λ− a3)
, (4.9)

and

e3(λ) = g(γ)

(
γ2
1(η − a1)

λ− a1
+

γ2
2(η − a2)

λ− a2
+

γ2
3(η − a3)

λ− a3

)
=

(λ− u)(λ − v)

(λ− a1)(λ− a2)(λ − a3)
, (4.10)

respectively.

Equation (4.9) is a standard definition of the elliptic coordinates u, v on the unit sphere, whereas
equation (4.10) determines the nonholonomic elliptic coordinates u, v, introduced in [10], see
also [7, 8, 16, 25].

We have to point out that our aim is the calculation of the well-known variables of separa-
tion without any additional assumptions. Thus, we have to calculate the conjugated momenta
pu, pv and pu, pv in framework of bi-hamiltonian geometry. It is easy to prove that in our case
we have identical Stäckel matrices

S(1) =

(
1 1
−u −v

)
and S(3) =

(
1 1
−u −v

)
,

and identical Stäckel potentials

U
(1)
1 = uH3 −H4 , U

(1)
2 = v H3 −H4 ,

U
(3)
1 = uH3 −H4 , U

(3)
2 = vH3 −H4 ,

H3 = (M,M), H4 = (M,ω). (4.11)

According to [38], the notion of the Stäckel potentials allows us to find unknown conjugated
momenta using the Poisson brackets only.
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For instance, the following recurrence chain of the Poisson brackets

φ1 = {u, U (1)
1 }1, φ2 = {u, φ1}1, . . . , φi = {u, φi−1}1 (4.12)

breaks down on the third step φ3 = 0. It means that U
(1)
1 (u, pu) is the second order polynomial

in momenta pu and, therefore, we can define this unknown momenta in the following way

pu =
φ1

φ2
=
∑

ijm

εijm
γjγm(aj − am)(ai − u)

2(u− v)(aj − u)(am − u)
Ji (4.13)

up to the canonical transformations pu → pu+f(u). As above, εijk is a totally skew-symmetric
tensor.

Similar calculation with U
(1)
2 (v, pv) yields to the definition of the second momenta pu. In

nonholonomic case we can perform completely identical calculations too. The results obtained
so far can be summarized in the following statement.

Proposition 8 The initial coordinates x = γ,M are expressed via elliptic coordinates u, v and
pu, pv

γi =

√
(u− ai)(v − ai)

(aj − ai)(am − ai)
, i 6= j 6= m,

(4.14)

Mi =
2εijmγjγm(aj − am)

u− v

(
(ai − u)pu − (ai − v)pv

)
,

In terms of the nonholonomic elliptic coordinates u, v and pu, pv the same variables look like

γi =

√
(aj − η)(am − η)

(u− η)(v − η)
·
√

(u− ai)(v − ai)

(aj − ai)(am − ai)
, i 6= j 6= m, (4.15)

Mi =
2εijmγjγm(aj − am)

u− v

√
(η − u)(η − v)

(η − a1)(η − a2)(η − a3)

(
(ai − u)(η − u)pu − (ai − v)(η − v)pv

)
.

In nonholonomic case these variables have been introduced by Chapligin [10]. Our aim was
to calculate the variables of separation in framework of bi-hamiltonian geometry without any
additional speculations and assumptions.

4.3 The reduction of the Poisson brackets

The variables of separation u, v, pu, pv and u, v, pu, pv are the Darboux variables with respect
to the brackets {., .}1 and {., .}3, respectively. Thus, according to Remark 5, we can identify
these variables and get the diffeomorphism φ : M → M, which pulls back the nonholonomic
bracket {., .}3 to the Lie-Poisson bracket {., .}1 on the Lie algebra e∗(3).

Proposition 9 At (γ,M) = 0 the Poisson bracket {., .}3 (3.4) between the variables γ,M are
reduced to the Lie-Poisson bracket {., .}1 (3.3) between variables

γ̂j =

√
g(γ)

(
η − (γ, γ) aj

)
γj , j = 1, 2, 3,

(4.16)

M̂j =

√√√√
1

∏
i6=j

(
η − (γ, γ) ai

)
(

Mj√
g(γ)

+
√
g(γ) (M,Aγ) γj

)
.

This mapping identifies the Chaplygin variables u, v with the usual elliptic coordinates u, v on
the sphere.

11



So, at (γ,M) = 0 we can map the nonholonomic Poisson bracket to the standard Poisson
bracket on cotangent bundle to the sphere. It means that any integrable system on the sphere
has an integrable counterpart with respect to the nonholonomic bracket and vise versa. The
list of the known integrable systems on the sphere can be found in [4, 6, 41].

On the other hand, we can say that mapping (4.16) relates the usual metric on the sphere
with some nonholonomic metric on the same sphere. It can be interesting to study this metric
and the corresponding variational problem according to [20].

In the next section we prove that we can not identify the Euler top and the nonholonomic
Chaplygin ball using this mapping because they have different separated relations even at
(γ,M) = 0.

4.4 Separation relations

Substituting variables γ,M (4.14) and (4.15) into the Stäckel potentials (4.11), we obtain a
pair of separation relations (4.3) for the Euler top and the Chaplygin ball. These separated
equations define some algebraic curves and we can say that the equations of motion (2.1) are
linearized on the symmetrized product of these curves.

Proposition 10 In holonomic case at ω = A1M the variables of separation lie on two copies
of the hyperelliptic curve of genus one

C(1) : 4(a1 − x)(a2 − x)(a3 − x) y2 − (xH3 −H4) = 0, x = u, v, y = pu, pv . (4.17)

In nonholonomic case at ω = A3M the variables of separation lie on two copies of the following
hyperelliptic curve of genus two

C(3) : 4(η−x)(a1−x)(a2−x)(a3−x) y2−(xH3−H4) = 0, x = u, v, y = pu, pv . (4.18)

In fact, we obtain the variables of separation and the separated equations geometrically, i.e.
without the equations of motion, the time variable and the underlying Hamiltonian or confor-
mally Hamiltonian structures. We only suppose that the foliation defined by the integrals H3

and H4 on symplectic leaves of the corresponding Poisson brackets is bi-lagrangian foliation.
However, in order to get the solutions of the separated equations x(t) and y(t) we have to

explicitly introduce a time variable t. Solving separated equations with respect to H3 and H4

one gets the Hamilton functions for the Euler top

H4 =
4v(a1 − u)(a2 − u)(a3 − u)

u− v
p2u +

4u(a1 − v)(a2 − v)(a3 − v)

v − u
p2v, (4.19)

and for the Chaplygin ball

H4 =
4v(η − u)(a1 − u)(a2 − u)(a2 − u)

u− v
p2u +

4u(η − v)(a1 − v)(a2 − v)(a3 − v)

v− u
p2v . (4.20)

By definition the variables of separation are canonical variables and, therefore, we have

{H4, x1}k =
4x2
√
Pk(x1)

x1 − x2
and {H4, x2}k =

4x1
√
Pk(x2)

x2 − x1
, . (4.21)

Here variables x1,2 are coordinates of separation u, v or u, v at k = 1, 3, respectively. Polyno-
mials Pk(x) are the polynomials of degree 4 and 5 in x variable

P1(x) = (a1 − x)(a2 − x)(a3 − x)(xH3 −H4),

P3(x) = (η − x)(a1 − x)(a2 − x)(a3 − x)(xH3 −H4).

On the other hand, according to (3.14), the brackets (4.21) are equal to

{H4, x1}k =
2

µk

dx1
dt

and {H4, x2}k =
2

µk

dx2
dt

12



where

µ1 = 1, and µ3 =
√
g(γ) =

√
(η − u)(η − v)

(η − a1)(η − a2)(η − a3)
.

So, in order to get the solutions x1,2(t) of the equations of motion we have to consider the
Jacobi inversion problem for the equations

β1 − 2

∫
µk dt =

∫
dx1√
Pk(x1)

+

∫
dx2√
Pk(x2)

,

(4.22)

β2 =

∫
x1dx1√
Pk(x1)

+

∫
x2dx2√
Pk(x2)

,

where β1,2 are the constants of integration. The change of time variable (3.15) reduces these
equations to the standard Abel-Jacobi equations [10, 25]. The solution of this Jacobi inversion
problem by Wurzelfunktionen is discussed in [8].

Remark 9 It is easy to prove that the right hand side in β2 (4.22) coincides with an addi-
tional Euler-Jacobi quadrature emerged in the Jacobi last multiplier theory. Of course, for the
Chaplygin ball this quadrature can be obtained without any change of time variable.

5 The 2× 2 Lax matrices.

In variables of separation we deal with the uniform Stäckel systems (4.19-4.20) and, therefore,
we can get 2 × 2 Lax matrices associated with the Abel-Jacobi equations (4.22) in a standard
way, see [13, 26, 32, 33, 36] as well as the relevant references therein.

According to [32, 33, 36], let us introduce the following functions on the canonical variables
of separation and spectral parameter λ

h1(λ) = −1

8

{
H3, e1(λ)

}

1

h3(λ) = − 1

8(η − λ)

{
H3, e3(λ)

}

3
,

and

f1(λ) =
1

4

({
H3, h1(λ)

}

1
− e1(λ)H3

)
,

f3(λ) =
1

4(η − λ)

({
H3, h3(λ)

}

3
−
(
1 +

trA− 2(u + v)

η − λ

)
e3(λ)H3 −

e3(λ)H4

η − λ

)
.

Here e1,3(λ) are given by (4.9-4.10), H3 is a leading term in the polynomial (xH3−H4) from the
separation relations (4.17-4.18), whereas the Hamilton function is equal to H4/2 (4.19-4.20).

In order to obtain these functions in initial variables we have to use the definitions of
e1,3(λ), the integrals H3,4 and the brackets {., .}1,3 in (γ,M) variables and, in addition, it is
necessary to substitute

u + v = Res|λ=∞ e3(λ)(λ − trA)

in the last formulae.

Proposition 11 At (γ,M) = 0 the Lax matrices

Lk =

(
hk ek
fk −hk

)
, Ak =

1

µk ek

(
−e′k 0
2h′

k e′k

)
, k = 1, 3, (5.1)
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satisfy to the Lax equation

d

dt
Lk(λ) =

µk

2

{
H4,Lk

}

k
=
[
Lk(λ),Ak(λ)

]
.

Here z′ = {z,H4}1,3 is a time derivative up to Jacobi multiplier µ1,3 (3.15).

As usual, substituting λ = x into the determinants of the Lax matrces

detLk(λ) = −h2
k(λ) − ek(λ)fk(λ) ,

which are equal to

detL1(λ) = − λH3 −H4

4(a1 − λ)(a2 − λ)(a1 − λ)
,

detL3(λ) = − λH3 −H4

4(η − λ)(a1 − λ)(a2 − λ)(a1 − λ)
,

one gets separated relations (4.17) and (4.18) because ek(x) = 0 and hk(x) = y.

Remark 10 In [10] Chaplygin reduces the generic case at (γ,M) 6= 0 to the particular case at
(γ,M) = 0. By applying the inverse map to the Lax matrices (3.9) one gets the Lax matrices
for the generic case of the nonholonomic Chaplygin ball. These matrices and the corresponding
r-matrix algebra will be studied in a forthcoming separate publication.

Matrices Lk(λ) are associated with the uniform Stäckel systems and, therefore, they satisfy
to the linear r-matrix algebra (3.11) with the well-studied dynamical r-matrices [13, 26, 32, 33,
36]. In contrast with the previous 3 × 3 Lax matrices (3.9) it allows us to obtain some well
studied generalizations of these 2× 2 matrices in the next paragraphs.

5.1 Chaplygin ball and separable potentials.

We are going to demonstrate that the Chaplygin ball at (γ,M) = 0 is still integrable in the
force fields associated with a huge family of the so-called separable potentials [4, 13, 41].

It is well known of how to get various generalizations of the separable systems using the de-
formations of their separated equations [17]. For instance, let us consider following deformations
of the separation relations (4.17) and (4.18)

4(a1 − x)(a2 − x)(a3 − x) y2 − (xH3 −H4) + V (x) = 0

or
4(η − x)(a1 − x)(a2 − x)(a3 − x) y2 − (xH3 −H4) + V (x) = 0 ,

where potential V is some function on x. Usually, potential V is a linear combination of the
trivial separable potentials Vm = αmxm, where m is a positive or negative integer [4, 41].

In order to get the same deformations in the initial variables γ,M we can use the generating
function [41]

Φ(λ) =
φ(λ)

ek(λ)
,

or the determinant of the corresponding deformations the Lax matrix Lk(λ) (5.1)

fk → fk +

[
φ(λ)

ek(λ)

]

MN

.

Here φ(λ) is a parametric function on spectral parameter and [ξ(λ)]MN is a linear combination
of the Laurent projections of ξ(λ) by λ [13, 32, 33].
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For example, if V = αx2 one gets the integrable system

H3 = (M,M) + α(γ,Aγ) , H4 = (M,A1M)− α

a1a2a3
(γ,A−1γ) , (5.2)

which can be identified with the Neumann system on the sphere, and its nonholonomic coun-
terpart

H3 = (M,M) + αg(γ)
(
η(γ,Aγ)− (Aγ,Aγ)

)
, (5.3)

H4 = (M,A3M)− α g(γ)

(
η(γ,A−1γ)

a1a2a3
− a1a2a3

)
.

Remark 11 Another nonholonomic analog of the Neumann system with the polynomial in γ
potential has been proposed by Kozlov [24] at

V = −αx2 + (a1 + a2 + a3)x +
α(a1 − x)(a2 − x)(a3 − x)

η − x
, (5.4)

see integrals of motion in (6.10). At (γ,M) = 0 this system is separable in the Chaplygin
coordinates [16].

If V = βx3 we obtain a forth order polynomial potential on the sphere

H4 = (M,A1M) + β
(γ,A−1γ)

a1a2a3

(
(γ,Aγ)− trA

)
, (5.5)

and its nonholonomic analog

H4 = (M,A3M) + β g(γ)

(
η(γ,A−1γ)

a1a2a3
− a1a2a3

)[
g(γ)

(
η(γ,Aγ)− (Aγ,Aγ)

)
− trA

]
.

(5.6)
Similarly we can get other well-known integrable systems on the sphere [4, 41], such as Braden
and Rosochatius systems, and their nonholonomic counterparts separable in the nonholonomic
elliptic coordinates.

The second type of perturbations of the Chaplygin system is related with other possible
deformations of the separated equations (4.18). For instance, we can insert second arbitrary
parameter ζ into the separation relations

4(η − x)(ζ − x)(a1 − x)(a2 − x)(a3 − x) y2 − (xH3 −H4) = 0, x = u, v. (5.7)

As for the initial Chaplygin ball, we have to change the definition of the physical variables γ in
terms of the variables of separation (4.10). By analogy it can look like

e(λ) = g̃(γ)
3∑

i=1

γ2
j (η − a1)(ζ − a1)

λ− ai
=

(λ− u)(λ − v)

(λ− a1)(λ− a2)(λ − a3)
, (5.8)

where function g̃(γ) is determined from an obvious condition

Res e(λ)|λ=∞ = −1 ,

and an assumption (γ, γ) = 1. For the definition of the momenta M and of the Poisson bracket
between γ and M we can use a transformation similar to (4.16). In this case physical meaning
of the equations (2.1) is unknown.
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5.2 Analogs of the Chaplygin system on Riemannian spaces of con-

stant curvature.

At (γ,M) = 0 the Euler top is a dynamical system describing free motion on the two-
dimensional sphere. It is well-known how to describe similar N -dimensional free motion on
any Riemannian space of constant curvature using a well-studied theory of the orthogonal coor-
dinate systems and the corresponding Killing tensors [3]. For example, according to [26] we can
get 2× 2 Lax matrices (5.1) for such free motion and then add separable potentials [32, 33, 35],
which form depends on the chosen orthogonal coordinate system.

We can try to determine the N -dimensional Chaplygin systems on the Riemannian spaces
of constant curvature using known generalizations of the Chaplygin ball associated to the semi-
simple Lie groups [15, 18, 21].

Let us start with elliptic coordinates (q, p) on the sphere SN in N+1-dimensional Euclidean
space RN . In this case the transformation of the free motion to its Chaplygin analog consists
of three steps:

• we have to change the separation relations from

N+1∏

i=1

(ai − qj) p
2
j −

N∑

i=1

qmj Hm = 0 , j = 1, . . . , N, (5.9)

to

(η − qj)
N+1∏

i=1

(ai − qj) p
2
j −

N∑

i=1

qmj Hm = 0 , (5.10)

compare with (5.9-5.9);

• we have to change the definition of qj in term of cartesian coordinates in RN from

e1(λ) =

N+1∑

k=1

γ̂2
k

λ− ak
=

∏N

j=1(λ− qj)
∏N+1

i=1 (λ − ai)
, (5.11)

that implies
∑N+1

i=1 γ̂2
i = 1, to

e3(λ) = g(γ)

N+1∑

k=1

γ2
k (η − ak)

λ− ak
=

∏N
j=1(λ − qj)

∏N+1
i=1 (λ− ai)

, (5.12)

where g(γ) is defined by residue of e3(λ) at infinity;

• we have to change the time variable in order to attach some nonholonomic physical mean-
ing to the proposed pure mathematical integrals H1, . . . , HN and the corresponding equa-
tions of motion, see [15, 18, 21].

Remark 12 Similar to (4.16) the definitions (5.11) and (5.12) determine the canonical point
transformation between cartesian coordinates γ̂ and γ

γ̂j =

√
g(γ)

(
η − (γ, γ) aj

)
γj , j = 1, . . . , N + 1,

which allows us to determine the ”nonholonomic” momenta pγj
in terms of canonical momenta

p̂γj
with brackets {γ̂i, p̂γj

} = δij and to get a ”nonholonomic” Poisson bracket in RN , similar
to the bracket {., .}3 (3.4).

Remark 13 Instead of (5.11) we can start with any other coordinate system and the corre-
sponding separated equations on the Riemannian spaces of constant curvature [3]. For instance,
we can take elliptic coordinates

e(λ) = 1 +

N∑

k=1

γ2
k

λ− ek
=

∏N
j=1(λ− qj)

∏N
i=1(λ− ei)

. (5.13)
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or parabolic coordinates

e(λ) = λ− 2γN −
N−1∑

k=1

γ2
k

λ− ek
=

∏N
j=1(λ − qj)

∏N−1
i=1 (λ− ei)

(5.14)

in N -dimensional Euclidean space.

So, there are not mathematical problems in the construction of such ”nonholonomic” dy-
namical systems associated with any orthogonal coordinate system and their potential gener-
alizations. The main problem is the introduction of a suitable time variable.

6 Generalizations of the nonholonomic Chaplygin system

at (γ,M) 6= 0.

In the previous section we consider various deformations of our dynamical systems at (γ,M) = 0
using the variables of separation. We proceed by discussing some possible deformations of the
Chaplygin ball in generic case.

Let us consider the deformation of the equations (2.1)

Ṁ = M × ω + γ × b , γ̇ = γ × ω , (6.1)

where ω = A1,3M and vector b is an arbitrary function on x = γ,M .
It is clear that the functions H1,2 (2.2) remain the integrals of equations (6.1). It allows

us to look for two additional integrals H3 and H4 in the involution with respect to the same
Poisson brackets {., .}1,3

{H3, H4}3 = 0 .

For the first Poisson bracket all integrable deformations are well known [2, 6, 30]. At η → ∞ we
have A3 → A1 (2.7), and the corresponding equations of motion (6.1) coincide to each other.
It means that we can try to get nonholonomic counterparts of the Lagrange and Kowalevski
tops, or of the Kirchhoff, Clebsh and Steklov-Lyapunov systems.

Remark 14 If the Hamilton function reads as

2H = H4 = (M,ω) + 2V (γ) , ω = A1,3M,

then in holonomic case at k = 1 equations (6.1) are identified with the Euler-Poisson equations
[2, 6]

Ṁ = M × ∂H

∂M
+ γ × ∂H

∂γ
, γ̇ = γ × ∂H

∂M
, H =

1

2
H4, (6.2)

whereas in nonholonomic case at k = 3 first equation has to be replaced to

Ṁ = M × ∂H

∂M
+ γ × ∂V

∂γ
, (6.3)

according to the procedure of elimination of the undetermined Lagrange multipliers [7, 10].

Remark 15 There are other interesting deformations of equations of motion, which require a
changing these Poisson brackets, see [7, 29].

6.1 Linear integrals of motion.

Let us briefly consider the Lagrange top [2, 6, 30] and its nonholonomic twin [9, 19].
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Proposition 12 If ω = A1,3M ,

a1 = a2, and b = (0, 0, b3) ,

then the integrals of the equations (6.2)-(6.3)

H3 = (M,M) + 2a−1
1 (b, γ) and H4 = (M,ω) + 2(b, γ), (6.4)

are in the involution with respect to the Poisson brackets {., .}1 and {., .}3, respectively.

In holonomic case the linear in momenta integral

K = (b,M) = M3, {Hm,K }1 = 0,

can be obtained from the quadratic integrals (6.4) in a standard way

√
H4 − a1H3 =

√
a3 − a1M3 =

√
a3 − a1K. (6.5)

In nonholonomic case the linear integral looks like

K =
√
g(γ)

(
M3 +

a1x3(γ,M)

η − a1(γ, γ)

)
, {Hm,K }3 = 0 . (6.6)

It can be represented via quadratic integrals (6.4) and the Casimir functions according to the
relation

H4 − a1H3 + (a1 − a3)
(
η − a1(γ, γ)

)
K2 − a21

η − a1(γ, γ)
(γ,M)2 = 0 .

In both cases the equations of motion (6.1) are equivalent to the Lax equation

dL

dt
= [L,Ω+ λB], L = M+

Γ

λ
, λ ∈ R .

It is obvious, that the Lax matrix L satisfies the linear r-matrix brackets (3.11) with the same
r-matrices (3.12) and (3.13).

In holonomic case by ω = A1M we have b× (M − ω) = 0 at a1 = a2 = 1 and b1 = b2 = 0.
It allows us to get another well-known Lax representation for the Lagrange top [2, 30]:

dL

dt
= [L,Ω+ λB], L = λB+M+

Γ

λ
. (6.7)

In nonholonomic case b× (M − ω) 6= 0 and we have no such Lax matrix at all. Of course, it is
a superficial argument because the main point is that the nonholonomic system is related with
the genus three algebraic curve instead of the elliptic curve for the Lagrange top.

Namely, using the Euler angles and their conjugated momenta, for the Lagrange top we
can easily prove that the pair of canonical variables

u = γ3 = cos(θ), pu =
γ2M1 − γ1M2

γ2
1 + γ2

2

= − pθ
sin(θ)

, {u, pu}1 = 1,

lies on the elliptic curve defined by equation

a1p
2
u +

2ub+ β − a3 α
2

u2 − 1
+

a1(αu + ℓ)2

(u2 − 1)2
= 0 ,

where we fix the values of the integrals of motion

H1 = (γ, γ) = 1, H2 = (γ,M) = ℓ, K = α, H4 = β . (6.8)

For the nonholonomic system canonical variables

u = u, p̂u =
pu√
g
, {u, p̂u}3 = 1,
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satisfy to the following separated equation

a1p̂
2
u +

2ub+ β − a3ρα
2

u2 − 1
g +

a1η (αu+ ̺ ℓ)2(
η + a1(u2 − 1)

)
(u2 − 1)2

= 0 . (6.9)

Here we fix the values of the integrals of motion as in (6.8) and

g =
1

η − a1 + (a1 − a3)u2
, ρ =

(η − a1)
2

η + a1(u2 − 1)
, ̺ = −η + a1(u

2 − 1)

η − a1

√
g .

If ℓ = (γ,M) = 0, one gets the elliptic curve, but in generic case rewriting the equation (6.9)
in polynomial form we obtain the algebraic curve of genus three.

Only at (γ,M) = 0 we can get the solutions in the terms of elliptic functions and, therefore,
only in this particular case we can try to reconstruct the Lax matrix associated with the elliptic
curve.

Remark 16 Three different bi-Hamiltonian structures for the Lagrange top have been ob-
tained in [37]. These structures are related with different variables of separation and, therefore,
different quadratures. If we get similar dynamical Poisson bivectors for its nonholonomic coun-
terpart, one gets various quadratures, which could be associated with the distinct Lax matrices
and underlying r-matrix algebras.

6.2 Second order integrals of motion

For the Kirchhoff problem, the integrable cases by Kirchhoff, Clebsch, and Steklov-Lyapunov
are known. In this section we begin with the Clebsch case

Proposition 13 If ω = A1,3M then the integrals of the equations (6.2)-(6.3)

H3 = (M,M)− (Aγ, γ) and H4 = (M,ω) + (A∨γ, γ) (6.10)

are in the involution with respect to the Poisson brackets {., .}1 and {., .}3, respectively.

In holonomic case we have the well-studied Clebsch problem. In nonholonomic case this defor-
mation of the Chaplygin system has been proposed by Kozlov [24].

There are some different Lax matrices for the Clebsch model [6, 30]. For example,

L = λA1 +M+
γ × γ

λ
.

We can not directly generalize this matrix to the nonholonomic case, because Ȧ3 6= 0 (2.8) in
contrast with Ȧ1 = 0 above. We suppose that the nonholonomic Kozlov system is related with
the algebraic curve of higher genus and, therefore, the corresponding Lax matrices will be more
complicated deformations of the known Lax matrices for the Clebsch problem.

At (γ,M) = 0 the Clebsch system becomes the so-called Neumann system on the sphere,
which is separable in the elliptic coordinates u, v (4.9) [6]. Its nonholonomic counterpart is the
separable system in Chaplygin coordinates u, v (4.10) [16] and, therefore, we can get 2× 2 Lax
matrices L (λ) (5.1) for this nonholonomic system as well.

Remark 17 The Clebsch case is equivalent to the Brun case of integrability in the Euler-
Poisson equations [6] and, moreover, it is trajectory isomorphic to the Kowalevski gyrostat [22].
We can hope to get a nonholonomic analog of the Kowalevski top by using similar isomorphism.

Now let us consider the integrable Steklov-Lyapunov case in the Kirchhoff equation and
the corresponding integrals of motion

H3 = (M,M)− 2(M,Aγ) + (γ,C2γ) ,

H4 = (M,ω) + 2(M,A∨γ) + (Aγ,C2γ) ,
(6.11)
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where C = diag(a2 − a3, a3 − a1, a1 − a2). These integrals are in the involution with respect to
the first bracket {H3, H4}1 = 0.

If we replace ω = A1M on ω = A3M in H4 then {H3, H4}3 = 0 only if two parameters
ai coincide with each other. So, for the nonholonomic bracket {., .}3 we have to propose some
more complicated deformations of the integrals (6.11).

Remark 18 It is known that the Steklov-Lyapunov system is equivalent to the integrable
system on the sphere with forth order potential (5.5) [35]. We suppose that a similar trans-
formation of the system (5.6) separable in nonholonomic elliptic coordinates allows us to get a
nonholonomic counterpart of the Steklov-Lyapunov system.

7 Conclusion

We consider two very similar dynamical systems, which evolve on coadjoint orbits of Lie algebra
e(3) and their non-trivial symplectic deformations.

Close ties between the integrable Euler top and the nonholonomic Chaplygin ball allow
us to get Lax matrices, r-matrices and bi-hamiltonian structure for this nonholonomic system.
Moreover, in framework of the Jacobi method of separation of variables we describe a huge
family of separable potentials, which can be added to nonholonomic Hamiltonian and briefly
discuss how to get the N -dimensional nonholonomic systems on the Riemannian spaces of
constant curvature.

In [10] Chaplygin transforms the generic case of the rolling ball to the particular case of
horizontal angular momentum (γ,M) = 0. It allows us to solve the equations of motion using
the same variables of separation u, v (4.10), which will be the non-canonical variables with
respect to initial Poisson bracket {., .}3 (3.4) after this map. We will discuss this Chaplygin
map in framework of the Poisson geometry in separate publication, as well as the corresponding
2× 2 Lax matrices and the underlying r-matrix algebra.

We would like to thank Yu.N. Fedorov, I.S. Mamaev and A.A. Kilin for helpful discussions
and A.V. Borisov for gentle introduction to the nonholonomic theory.
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