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Collapse and stable self-trapping for Bose-Einstein condensates with 1/rb type
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We consider dynamics of Bose-Einstein condensates with long-range attractive interaction propor-
tional to 1/rb and arbitrary angular dependence. It is shown exactly that collapse of Bose-Einstein
condensate without contact interactions is possible only for b ≥ 2. Case b = 2 is critical and re-
quires number of particles to exceed critical value to allow collapse. Critical collapse in that case is
strong one trapping into collapsing region a finite number of particles. Case b > 2 is supercritical
with expected weak collapse which traps rapidly decreasing number of particles during approach to
collapse. For b < 2 singularity at r = 0 is not strong enough to allow collapse but attractive 1/rb

interaction admits stable self-trapping even in absence of external trapping potential.

PACS numbers: 03.75.Kk, 03.75.Lm

The dynamics of Bose-Einstein condensate (BEC) with
short-range s-wave interaction have been the subject of
extensive research in recent years [1, 2]. Condensates
with a positive scattering length have a repulsive (defo-
cusing) nonlinearity which stabilizes the condensate with
the help of external trap. Condensates with a negative
scattering length have an attractive (focusing) nonlin-
earity which formally admits solitons. However, with-
out trap these solitons are unstable and their pertur-
bation leads either to collapse of condensate or conden-
sate expansion. External trap prevents expansion of con-
densate and makes solitons metastable for a sufficiently
small number of atoms. Otherwise, for larger number
of atoms, the focusing nonlinearity results in collapse of
solitons. The effect of a long-range dipolar interaction
on BEC was first studied theoretically [3–7] and more
recently observed experimentally [8–10] (see also [11, 12]
for review). In particular, collapse of BEC with dominant
dipole-dipole forces predicted based on approximate vari-
ational estimate [5] and obtained based on exact analysis
[6] was recently observed in experiment [13].
Here we look for possibility of collapse of BEC due to

long-range attraction vs. formation of stable self-trapped
condensate for a general type of long-range interaction

V (r) =
f(n)

rb
, b > 0, n ≡

r

r
, r ≡ |r|, (1)

where f(n) is an arbitrary bounded function |f(n)| <∞
and r = (x1, x2, x3). We do not require f(n) to be sign-
definite. By attractive interaction we mean that f(n)
is negative at least for some nonzero range of angles so
that one can choose a wave function to provide negative
contribution to energy functional.
Possible experimental realization of (1) are numerous.

E.g., recent experimental advances allow to study inter-
action of ultracold Rydberg atoms with principle quan-
tum number about 100 (see e.g. [14, 15]). These interac-
tions between atoms in highly excited Rydberg levels are
long-range and dominated by dipole-dipole-type forces.

Strength of interaction between Rb atoms is about 1012

times stronger (at typical distance ∼ 10µm) than inter-
action between Rb atoms in ground state (see e.g. [15]
for review). Strength and angular dependence of inter-
action between Rydberg atoms can be tuned in a wide
range [15, 16]. E.g., spatial dependence for Rb with
principle quantum number about 100 can be ∝ 1/r3 for
r <∼ 9.5µm and ∝ 1/r6 (van der Waals character) for
r >∼ 9.5µm [15]. Short-range s-wave scattering interac-
tion is limited to much smaller distance ∼ few nm so that
the range of dominance of long-range interaction poten-
tial is quite high. Another possible form of long-range
attractive interaction is gravity-like 1/r potential which
is proposed to be realized in a system of atoms with laser
induced dipoles such that an arrangement of several laser
fields causes cancelation of anisotropic terms [17]. Terms
∝ 1/r2 are also possible [17].

The mean field BEC dynamics is governed by a nonlo-
cal Gross-Pitaevskii equation (NGPE)

ih̄
∂Ψ(r)

∂t
=

[

−
h̄2

2m
∇2 +

1

2
mω2

0(x
2
1 + x22 + γ2x23)

+g|Ψ(r)|2 +

∫

d3r′ V (r− r
′)|Ψ(r′)|2

]

Ψ(r),(2)

where Ψ is the condensate wave function, the contact
interaction is ∝ g = 4πh̄2a/m, a is the s−wave scattering
length, m is the atomic mass, ω0 is the external trap
frequency in the x1−x2 plane, γ is the anisotropy factor
of the trap, and the wavefunction is normalized to the
number of atoms,

∫

d3r |Ψ|2 = N . Contact interaction
term can be also included into potential V (r) as g

2δ(r)
but we have not done that because we focus here on effect
of long-rage potential (1). If V (r) ≡ 0 then a standard
Gross-Pitaevski equation (GPE) [1] is recovered.

NGPE (2) can be written through variation ih̄∂Ψ
∂t =

δE
δΨ∗

of the energy functional

E = EK + EP + ENL + ER, (3)
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which is an integral of motion: dE
d t = 0, and

EK =

∫

h̄2

2m
|∇Ψ|2d3r, ENL =

g

2

∫

|Ψ|4d3r,

EP =

∫

1

2
mω2

0(x
2
1 + x22 + γ2x23)|Ψ|2d3r,

ER =
1

2

∫

|Ψ(r)|2V (r− r
′)|Ψ(r′)|2d3rd3r′.

(4)

Consider time evolution of the mean square radius of
the wave function, 〈r2〉 ≡

∫

r2|Ψ|2d3r/N. Using (2), in-
tegrating by parts, and taking into account vanishing
boundary conditions at infinity one obtains

∂t〈r
2〉 =

h̄

2mN

∫

2ixj(Ψ∂xjΨ
∗ −Ψ∗∂xjΨ)d3r, (5)

where ∂t ≡ ∂
∂t , ∂xj ≡ ∂

∂xj
and repeated index j means

summation over all space coordinates, j = 1, . . . , 3. After
a second differentiation over t, one gets [6]

∂2t 〈r
2〉 =

1

2mN

[

8EK − 8EP + 12ENL

−2

∫

|Ψ(r|2|Ψ(r′|2(xj∂xj + x′j∂x′

j
)V (r− r

′)d3r
]

, (6)

which is called by a virial theorem [6] similar to GPE
[18–23].
It follows from (1) that (xj∂xj + x′j∂x′

j
)V (r − r

′) =

−bV (r− r
′) and using (3) we rewrite (6) as follows

∂2t 〈r
2〉 =

1

2mN

[

4bE + (8− 4b)EK − (4 + 2b)mω2
0N〈r2〉

−(4 + 2b)mω2
0N(γ2 − 1)〈x23〉+ (12− 4b)ENL

]

.(7)

Here both the local nonlinear term ENL and the nonlocal
nonlinear term ER are included into the energyE. Catas-
trophic collapse of BEC in terms of NGPE means a singu-
larity formation, max |Ψ| → ∞, in a finite time. Because
of conservation ofN , the typical size of atomic cloud near
singularity must vanish. The virial theorem (7) describes
collapse when the positive-definite quantity 〈r2〉 becomes
negative in finite time implying max |Ψ| → ∞ before 〈r2〉
turns negative. The kinetic energy EK diverges at col-
lapse time which follows from divergence of the potential
energy for max |Ψ| → ∞ together with conservation of
the energy functional E. Another way to see divergence

of EK is from uncertainty relation EK ≥ h̄2

2m (9/4)N/〈r2〉
(see [6, 20]) for 〈r2〉 → 0. Generally 〈r2〉 may not vanish
at collapse (e.g. if there are nonzero values of |Ψ| away
from collapse center) but EK diverges at collapse time for
sure because of max |Ψ| → ∞. We use below divergence
of EK as necessary and sufficient condition of collapse
formation while vanishing of 〈r2〉 is only sufficient condi-
tion for collapse.
NGPE is not applicable near singularity and another

physical mechanisms are important such as inelastic two-

and three-body collisions which can cause a loss of atoms
from the condensate [1]. In addition, multipole expansion
used for derivation of the dipole-dipole-type potential is
not applicable on a very short distances (few a few Bohr
radii). However, as explained above, NGPE with po-
tential (1) is a good approximation for a wide range of
typical interatomic distances.
Consider case 2 ≤ b ≤ 3. Then one immediately ob-

tains from equation (7) that ∂2t 〈r
2〉 ≤ 6E

mN . Integrat-
ing that differential inequality over time we get that
〈r2〉 ≤ 3E

mN t
2 + ∂t〈r

2〉|t=0t + 〈r2〉|t=0. If E < 0 we con-
clude that 〈r2〉 → 0 for large enough t which provides a
sufficient criterion of collapse of BEC. Condition E < 0
is sufficient but not necessary for collapse. Using gener-
alized uncertainty relations between EK , N, 〈r

2〉, ∂t〈r
2〉

[6, 20] one can obtain much stricter condition of collapse
which is outside the scope of this Letter.
Below we assume g = 0. Choosing e.g. initial condi-

tion as ψ|t=0 = N1/2

π3/4r
3/2
0

e−r2/(2r2
0
) gives E = − 3h̄2

4m
N
r2
0

+

π−1/224−bfN2r−b
0 Γ(3/2 − b/2) for ω0 = 0 and f(n) =

Const ≡ f. If the constant r0 is small and b > 2 or if
N > 3h̄2/(16mf) and b = 2 then E < 0. It means that
for 2 ≤ b ≤ 3 long-distance potential alone is enough
to achieve catastrophic collapse of BEC. Another par-
ticular example was considered in Ref. [6] for the case
of dipole-dipole interaction potential with all dipoles ori-
ented in one fixed direction. Note also that b = 3 is a
border between short-range potentials (for b > 3) and
long-range potentials (for b ≤ 3) in 3D (one needs con-
vergence of

∫

r<rc
V (r)d3r to have short-range potential,

where rc is a cutoff at small distances). Case b = 3 also
requires that integral of V (r) over angles to be zero to
ensure convergence of (1) at small r (as is the case [6] for
dipole-dipole interactions with fixed direction) otherwise
we would have to introduce cutoff at small distances and
potential would loose general form (1).
Case b > 3 generally requires introduction of cutoff

at small scales. Because
∫

r<rc
V (r)d3r is finite in that

case we generally have situation very similar to standard
δ-correlated potential [1].
Now we prove that for b < 2 collapse is impossible

for g = 0 because singularity of (1) is not strong enough.

We use the inequality
∫ |Ψ(r)|2

|r−r
′|2 d

3
r ≤ 4

∫

|∇Ψ(r)|2d3r [24],

which holds for any r
′. Using now Hölder’s inequality we

generalize that inequality (assuming b < 2) as follows
∫

|Ψ(r)|2

|r− r
′|b
d3r =

∫

|Ψ(r)|2−b |Ψ(r)|b

|r− r
′|b
d3r

≤

[
∫

(

|Ψ(r)|2−b
)

1

1−b/2 d3r

]1− b
2

×

[

∫
(

|Ψ(r)|b

|r− r
′|b

)

2

b

]

b
2

d3r ≤ 2bN1− b
2

(

2m

h̄2
EK

)
b
2

.

(8)

Using now boundness of f : f(n) ≤ fm ≡ max
n

|f(n)| in
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FIG. 1: Schematic of the function P (EK) defined in (10)
(solid curve). Equation P (EK) = E (E corresponds to dashed
line) has either one of two roots for EK > 0 depending on sign

of E. E
(1)
K

is the largest root.

(1) and inequality (8) we obtain a bound for ER in (4)

ER ≥ −fm 2b−1N2− b
2

(

2m

h̄2
EK

)
b
2

, (9)

which gives a respective bound of E in (4) (recall that
we assume g = 0):

E ≥ EK − fm 2b−1N2− b
2

(

2m

h̄2
EK

)
b
2

≡ P (EK). (10)

A function P (EK) in (10) has a minimum for EK ≡

E
(0)
K = 2−2[fm b]2/(2−b)N

4−b
2−b (2m/h̄2)b/(2−b) resulting in

a lower bound

E ≥ −
2− b

b
2−2[fm b]

2

2−bN
4−b
2−b

(

2m

h̄2

)
b

2−b

. (11)

Boundness of the energy functional E from below en-
sures that collapse is impossible for b < 2. To prove
that we show that EK is bounded while collapse requires
EK → ∞. We choose any value of E which satisfy (11).
Fig. 1 shows schematically the function P (EK) from

(10). Inequality (10) requires that EK ≤ E
(1)
K (E), where

E
(1)
K (E) is the largest root or equation P (EK) = E. It

proves that EK is bounded for fixed N which completes
the proof of absence of collapse for b < 2. Particular
version of that result for b = 1 and f(n) = const was
first obtained in Ref. [25]. Nonexistence of collapse for
nonsingular potential V (r) was shown previously based
on approximate analysis in Ref. [26]. Proof of nonex-
istence of collapse for particular example of nonsingular
potentials with positive-definite bounded Fourier trans-
form was given in Ref. [27]. These results can be easily
generalized for any bounded potential similar to above
analysis. Thus collapse can occur for singular potential
only and singularity should be strong enough, i.e. b ≥ 2.
We now look for soliton solution of NGPE (2) as

Ψ(r, t) = A(r)e−iµt/h̄, where µ is the chemical poten-
tial. In that case NGPE (2) reduces to time-independent

equation

[

−µ−
h̄2

2m
∇2 +

1

2
mω2

0(x
2
1 + x22 + γ2x23)

+

∫

d3r′ V (r− r
′)A(r′)2

]

A(r) = 0, (12)

where we again assume g = 0 although generalization
to g 6= 0 case is straightforward. Equation (12) is the
stationary point of the energy functional E for a fixed
number of particles: δ(E − µN) = 0. Multiplying equa-
tion (12) by A and xj∂xjA and integrating by parts one
obtains using (1) and (3) that

EK,s = −µNs
b

4− b
+ EP,s, ER,s = µNs

2

4− b
,

Es = −µNs
b− 2

4− b
+ 2EP,s,

(13)

where subscript ”s” means values of all integrals on soli-
ton solution. Especially simple and interesting is the case
of self-trapping (ω0 = 0) when condensate is in steady
state without any external trap. All integrals in that
case depend on number of particles Ns only.
Assume radial symmetry f(n) = Const < 0 in

(1). Ground state soliton is determined from condi-
tion that A(r) never crosses zero [28, 29]. To prove
ground soliton stability we show that it realizes a min-
imum of the Hamiltonian for a fixed Ns. One can
make inequality (8) sharper by minimizing a functional

F(Ψ) ≡ N1− b
2

(

2m
h̄2 EK

)
b
2 /

∫ |Ψ(r)|2

|r−r
′|b
d3r. That minimum

is achieved at one of stationary points δF
δΨ∗

= 0 and af-
ter simple rescaling one can see that these points cor-
responds to soliton solutions of the time-independent
NGPE (12). Among these stationary points the mini-
mum is achieved at ground state soliton Ψs,ground. It
gives a bound F(Ψ) ≥ minF(Ψ) = F(Ψs,ground) which
is sharper than the inequality (8). Most important is
that following analysis similar to equations (9)-(11) we
obtain that for any Ψ

E ≥ minE = Es,ground, (14)

i.e. the ground state soliton solution attains the mini-
mum of E for fixed N . It proves exactly the stability
of soliton for f(n) = Const. Similar ideas were used in
a nonlinear Schrödinger equation [28, 29]. Ground state
soliton was also found numerically for b = 1 [30].
For more general f(n) 6= Const minimum of E is still

negative if f(n) is negative for a nonzero range of values
of n. So in that case we expect that ground state soliton
solution attains that minimum and, respectively is stable.
If f(n) > 0 for any n then minE = 0. It corresponds to
unbounded spatial spreading of NGPE solution for any
initial conditions. Self-trapping is impossible in that case
and solitons are possible for ω0 6= 0 only.
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FIG. 2: Schematic of E(a) from (15) for b > 2, b = 2 and
b < 2 (see text for details).

Case b = 2 is on the boundary between bounded and
unbounded energy functional as can be seen from in-
equalities (10) and (14). If N > Ns,ground then E is
unbounded. If N < Ns,ground then E ≥ Es,ground = 0 as
follows from (13) for b = 2. Thus Ns,ground is the critical
number of particles for collapse. That critical number is
similar to collapse of GPE in dimension 2 (2D) (as well
as similar to critical power in nonlinear optics) [18]. It
is important to distinguish that critical number from the
critical number of particles of 3D GPE with ω0 6= 0 [1, 2].
To qualitatively distinguish different regimes of col-

lapse and solitons one can consider, in addition to the
exact analysis above, a scaling transformations [31] which
conserves the number of particles Ψ(r) → a−3/2Ψ(r/a).
Under this transformation the energy functional E (for
ω0 = 0) depends on the parameter a as follows

E(a) = a−2EK + a−bER. (15)

The virial theorem (7) and the relations (13), (15) have
striking similarities with GPE if we replace b by the spa-
tial dimension D in GPE. That analogy suggests to refer
the case b = 2 as the critical NGPE and b > 2 as the
supercritical NGPE. Fig. 2 shows typical dependence of
(15) on a for b > 2, b = 2 and b < 2 assuming ER < 0.
For b > 2 there is a maximum of E (curve 1 in Fig. 2)
corresponding to unstable soliton. Solution of NGPE ei-
ther collapse or expand. For b = 2 there is no extremum
and collapse is impossible for N < Ns,ground (curve 2 in
Fig. 2) while condensate can collapse for N > Ns,ground

(curve 3 in Fig. 2). Ground state soliton corresponds to
N = Ns,ground and E = 0 locating exactly at the bound-
ary between collapsing and noncollapsing regimes. For
b < 2 there is a minimum which corresponds to stable
ground state soliton (curve 4 in Fig. 2).
Solutions of both GPE and NGPE with ω0 = 0 near

collapse typically consist of background of nearly lin-
ear waves and a central collapsing self-similar nonlinear
core. The scaling (15) describes the dynamics of the
core with time-dependent a such that a → 0 near col-
lapse. Waves have negligible potential energy but carry

a positive kinetic energy Ewaves ≃ EK,waves. The to-
tal energy E = Ecollapse + Ewaves is constant, where
Ecollapse is the core energy. It follows from (15) that
for b = 2 one can simultaneously allow conservation of
N and Ecollapse so that negligible number of waves are
emitted from the core. This scenario is called a strong
collapse. If b > 2 then the term ∝ a−b in (15) dominates
with Ecollapse → −∞ as a → 0. Then the only way to
ensure conservation of E is to assume strong emission of
linear waves. Near collapse time only vanishing number
of particles remains in a core (of course all that is true
until NGPE losses its applicability) which is called weak
collapse [31]. Strong collapse was shown to be unstable
for supercritical GPE [31]. It suggests that collapse for
b > 2 is of weak type.
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[4] K. Góral et al., Phys. Rev. A 61, 051601(R) (2000).
[5] L. Santos et al., Phys. Rev. Lett. 85, 1791 (2000).
[6] P. M. Lushnikov, Phys. Rev. A 66, 051601(R) (2002).
[7] J. Cuevas et al., Phys. Rev. A 79, 053608 (2009).
[8] A. Griesmaier et al., Phys. Rev. Lett. 94, 160401 (2005).
[9] T. Lahaye et al., Nature 448, 672 (2007).

[10] T. Koch et al., Nature Physics 4, 218 (2008).
[11] M. Baranov, Phys. Rep. 464, 71 (2008).
[12] T. Lahaye et al., Rep. Progr. Phys. 72, 126401 (2009).
[13] T. Lahaye et al., Phys. Rev. Lett. 101, 080401 (2008).
[14] W. R. Anderson et al., Phys. Rev. Lett. 80, 249 (1998);

I. Mourachko et al., Phys. Rev. Lett. 80, 253 (1998);
R. Heidemann et al., Phys. Rev. Lett. 100, 033601
(2008); E. Urban et al., Nature Phys. 5, 110 (2009).

[15] M. Saffman et al., arXiv.org:0909.4777 (2009).
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