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The supersymmetric analog of the reciprocal transformation is introduced. This is

used to establish a transformation between one of the supersymmetric Harry Dym

equations and supersymmetric modified Korteweg-de Vries equation. A supersym-

metric generalization of the Kawamoto equation is constructed and associated to the

supersymmetric Sawada-Kotera equation.
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I. INTRODUCTION

The Miura transformation linking the Korteweg-de Vries (KdV) and the Modified KdV

(MKdV) equations played a key role in the development of the Inverse Scattering Method

as a technique to solve integrable nonlinear partial differential equations. On the other

side, the gauge type of transformations among the associated linear problems may be used

to generate transformations between the corresponding nonlinear problems. Typically the

gauge transformations of the scattering operator may either change the explicit form of

the linear problem - corresponding to different nonlinear equations - or they will keep the

linear problem invariant. The first case encodes the Miura transformation while the latter

case represents auto - Bäcklund transformation. Moreover the reciprocal transformation, in

conjunction with the gauge transformation also plays a key role in links between different

scattering problems. It was demonstrated in23 that AKNS and WKI scattering schemes

are linked, when the transformations of the independent variables are taken into account.

Furthermore in the context of soliton theory, the Harry Dym (HD) hierarchy312, known to

be invariant under a reciprocal transformation, is also connected with the KdV hierarchy.

The Camassa-Holm equation is connected via the reciprocal link with the first negative

flow of the KdV hierarchy10, while the Sawada-Kotera (SK) and Kaup-Kupershmidt (KK)

equations are linked by reciprocal transformation with the Kawamoto equation13.

The aim of the present paper is to describe how we should modify the scenario of the

reciprocal transformation to the supersymmetric equations. We consider in details the trans-

formations among the supersymmetrci HD, MKdV, Kawamoto and SK equations.

Our approach is motivated by recent interest to the supersymmetric nonlinear partial

differential equations. These equations have long history and appeared almost in parallel to

the usage of the supersymmetry in the quantum field theory. The first results, concerned

the construction of classical field theories with fermionic and bosonic fields depending on

time and one space variable, can be found in4,7,11,14,15,18. In many cases, the addition of

fermion fields does not guarantee that the final theory becomes supersymmetric invariant.

Therefore this method was named as the fermionic extension in order to distinguish it from

the fully supersymmetric method which was developed later5,16,17,19,21.

There are many recipes how classical models could be embedded in fully supersymmetric

superspace. The main idea is simple: in order to get such generalization we should construct
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the supermultiplet which contains the classical functions. It means that we have to add to a

system of k bosonic equations kN fermions and k(N−1) bosons (k = 1, 2, ..., N = 1, 2, ...) in

such a way that they create superfields. Now working with this supermultiplet we can step by

step apply integrable Hamiltonians methods to our considerations depending what we would

like to construct. In that way the basic solitonic equations have been supersymmetrized as

for example the KdV equation, Boussinesq equation, Two-Boson equation, HD equation and

recently the SK equation. All these supersymmetric equations are integrable in the sense

that they possess the recursion operator or the bi-Hamiltonian structure and consequently

they have infinite number of conserved densities. Interestingly not all solitonic equations

have been successfully embedded into the superspace, as for example we do not know up to

now the supersymmetric version of the Kaup-Kupershmidt (KK) equation.

Due to the large number of the supersymmetric equations it is reasonable to find the

reciprocal link between these supersymmetric equations. Our paper concerns to this prob-

lem and is divided into five sections. In the first section we recapitulate basic notations

and ideas used in the classical reciprocal link between the HD equation and the MKdV

equation. The second section, after introducing the supersymmetric notation, deals with

the supersymmetric generalization of the reciprocal link for the supersymmetric HD and

MKdV equations. The third section introduces the supersymmetric Kawamoto equation, its

Lax representation and construction of the supersymmetric reciprocal link to the recently

discovered the SUSY SK equation. The last section contains concluding remarks.

II. REVIEW ON THE CLASSICAL CASE

The integrability of the Harry Dym equation

ut = −u3u3x (1)

follows from its nonstandard Lax representation

[

∂

∂t
+B,L

]

= 0 , (2)

where

L = u2∂2
x , B = 4(L2/3)≥2 = 4u3∂3

x + 6u2ux∂
2
x .
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To associate the HD equation (1) to the MKdV equation, we recall the Liouville trans-

formation. Namely,
∂

∂x
= u−1 ∂

∂y
, (3)

then the Lax operator L is transformed to

L̂ = ∂2
y + v∂y ,

where v is given by the Cole-Hopf transformation

v = −
∂

∂y
log u . (4)

It is straightforward to check that the Lax equation
[

∂

∂τ
+ B̂, L̂

]

= 0 (5)

implies the MKdV equation

vτ = −v3y +
3

2
v2vy , (6)

where

B̂ = 4(L3/2)≥1 = 4∂3
y + 6v∂2

y +

(

3vy +
3

2
v2
)

∂y .

Now, the relation between ∂t and ∂τ is inferred from formulas (2) and (5), which is given

by

∂

∂t
=

∂

∂τ
+ B̂ |v=−uy/u −B |∂x=u−1∂y

=
∂

∂τ
+

(

u−1u2y −
3

2
u−2u2

y

)

∂

∂y

=
∂

∂τ
+

(

uu2x −
1

2
u2
x

)

∂

∂y
.

Thus, we recover the reciprocal link between the HD equation (1) and the MKdV equation

(6), i.e.

∂

∂x
= u−1 ∂

∂y
,

∂

∂t
=

(

uu2x −
1

2
u2
x

)

∂

∂y
+

∂

∂τ
,

and the relation between two fields (4). The explicit transformations for the independent

variables are given by

y =

∫ x

u−1
dx , τ = t .
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With respect to the new independent variables (y, τ), the equation for u is

∂

∂τ
u = −

∂

∂y

(

u2y −
3

2

u2
y

u

)

. (7)

Introduce a potential u = wy, we have the Schwarzian KdV equation

wτ = −

(

w3y −
3

2

w2
2y

w2
y

)

≡ −{w, y} , (8)

where {w, y} denotes the Schwarzian derivative of w with respect to y.

To obtain the MKdV equation (6) from the Schwarzian KdV equation (8), one only has

to make the Cole-Hopf transformation

v = −
∂

∂y
logwy .

We remark that above construction of the reciprocal transformation heavily relies on

the Lax representation. An alternative is based on the conservation laws. Indeed, the HD

equation (1) can be reformulated as follows

∂

∂t
(u−1) =

∂

∂x

(

uu2x −
1

2
u2
x

)

.

Thus, it is natural to introduce13

dy = u−1
dx+

(

uu2x −
1

2
u2
x

)

dt, dτ = dt

which is nothing but the reciprocal transformation discussed. The advantage of this latter

approach is that everything follows from the equation only.

III. SUSY RECIPROCAL TRANSFORMATION: SUSY HARRY DYM

CASE

In this section, taking one of the supersymmetric HD equations proposed in2 as an ex-

ample, we exhibit the reciprocal link between the supersymmetric HD equation and the

supersymmetric MKdV equation.

The supersymmetric HD equation we will consider takes the form2

Wt =
1

16

[

8D5((DW )−1/2)− 3D(WxxWx(DW )−5/2)

+
3

4
(DWx)

2Wx(DW )−7/2 −
3

4
D−1

(

(DWx)
3(DW )−7/2

)

]

.
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where W = W (x, θ, t) is a fermionic super field and D = ∂θ + θ∂x is the super derivative.

By means of

U = (DW )−1/2 ,

this equation can be conveniently written as

Ut =
1

4
U3xU

3 −
3

8
(DU2x)(DU)U2 , (9)

which admits the Lax representation

[

∂

∂t
− (L

3/2
h )≥3, Lh

]

= 0 , (10)

where the Lax operator is given by

Lh = UDU∂xD .

A. The super analogy of Liouville transformation

Our aim now is to convert the Lax opertaor Lh of the SUSY HD equation into that of

the SUSY MKdV equation. To this end, we propose the following super analogy of Liouville

transformation

D = U−1/2
D , (11)

where D denotes the transformed superderivative given by

D = ∂̺ + ̺∂y .

Through the transformation (11), we obtain

Lm = ∂2
y + (DΨ)∂y +

(

1

2
Ψx +

1

4
Ψ(DΨ)

)

D ,

where Ψ is a fermionic super field related with U by the super Cole-Hopf transformation

Ψ = −D logU . (12)

We claim that the operator Lm is the Lax operator of the supersymmetric MKdV equa-

tion. In fact, an easy calculation shows that the Lax equation

[

∂

∂τ
− (L3/2

m )≥1, Lm

]

= 0 (13)
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implies the SUSY MKdV equation

Ψτ =
1

4
Ψ3y −

3

16
Ψy(DΨ)2 −

3

16
Ψ(DΨy)(DΨ) . (14)

The transformation between ∂t and ∂τ is found by

∂

∂t
=

∂

∂τ
− (L3/2

m )≥1 |Ψ=−(DU)/U +(L
3/2
h )≥3 |D=U−1/2D

=
∂

∂τ
+

1

8

(

−2
U2y

U
+ 3

U2
y

U2
+

(DUy)(DU)

U2

)

∂

∂y

+
1

16

(

−2
(DU2y)

U
+ 5

(DUy)Uy

U2
+ 3

(DU)U2y

U2
− 6

(DU)U2
y

U3

)

D

=
∂

∂τ
+

(

−
1

4
U2xU +

1

8
U2
x +

1

4
(DUx)(DU)

)

∂

∂y

+

(

−
1

8
(DU2x)U

3/2

)

D . (15)

Therefore, we succeeded in constructing between the supersymmetric HD eqution (9) and

the supersymmetric MKdV equation (14) a reciprocal transformation

(x, θ, t, U) → (y, ̺, τ,Ψ) ,

which is given by formulas (11), (12) and (15).

In terms of the new super space-time (y, ̺, τ), the bosonic super field U satisfies

Uτ =
1

16

(

4U3y − 12
U2yUy

U
+ 6

U3
y

U2
− 3

(DUy)(DU)Uy

U2

)

, (16)

from which we obtain, through the transformation U = (DΛ)−2, the supersymmetric

Schwarzian KdV equation20

Λτ =
1

4

(

Λ3y − 3
Λ2y(DΛy)

(DΛ)

)

. (17)

The link between the supersymmetric Schwarzian KdV equation (17) and the supersymmet-

ric MKdV equation (14) is supplied by the super Cole-Hopf transformation

Ψ = 2D log(DΛ) .

B. The superconformal transformation

Relying on the linear spectral problem, we constructed the reciprocal link between the

SUSY HD equation and the SUSY MKdV equation in last subsection IIIA. It would be
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nice if the reciprocal transformation can be established without any knowledge of linear

problems. Next we will show that this is indeed the case: the reciprocal transformation is

the result of the equation itself. To this end, we need the superconformal transformation,

which is the super diffeomorphism such that the superderivative transforms covariantly1,9,20.

Namely, D = GD, where G is a bosonic super field.

Proposition 1 Let
∂G

∂t
= DΞ (18)

be a conservation law, and suppose that a potential W can be introduced by

DW = 2ΞG , (19)

then a superconformal transformation may be defined consistently.

Proof: First, we consider the following change of variables

(x, θ, t) → (y, ̺, τ) = (y(x, θ, t), ̺(x, θ, t), t) (20)

where (y, ̺) is the new super spatial variable and τ is the new temporal variable. Next we

use notation D = ∂
∂̺

+ ̺ ∂
∂y

as our new superderivative.

To ensure that (20) is a superconformal transformation, we impose

D = GD , (21)

and by a direct calculation we have

∂

∂x
=

[

∂y

∂x
−

(

∂̺

∂x

)

̺

]

∂

∂y
+

∂̺

∂x
D ≡ S

∂

∂y
+ ΓD ,

∂

∂θ
=

[

∂y

∂θ
−

(

∂̺

∂θ

)

̺

]

∂

∂y
+

∂̺

∂θ
D ≡ Λ

∂

∂y
+ TD ,

∂

∂t
=

[

∂y

∂t
−

(

∂̺

∂t

)

̺

]

∂

∂y
+

∂̺

∂t
D +

∂

∂τ
≡ Ŵ

∂

∂y
+ Ξ̂D+

∂

∂τ
.

Naturally, all the coefficients S, T , Ŵ , Γ, Λ and Ξ̂ have to be selected consistently such that

the compatibility conditions

∂

∂θ
Γ =

∂

∂x
T , ∂

∂θ
Ξ̂ = ∂

∂t
T ,

∂

∂x
Ξ̂ =

∂

∂t
Γ ,

∂

∂θ
S =

∂

∂x
Λ + 2ΓT , ∂

∂t
Λ = ∂

∂θ
Ŵ − 2Ξ̂T ,

∂

∂t
S =

∂

∂x
Ŵ + 2Ξ̂Γ ,
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hold.

We notice that (21) implies

∂

∂x
= D2 = GDGD = G2 ∂

∂y
+ (DG)D ,

and also we have

∂

∂θ
= D − θ

∂

∂x
= GD− θ

(

G2 ∂

∂y
+ (DG)D

)

= −θG2 ∂

∂y
+
(

G− θ(DG)
)

D .

These last two equations suggest the following identifications

S = G2 , Γ = (DG) , Λ = −θG2 , T = G− θ(DG) ,

furthermore, we ask for

Ŵ = W , Ξ̂ = Ξ .

Then, a straightforward calculation shows that all the compatibility conditions are satisfied

and thus, the proposition is proved. Q.E.D.

Let us now consider the supersymmetric HD equation (9). In order to take advantage of

the proposition, we notice that the SUSY HD equation (9) has the following conservation

law
∂

∂t

(

U−1/2
)

= D

(

−
1

8
(DU2x)U

3/2

)

, (22)

which leads to

G = U−1/2 , Ξ = −
1

8
(DU2x)U

3/2 ,

also,

2ΞG = −
1

4
(DU2x)U = D

(

−
1

4
U2xU +

1

8
U2
x +

1

4
(DUx)(DU)

)

,

hence we choose

D = U−1/2
D ,

which coincides with the super analogy of Liouville transformation (11) and

W = −
1

4
U2xU +

1

8
U2
x +

1

4
(DUx)(DU) .

According to our proposition, the relation between ∂t and ∂τ is given by

∂

∂t
=

(

−
1

4
U2xU +

1

8
U2
x +

1

4
(DUx)(DU)

)

∂

∂y
+

(

−
1

8
(DU2x)U

3/2

)

D+
∂

∂τ
,

which of course recovers the relation (15), as is expected.
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IV. SUSY RECIPROCAL TRANSFORMATION: SUSY KAWAMOTO

CASE

In this section, we consider fifth order equations. The analog of the HD equation now is

the Kawamoto equation

vt = v5v5x + 5v4vxv4x +
5

2
v4v2xv3x +

15

4
v3v2xv3x , (23)

which is integrable. Indeed, its Lax operator reads as6

L = v3∂3
x + 3vxv

2∂2
x .

As Kawamoto showed, the equation (23) is reciprocally associated to the following equa-

tion

wt = w5x − 5wxw3x − 5w2
2x − 5w3

x − 20wwxw2x − 5w2w3x + 5w4wx . (24)

It is a well known fact that8, through the Miura transformations

u = wx − w2,

and

u = −wx −
1

2
w2

respectively, the equation (24) is the common modification, sometimes known as Fordy-

Gibbons equation, of the SK equation

ut = u5x + 5u3xu+ 5u2xux + 5uxu
2 ,

and of the KK equation

ut = u5x + 10u3xu+ 25u2xux + 20uxu
2 . (25)

Now let us turn to the supersymmetric case. The equation (23) is embedded in its

supersymmetric analogy as

Vt = V 5V5x + 5V 4V4xVx +
5

2
V 4V3xV2x +

15

4
V 3V3xV

2
x

−
5

2
V 4(DV4x)(DV )− 5V 4(DV3x)(DVx)

−
15

2
V 3(DV3x)(DV )Vx −

15

2
V 3(DV2x)(DVx)Vx

−
15

4
V 3(DV2x)(DV )V2x −

15

8
V 2(DV2x)(DV )V 2

x , (26)
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whose integrability follows from the Lax representation
[

∂

∂t
+ 9(L

5/3
k )≥3, Lk

]

= 0

where the Lax operator is given by

Lk = V 3/2D3V 3/2D3 (27)

and V is a bosonic super field.

The equation (26) is our supersymmetric Kawamoto equation and the rest of this section

will be devoted to it. Let us introduce the super Liouville transformation

D = V −1/2
D ,

then, the operator Lk takes the form

Lmsk = ∂3
y − 3(DΨ)∂2

y + [2(DΨ)2 − 2(DΨy)−ΨyΨ]∂y

+[Ψy(DΨ)−Ψ2y +Ψ(DΨy)]D , (28)

where the fermionic super field Ψ is related with the bosonic V by the Cole-Hopf transfor-

mation

Ψ = −D log(V −1/2) . (29)

Using the transformed operator Lmsk we consider the following Lax equation
[

∂

∂τ
+ 9(L

5/3
msk)≥1, Lmsk

]

= 0 ,

which provides the SUSY nonlinear evolution equation

Ψt = D[(DΨ4y)− 5(DΨ2y)(DΨy)− 5(DΨ2y)(DΨ)2 (30)

−5(DΨy)
2(DΨ) + (DΨ)5 − 5Ψ3yΨy − 5Ψ2yΨy(DΨ)

−10ΨyΨ(DΨ2y)− 10ΨyΨ(DΨy)(DΨ)] .

The above equation is a modification of the SK equation proposed in25. To see it, we can

further bring Lmsk, through gauge transformation, to a new operator, i.e.

Lsk = e−(D−1Ψ)Lmsk e(D
−1Ψ) =

(

D
3 +Ψy −Ψ(DΨ)

)2

= (D3 + Φ)2 , (31)

which is nothing but the Lax operator for the SK equation, which reads as

Φt = Φ5y + 5Φ3y(DΦ) + 5Φ2y(DΦy) + 5Φy(DΦ)
2 = 0 . (32)
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The Lax operator and infinite number of supersymmetric conserved densities for this equa-

tion have been found in25 while the odd Bi-Hamiltonian structure in22. Due to the existence

of the Miura transformation, which follow from the equation (31)

Φ = Ψy −Ψ(DΨ) (33)

it is possible to transforms the odd Bi-Hamiltonian structure of the supersymmetric Sawada

- Kotera equation onto the odd Bi-Hamiltonian structure of the supersymmetric Kawamoto

equation (30).

To complete the construction of the reciprocal transformation, one has to find the relation

between ∂t and ∂τ . As in the SUSY HD case, this can be done in two ways, either using

linear problem or making use of conservation law. We now take the latter approach and will

show that the result follows from Proposition 1. To do it, we notice that the equation (26)

admits the conservation law

∂

∂t

(

V −1/2
)

=
1

8
D
(

− 4(DV4x)V
7/2 − 16(DV3x)VxV

5/2

−14(DV2x)V2xV
5/2 − 5(DV2x)V

2
x V

3/2

+20(DV2x)(DVx)(DV )V 3/2 − 4(DV )V4xV
5/2

+4(DVx)V3xV
5/2 − 10(DV )V3xVxV

3/2
)

,

which implies that we can identify

G = V −1/2 ,

and

Ξ =
1

8

(

− 4(DV4x)V
7/2 − 16(DV3x)VxV

5/2

−14(DV2x)V2xV
5/2 − 5(DV2x)V

2
x V

3/2

+20(DV2x)(DVx)(DV )V 3/2 − 4(DV )V4xV
5/2

+4(DVx)V3xV
5/2 − 10(DV )V3xVxV

3/2
)

.

Taking into account of the formula (19) we find

W =
1

4

(

− 4V4xV
3 − 8V3xVxV

2 + 8(DV3x)(DV )V 2 + V2xV
2
x V

−V 2
2xV

2 −
1

4
V 4
x + 12(DV2x)(DVx)V

2 + 6(DV2x)(DV )VxV

+2(DVx)(DV )V2xV − (DVx)(DV )V 2
x

)

.
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Therefore, our reciprocal transformation in this case reads as

D = V −1/2
D , (34)

∂

∂t
= W

∂

∂y
+ ΞD+

∂

∂τ
. (35)

Under the transformation (34) and (35), the equation (26) is changed to

Vτ = V5y − 5V4yVyV
−1 −

25

2
V3yV2yV

−1 +
85

4
V3yV

2
y V

−2 +
145

4
V 2
2yVyV

−2

−
265

4
V2yV

3
y V−3 +

405

16
V 5
y V

−4 −
5

2
(DV3y)(DVy)V

−1

+
5

2
(DV3y)(DV )VyV

−2 +
25

4
(DV2y)(DVy)VyV

−2

−
25

4
(DV2y)(DV )V 2

y V
−3 − 5(DVy)(DV )V3yV−2

+
25

2
(DVy)(DV )V2xVyV

−3 −
15

4
(DVy)(DV )V 3

y V
−4 ,

which is related to the equation (30) through the transformation (29).

V. CONCLUSION

The reciprocal link, sometimes also named as hodograph transformation, is a useful in-

strument which allows us to transforms one equation to the other equation which in some

cases are very well known. One would like to say the same in the supersymmetric case but

then the situation is more complicated. In this paper we constructed the supersymmetric

analogon of the reciprocal link between supersymmetric HD equation and MKdV equation.

We also proposed a supersymmetric Kawamoto equation together with its Lax representation

and established the supersymmetric link to the supersymmetric Sawada-Kotera equation.
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Appendix A

It is well known that a nonlinear differential equation could have many conservation

laws and different conservation law may lead to different reciprocal transformation. In this
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Appendix, we will show that it also is the case for the supersymmetric systems.

In addition to the conservation law (22), the supersymmetric HD equation (9) has another

one given by

∂

∂t

(

U−1
)

= D

(

1

8
(DU)U2x −

1

8
(DUx)Ux −

1

4
(DU2x)U

)

. (A1)

Therefore, a potential can be introduced for the quantity

2

(

1

8
(DU)U2x −

1

8
(DUx)Ux −

1

4
(DU2x)U

)

U−1 ,

i.e.

D
(

1
4
(DUx)(DU)

U
− 1

2
U2x

)

=2
(

1
8
(DU)U2x −

1
8
(DUx)Ux −

1
4
(DU2x)U

)

U−1. (A2)

According the Proposition, one can apply the reciprocal transformation

D = U−1
D , (A3)

∂

∂t
=

(

1

4

(DUx)(DU)

U
−

1

2
U2x

)

∂

∂y

+

(

1

8
(DU)U2x −

1

8
(DUx)Ux −

1

4
(DU2x)U

)

D+
∂

∂τ
. (A4)

to the supersymmetric HD equation (9).

A direct calculation gives us the following result

Uτ =
1

4
U3yU

−3 −
3

2
U2yUyU

−4 +
3

8
(DU2y)(DU)U−4

+
3

2
U3
yU

−5 −
3

2
(DUy)(DU)UyU

−5 , (A5)

which, by U = Û−1, is transformed to the supersymmetric HD equation

Ûτ =
1

4
Û3yÛ

3 −
3

8
(DÛ2y)(DÛ)U2.

The invariance of the supersymmetric HD equation (9) under the supersymmetric recip-

rocal transformation (A3) and (A4) can be viewed as a supersymmetric generalization of

the invariance of the HD equation (1) under the transformation

dy = u−2
dx+ 2u2xdt , dτ = dt

which follows from the conservation law

∂

∂t

(

u−2
)

=
∂

∂x

(

2u2x

)

,

and was first reported in24.
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