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Abstract

The extended Toda hierarchy of Carlet, Dubrovin and Zhang is re-

considered in the light of a 2 + 1D extension of the 1D Toda hierarchy

constructed by Ogawa. These two extensions of the 1D Toda hierarchy

turn out to have a very similar structure, and the former may be thought

of as a kind of dimensional reduction of the latter. In particular, this

explains an origin of the mysterious structure of the bilinear formalism

proposed by Milanov.
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1 Introduction

Geometry of 2D topological field theories has a profound relationship with inte-
grable hierarchies [1]. Of particular interest is the topological sigma model (ge-
ometrically, the Gromov-Witten invariants) of the Riemann sphere CP

1, which
is related to the 1D Toda hierarchy and its dispersionless limit. To describe
the correlation functions of “descendants” of primary observables, however, one
has to extend the usual 1D Toda hierarchy by an extra set of commuting flows
[2, 3, 4]. In the following, we refer to this extension as “logarithmic”, because
the Lax equations of these extra commuting flows are formulated by a kind of
logarithm of the Lax operator. Carlet, Dubrovin and Zhang presented a rigor-
ous formulation of the logarithm of the Lax operator, and thereby formulated
a Lax formalism of the extended Toda hierarchy [5].

Recently, Milanov presented a bilinear (or Hirota) formalism of this ex-
tended Toda hierarchy [6]. According to Milanov’s results, the tau function of
the usual 1D Toda hierarchy can be extended to this hierarchy and satisfies a
bilinear equation. This equation is certainly an extension of the familiar bilinear
equation (of the contour integral type [7]) of the 1D Toda hierarchy, reducing
to the latter as some of arbitrary constants in the equation are set to 0. For
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nonzero values of those arbitrary constants, however, Milanov’s bilinear equa-
tion takes a quite mysterious form, the meaning of which has remained to be
elucidated.

In this paper, we propose to understand the logarithmic extension in the
light of the so called “2+1D extension”. Here “1” means the (lowest) temporal
dimension, and “2” an extension of the spatial dimension (in the case of the Toda
hierarchy, a 1D lattice) by an extra spatial dimension. For example, a 2 + 1D
extension of the KdV equation was introduced by Calogero [8], Bogoyavlensky
[9] and Schiff [10] in different contexts. A Lie algebraic interpretation of the
same equation and the associated hierarchy of commuting flows was discovered
later [11, 12, 13] and generalized to the nonlinear Schrödinger hierarchy [14].
An important outcome of the Lie-algebraic studies is a systematic derivation
of a bilinear formalism of those 2 + 1D extensions. As regards the 1D Toda
hierarchy, two different 2 + 1D extensions (based on two different reductions
of the 2D Toda hierarchy [15] to the 1D Toda hierarchy) were constructed by
Ogawa [16]. We shall show that the logarithmic extension of the 1D Toda
hierarchy can be rewritten to a form that resembles one of Ogawa’s 2 + 1D
extension. This enables us to consider the logarithmic extension as a kind of
“dimensional reduction” of the 2+ 1D extension. We can thus derive a bilinear
formalism of the logarithmic extension by the same method as used for the
2+ 1D extensions [13, 14, 16]. Milanov’s results can be thus recovered from the
perspectives of 2 + 1D extensions.

This paper is organized as follows. Section 2 is a review of the Lax formal-
ism and the bilinear formalism of the 1D Toda hierarchy. Since the 1D Toda
hierarchy can be derived from the 2D Toda hierarchy, we omit the proof of the
existence of the dressing operators and the tau function (which is parallel to the
case of the 2D Toda hierarchy) and explain the derivation of bilinear equations
in detail. Section 3 is a review of one of Ogawa’s 2+ 1D extensions that is rele-
vant to the subject of this paper. Since Ogawa’s paper [16] is rather sketchy on
this case, we give a rather detailed account of its Lax and bilinear formalisms.
Armed with the knowledge on the 2+1D extension, we turn to Carlet, Dubrovin
and Zhang’s logarithmic extension in Section 4. We conclude this paper with a
few remarks in Section 5.

2 1D Toda hierarchy

2.1 Lax equations

Let s denote the spatial coordinate of the 1D Toda hierarchy. Unlike the usual
formulation on a 1D lattice, s is now understood to be a continuous variable.
The Lax operator of the 1D Toda hierarchy is a difference operator of the form

L = e∂s + b(s) + c(s)e−∂s ,

where en∂s ’s (∂s = ∂/∂s) denote the shift operators that act on a function of
s as en∂sf(s) = f(s + n), and b(s) and c(s) are dynamical variables. Time
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evolutions L = L(t), t = (t1, t2, . . .), of the Lax operator are defined by the Lax
equations

∂L

∂tn
= [An,L], n = 1, 2, . . . . (2.1)

The generators An of time evolutions are constructed from L as

An =
1

2
(Ln)≥0 −

1

2
(Ln)<0 ,

where ( )≥0 and ( )<0 denote the nonnegative and negative power parts of
difference operators:

(

∞
∑

n=−∞

an(s)e
n∂s

)

≥0

=
∑

n≥0

an(s)e
n∂s ,

(

∞
∑

n=−∞

an(s)e
n∂s

)

<0

=
∑

n<0

an(s)e
n∂s .

The lowest (n = 1) Lax equation consists of the equations

∂b(s)

∂t1
= c(s+ 1)− c(s),

∂c(s)

∂t1
= c(s)(b(s)− b(s− 1)),

which can be converted to the usual 1D Toda equation

∂2φ(s)

∂t21
= eφ(s)−φ(s+1) − eφ(s−1)−φ(s)

by the change of variables

b(s) =
∂φ(s)

∂t1
, c(s) = eφ(s−1)−φ(s).

2.2 Wave functions and auxiliary linear equations

Let W and W̄ be dressing operators of the form

W = 1 +

∞
∑

n=1

wn(s)e
−n∂s , W̄ =

∞
∑

n=0

w̄n(s)e
n∂s

by which the Lax operator is expressed as

L =We∂sW−1 = W̄e−∂sW̄−1. (2.2)

One can tune these dressing operators to satisfy the evolution equations

∂W

∂tn
= AnW −

1

2
Wen∂s ,

∂W̄

∂tn
= AnW̄ +

1

2
W̄e−n∂s (2.3)
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as well. These equations can be converted to the auxiliary linear equations

∂Ψ(s, z)

∂tn
= AnΨ(s, z),

∂Ψ̄(s, z)

∂tn
= AnΨ̄(s, z) (2.4)

for the wave functions

Ψ(s, z) =Wzseξ(t,z)/2 =

(

1 +

∞
∑

n=1

wn(s)z
−n

)

zseξ(t,z)/2,

Ψ̄(s, z) = W̄zseξ(t,z
−1)/2 =

(

∞
∑

n=0

w̄n(s)z
n

)

zseξ(t,z
−1)/2,

where

ξ(t, z) =

∞
∑

n=1

tnz
n.

The dressing relations (2.2), too, become auxiliary linear equations of the form

LΨ(s, z) = zΨ(s, z), LΨ̄(s, z) = z−1Ψ̄(s, z). (2.5)

2.3 Bilinear equations for wave functions

Let us introduce the difference operators

V = e−∂s(W ∗)−1e∂s , V̄ = e−∂s(V ∗)−1e∂s ,

where A∗ denotes the formal adjoint of a difference operator A, namely,

(

∞
∑

n=−∞

an(s)e
n∂s

)∗

=

∞
∑

n=−∞

e−n∂san(s),

and define the “dual wave functions” as

Ψ∗(s, z) = V z−se−ξ(t,z)/2, Ψ̄∗(s, z) = V̄ z−se−ξ(t,z−1)/2.

As we show below, the wave functions Ψ(s, z), Ψ̄(s, z) and their duals satisfy
the bilinear equation

∮

dz

2πi
zkΨ(s′, t′, z)Ψ∗(s, t, z) =

∮

dz

2πi
z−kΨ̄(s′, t′, z)Ψ̄∗(s, t, z) (2.6)

for k = 0, 1, 2, . . . and arbitrary values of s′, s, t′, t except for the condition 1

s′ − s ∈ Z. (2.7)

1If the spatial variable s is integer-valued, this condition is obviously satisfied. Since s

is now a continuous variable, this condition is necessary to ensure single-valuedness of the
integrands in (2.6).
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In the present setting, both hand sides of the bilinear equation may be thought
of as the residue of formal Laurent series, namely,

∮

dz

2πi

∞
∑

n=−∞

anz
n = a−1,

though, in a complex analytic setting, they are understood to be the contour
integrals along simple closed curves C∞, C0 encircling the points z = ∞, 0.

A technical clue to the derivation of (2.6) is the the identity (see, e.g.,
Ogawa’s paper [16])

∮

dz

2πi
ψ(s, z)φ∗(s, z) = (Ae∂sB∗)s′s = (Be−∂sA∗)ss′ (2.8)

that holds, under condition (2.7), for any difference operators

A =

∞
∑

n=−∞

an(s)e
n∂s , B =

∞
∑

n=−∞

bn(s)e
n∂s

and the associated “wave functions”

ψ(s, z) = Azs =

∞
∑

n=−∞

an(s)z
n+s, φ∗(s, z) = Bz−s =

∞
∑

n=−∞

bn(s)z
−n−s.

( )s′s denotes the “(s′, s)-matrix element” 2 of difference operators:

(

∞
∑

n=−∞

an(s)e
n∂s

)

s′s

= as−s′(s
′).

We apply this formula to the operator relation

We∂sV ∗ = e∂s = W̄e∂sW̄ ∗

and obtain the bilinear equation
∮

dz

2πi
Ψ(s′, t, z)Ψ∗(s, t, z) =

∮

dz

2πi
Ψ̄(s′, t, z)Ψ̄∗(s, t, z), (2.9)

which is a special case of (2.6) where k = 0 and t
′ = t. We can deform this

equation to (2.6) by two steps as follows.
The first step is to insert z±k, k = 0, 1, 2, . . . into the contour integrals. To

this end, we apply Lk to both hand sides of (2.9) with respect to the variable
s′ as

∮

dz

2πi
LkΨ(s′, t, z) ·Ψ∗(s, t, z) =

∮

dz

2πi
LkΨ̄(s′, t, z) · Ψ̄∗(s, t, z).

2If the spatial variable s is integer-valued, this is indeed the matrix element of a Z × Z

matrix that represents the difference operator.
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By (2.5), this equation turns into the equation
∮

dz

2πi
zkΨ(s′, t, z)Ψ∗(s, t, z) =

∮

dz

2πi
z−kΨ̄(s′, t, z)Ψ̄∗(s, t, z). (2.10)

The second step is to shift the value of t in Ψ(s′, t, z) and Ψ̄(s′, t, z). To
this end, let us note that the auxiliary linear equations (2.4) can be extended
to higher orders as

∞
∏

i=1

(

∂

∂ti

)li

Ψ(s, z) = Al1,l2,...Ψ(s, z),

∞
∏

i=1

(

∂

∂ti

)li

Ψ̄(s, z) = Al1,l2,...Ψ̄(s, z),

where Al1,l2,...’s are difference operators of finite order in s that are recursively
determined by An’s. For example,

∂2Ψ(s, z)

∂tm∂tn
=

∂

∂tm

(

∂Ψ(s, z)

∂tn

)

=

(

∂An

∂tm
+AnAm

)

Ψ(s, z),

hence

Am,n =
∂An

∂tm
+AnAm.

The same equation holds for Ψ̄(s, z) as well. Applying Al1,l2,... to both hand
sides of (2.10) with respect to s′, we have the equations

∮

dz

2πi
zk

∞
∏

i=1

(

∂

∂ti

)li

Ψ(s′, t, z) ·Ψ∗(s, t, z)

=

∮

dz

2πi
z−k

∞
∏

i=1

(

∂

∂ti

)li

Ψ̄(s′, t, z) · Ψ̄∗(s, t, z)

for all values of l1, l2, . . .. Since the derivatives of Ψ(s′, t, z) and Ψ̄(s′, t, z) can
be collected to the generating functions

∞
∑

l1,l2,...=0

∞
∏

i=1

alii
li!

(

∂

∂ti

)li

Ψ(s′, t, z) = Ψ(s′, t+ a, z),

∞
∑

l1,l2,...=0

∞
∏

i=1

alii
li!

(

∂

∂ti

)li

Ψ̄(s′, t, z) = Ψ̄(s′, t+ a, z)

of new variables a = (a1, a2, . . .), the last bilinear equations can be converted
to the generating functional form
∮

dz

2πi
zkΨ(s′, t+ a, z) ·Ψ∗(s, t, z)

=

∮

dz

2πi
z−kΨ̄(s′, t+ a, z) · Ψ̄∗(s, t, z). (2.11)
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Replacing t+ a → t
′, we obtain the bilinear equation (2.6).

Though we omit details, one can conversely derive the auxiliary linear equa-
tions (2.4) and (2.5) from (2.6).

2.4 Tau function and bilinear equations

The wave functions and their duals can be expressed in terms of the tau function
τ(s, t) as

Ψ(s, z) =
τ(s, t − [z−1])

τ(s, t)
zseξ(t,z)/2,

Ψ∗(s, z) =
τ(s, t + [z−1])

τ(s, t)
z−se−ξ(t,z)/2,

Ψ̄(s, z) =
τ(s+ 1, t+ [z])

τ(s, t)
zseξ(t,z

−1)/2,

Ψ̄∗(s, z) =
τ(s− 1, t− [z])

τ(s, t)
z−se−ξ(t,z−1)/2,

(2.12)

where

[z] =

(

z,
z2

2
, . . . ,

zn

n
, . . .

)

.

The bilinear equation (2.6) for the wave functions thereby turns into the bilinear
equation
∮

dz

2πi
zk+s′−seξ(t

′−t,z)/2τ(s′, t′ − [z−1])τ(s, t + [z−1])

=

∮

dz

2πi
z−k+s′−seξ(t−t

′,z−1)/2τ(s′ + 1, t′ + [z])τ(s− 1, t− [z]) (2.13)

for the tau function, which holds for k = 0, 1, . . . and arbitrary values of s, s′, t, t′

under the condition (2.7).
Let us mention a few consequences of (2.13).

1. We can replace z±k by an arbitrary formal power series f(z±1) =
∑∞

k=0 fkz
±k

as
∮

dz

2πi
f(z)zs

′−seξ(t
′−t,z)/2τ(s′, t′ − [z−1])τ(s, t + [z−1])

=

∮

dz

2πi
f(z−1)zs

′−seξ(t−t
′,z−1)/2τ(s′ + 1, t′ + [z])τ(s− 1, t− [z]).

In particular, if we choose f(z) as f(z) = zkeξ(t
′−t,z)/2, we have the

bilinear equation
∮

dz

2πi
zs

′−seξ(t
′−t,z)τ(s′, t′ − [z−1])τ(s, t + [z−1])

=

∮

dz

2πi
zs

′−sτ(s′ + 1, t′ + [z])τ(s− 1, t− [z]), (2.14)
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which is equivalent to (2.13), hence may be thought of as yet another
bilinear representation of the 1D Toda hierarchy.

2. When k = 0 and s′ ≥ s, (2.14) reduces to the bilinear equation
∮

dz

2πi
eξ(t

′−t,z)τ(s, t′ − [z−1])τ(s, t + [z−1]) = 0

of the KP (s′ = s) or modified KP (s′ > s) hierarchy.

3. If we choose s′ = s and t
′ = t, (2.13) reduces to

∮

dz

2πi
zkτ(s, t − [z−1])τ(s, t + [z−1])

=

∮

dz

2πi
zk−2τ(s + 1, t+ [z−1])τ(s− 1, t− [z−1]), k = 0, 1, 2, . . . .

These equations imply that τ(s, t− [z−1])τ(s, t+ [z−1])− z−2τ(s+ 1, t+
[z−1])τ(s − 1, t + [z−1]) is independent of z, hence a function of s and t

only. Letting z → ∞ shows that this function is equal to τ(s, t)2. Thus
we obtain the bilinear functional equation

τ(s, t − [z−1])τ(s, t + [z−1])

= z−2τ(s+ 1, t+ [z−1])τ(s − 1, t− [z−1]) + τ(s, t)2

with a parameter z. Expanded in powers of z−1, the z−2 part of this
equation gives the Hirota equation

∂2τ(s, t)

∂t21
τ(s, t)−

(

∂τ(s, t)

∂t1

)2

= τ(s+ 1, t)τ(s − 1, t)

of the 1D Toda equation.

2.5 Reduction from 2D Toda hierarchy

The 2D Toda hierarchy has two series of time variables t = (t1, t2, . . .) and
t̄ = (t̄1, t̄2, . . .). The Lax equations are formulated in terms of two Lax operators

L = e∂s + u1(s) + u2(s)e
−∂s + · · · ,

L̄ = ū0(s)e
∂s + ū1(s)e

2∂s + · · ·

and the generators of time evolutions

Bn = (Ln)≥0, B̄n = (L̄−n)<0

as

∂L

∂tn
= [Bn, L],

∂L

∂t̄n
= [B̄n, L],

∂L̄

∂tn
= [Bn, L̄],

∂L̄

∂t̄n
= [B̄n, L̄], n = 1, 2, . . . .
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This hierarchy reduces to the 1D Toda hierarchy by adding the constraint 3

(L :=) L = L̄−1.

Defining L thus by both hand sides of this constraint and comparing the ( )≥0

and ( )<0 parts, we can readily see that L can be written as

L = B1 + C1,

hence a difference operator of the form e∂s + b(s) + c(s)e−∂s . Moreover, under
this constraint, we have the identities

Bn + B̄n = Ln,

which imply that the time evolutions in the diagonal direction of the (tn, t̄n)
plane are trivial:

∂L

∂tn
+
∂L

∂t̄n
= [Ln,L] = 0, n = 1, 2, . . . .

The residual time evolutions of L generated by

An =
1

2
Bn −

1

2
B̄n

can be identified with the 1D Toda hierarchy.
As regards the tau function, this reduction procedure amounts to adding the

constraints

∂τ(s, t, t̄)

∂tn
+
∂τ(s, t, t̄)

∂t̄n
= 0, n = 1, 2, . . .

to the tau function τ(t, t̄) of the 2D Toda hierarchy, which thereby becomes a
function τ(s, t − t̄) of s and t − t̄. The reduced function τ(s, t) is exactly the
tau function of the 1D Toda hierarchy.

3 2 + 1D extension

3.1 Lax equations and auxiliary linear equations

Following Ogawa [16], we introduce a new spatial variable y and an infinite
number of time variables x = (x1, x2, . . .). The dynamical variables b(s) and
c(s) now depend on y,x and t. The 2+1D extension consists of the Toda flows
with respect to t and the commuting flows with respect to x defined by Lax
equations of the form

∂L

∂xn
= Ln ∂L

∂y
+ [Pn,L] = [Ln∂y + Pn,L], n = 1, 2, . . . , (3.1)

3Another reduction to the 1D Toda hierarchy is achieved by the constraint L + L−1 =
L̄+ L̄−1 [15]. This reduction is suited for the soliton solutions of the 1D Toda lattice.
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where ∂y denotes ∂/∂y, and Pn’s are difference operators of finite order specified
below. The associated auxiliary linear equations for Ψ(s, z) and Ψ̄(s, z) read

∂Ψ(s, z)

∂xn
= (Ln∂y + Pn)Ψ(s, z),

∂Ψ̄(s, z)

∂xn
= (Ln∂y + Pn)Ψ̄(s, z). (3.2)

The dressing operators W and W̄ thereby satisfy the evolution equations

∂W

∂xn
= L

n ∂W

∂y
+ PnW,

∂W̄

∂xn
= L

n ∂W̄

∂y
+ PnW̄ . (3.3)

Pn’s are determined by (3.3) themselves as follows. Let us rewrite (3.3) as

Pn =
∂W

∂xn
W−1 − Ln ∂W

∂y
W−1 =

∂W̄

∂xn
W̄−1 − Ln ∂W̄

∂y
W̄−1.

The ( )≥0 and ( )<0 parts of these equations give

(Pn)≥0 = −

(

L
n ∂W

∂y
W−1

)

≥0

, (Pn)<0 = −

(

L
n ∂W̄

∂y
W̄−1

)

<0

.

Thus Pn’s are determined as

Pn = −

(

L
n ∂W

∂y
W−1

)

≥0

−

(

L
n ∂W̄

∂y
W̄−1

)

<0

. (3.4)

The auxiliary linear equations have another expression of the form

∂Ψ(s, z)

∂xn
= (zn∂y +Qn)Ψ(s, z),

∂Ψ̄(s, z)

∂xn
= (z−n∂y +Qn)Ψ̄(s, z), (3.5)

where

Qn = Pn −
∂Ln

∂y
= −

(

∂W

∂y
en∂sW−1

)

≥0

−

(

∂W̄

∂y
e−n∂sW̄−1

)

<0

. (3.6)

3.2 Bilinear equation for wave functions

Let us start from the bilinear equation
∮

dz

2πi
zkΨ(s′,x, t′, z)Ψ∗(s,x, t, z) =

∮

dz

2πi
z−kΨ̄(s′,x, t′, z)Ψ̄∗(s,x, t, z)

of the 1D Toda hierarchy, and deform it incorporate to the auxiliary linear
equations (3.5). To this end, we extend (3.5) to higher orders as

∞
∏

i=1

(

∂

∂xi
− zi

∂

∂y

)li

Ψ(s, z) = Ql1,l2,...Ψ(s, z),

∞
∏

i=1

(

∂

∂xi
− z−i ∂

∂y

)li

Ψ̄(s, z) = Ql1,l2,...Ψ̄(s, z),
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where Ql1,l2,... are difference operators of finite order in s. Applying Ql1,l2,... to
both hand sides of the bilinear equation with respect to s′, we have the equations

∮

dz

2πi
zk

∞
∏

i=1

(

∂

∂xi
− zi

∂

∂y

)li

Ψ(s′,x, t′, z) ·Ψ∗(s,x, t, z)

=

∮

dz

2πi
z−k

∞
∏

i=1

(

∂

∂xi
− z−i ∂

∂y

)li

Ψ̄(s′,x, t′, z) · Ψ̄∗(s,x, t, z)

for all values of l1, l2, . . .. These bilinear equations can be packed into the
generating functional form

∮

dz

2πi
zkΨ(s′, y − ξ(a, z),x+ a, t′, z)Ψ∗(s, y,x, t, z)

=

∮

dz

2πi
z−kΨ̄(s′, y − ξ(a, z−1),x+ a, t′, z)Ψ̄∗(s, y,x, t, z) (3.7)

with new variables a = (a1, a2, . . .). Note that this equation, like (2.6), holds
for k = 0, 1, 2, . . . and arbitrary values of s′, s,x, t′, t under condition (2.7).

Moreover, we can extend (3.7) to the slightly more general (but actually
equivalent) form

∮

dz

2πi
zkΨ(s′, y − ξ(a, z),x+ a, t′, z)Ψ∗(s, y − ξ(b, z),x+ b, t, z)

=

∮

dz

2πi
z−kΨ̄(s′, y − ξ(a, z−1),x+ a, t′, z)Ψ̄∗(s, y − ξ(b, z−1),x+ b, t, z),

(3.8)

where b = (b1, b2, . . .) is yet another set of variables. This equation, too, holds
for k = 0, 1, 2, . . . and arbitrary values of s′, s,x, t′, t′ except for the condition
(2.7). To derive this equation, we apply the operator (−c∂/∂y)l/l! (where c
is a constant and l = 0, 1, 2, . . .) to both hand sides of (3.7), shift k to k + ln
(n = 1, 2, . . .), and take the summation over l = 0, 1, 2, . . .. The outcome is the
equation

∮

dz

2πi
zkΨ(s′, y − ξ(a, z)− czn,x+ a, t′, z)Ψ∗(s, y − czn,x, t, z)

=

∮

dz

2πi
z−kΨ̄(s′, y − ξ(a, z)− cz−n,x+ a, t′, z)Ψ̄∗(s, y − cz−n,x, t, z).

Repeating this procedure for n = 1, 2, . . . with independent constants c = bn,
we can derive the equation

∮

dz

2πi
zkΨ(s′, y − ξ(a+ b, z),x+ a, t′, z)Ψ∗(s, y − ξ(b, z),x, t, z)

=

∮

dz

2πi
z−kΨ̄(s′, y − ξ(a + b, z),x+ a, t′, z)Ψ̄∗(s, y − ξ(b, z−1),x, t, z).

Replacing x → x− b and a → a− b in this equation, we obtain (3.8).
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3.3 Bilinear equation for tau function

Let τ(s,x, t) be a tau function in the sense of the 1D Toda hierarchy, namely, a
function with which the wave functions are expressed as (2.12). Note that such
a tau function is unique up to a multiplier that depends on only x.

The bilinear equation (3.7) for the wave functions turns into an equation for
the tau function of the form

∮

dz

2πi
zk+s′−seξ(t

′−t,z)/2

×
τ(s′, y − ξ(a, z),x+ a, t′ − [z−1])τ(s, y,x, t+ [z−1])

τ(s′, y − ξ(a, z),x+ a, t′)τ(s, y,x, t)

=

∮

dz

2πi
z−k+s′−seξ(t−t

′,z−1)/2

×
τ(s′ + 1, y − ξ(a, z−1),x+ a, t′ + [z])τ(s− 1, y,x, t− [z])

τ(s′, y − ξ(a, z−1),x+ a, t′)τ(s, y,x, t)
.

We can now use the same trick as used in Section 2.4. Namely, we can replace
z±k by an arbitrary power series f(z±1) =

∑∞

k=0 fkz
±k of z as

∮

dz

2πi
f(z)zs

′−seξ(t
′−t,z)/2

×
τ(s′, y − ξ(a, z),x+ a, t′ − [z−1])τ(s, y,x, t+ [z−1])

τ(s′, y − ξ(a, z),x+ a, t′)τ(s, y,x, t)

=

∮

dz

2πi
f(z−1)zs

′−seξ(t−t
′,z−1)/2

×
τ(s′ + 1, y − ξ(a, z−1),x+ a, t′ + [z])τ(s− 1, y,x, t− [z])

τ(s′, y − ξ(a, z−1),x+ a, t′)τ(s, y,x, t)
.

In particular, if we choose f(z) as

f(z) = zkτ(s′, y − ξ(a, z),x+ a, t′)τ(s, y,x, t),

the denominators disappear and we obtain the bilinear equation

∮

dz

2πi
zk+s′−seξ(t

′−t,z)/2

× τ(s′, y − ξ(a, z),x+ a, t′ − [z−1])τ(s, y,x, t+ [z−1]),

=

∮

dz

2πi
z−k+s′−seξ(t−t

′,z−1)/2

× τ(s′ + 1, y − ξ(a, z−1),x+ a, t′ + [z])τ(s− 1, y,x, t− [z])

(3.9)

for the tau function.
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In the same way, the bilinear equation (3.8) of a slightly more general form
can be converted to
∮

dz

2πi
zk+s′−seξ(t

′−t,z)/2τ(s′, y − ξ(a, z),x+ a, t′ − [z−1])

× τ(s, y − ξ(b, z),x+ b, t+ [z−1]),

=

∮

dz

2πi
z−k+s′−seξ(t−t

′,z−1)/2τ(s′ + 1, y − ξ(a, z−1),x+ a, t′ + [z])

× τ(s− 1, y − ξ(b, z−1),x+ b, t− [z]).

(3.10)

4 Logarithmic extension

4.1 Lax equations

Following Carlet, Dubrovin and Zhang [5], we define the logarithm logL of the
Lax operator L as

logL =
1

2
W∂sW

−1 −
1

2
W̄∂sW̄

−1.

This definition can be rewritten as

logL = −
1

2
[∂s,W ]W−1 +

1

2
[∂s, W̄ ]W̄−1 = −

1

2

∂W

∂s
W−1 +

1

2

∂W̄

∂s
W̄−1,

which shows that logL becomes a difference operator (of infinite order).
The logarithmic extension of the Toda hierarchy consists of the Toda flows

with respect to t and another set of commuting flows with respect to x =
(x1, x2, . . .). The extended flows are defined by the Lax equations [5]

∂L

∂xn
= [Cn,L], n = 1, 2, . . . , (4.1)

where

Cn = (Ln logL)≥0 − (Ln logL)<0 .

Note that Ln logL can be expressed in terms of the dressing operators as

Ln logL =
1

2
Wen∂s∂sW

−1 −
1

2
W̄e−n∂s∂sW̄

−1. (4.2)

A few remarks are in order.

1. This definition of Cn’s differs from the usual definition

Cn = (Ln(logL − cn))≥0 − (Ln(logL− cn))<0 ,

where cn’s are numerical constants of the form

cn = 1+ 2 + · · ·+
1

n
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that plays an important role in the application to 2D topological field
theories [2, 3, 4]. In the context of integrable structure, however, this
difference is superficial.

2. Since Cn can be expressed as

Cn = 2 (Ln logL)≥0 − Ln logL = −2 (Ln logL)<0 + Ln logL

and Ln logL commutes with L, we can rewrite the Lax equations as

∂L

∂xn
= [2 (Ln logL)≥0 ,L] = [−2 (Ln logL)<0 ,L]. (4.3)

4.2 Auxiliary linear equations

For comparison with the 2 + 1D extension, let us rewrite the Lax equations
(4.3). Note that 2 (Ln logL)≥0 can be expressed as

2 (Ln logL)≥0 = −

(

Ln ∂W

∂s
W−1

)

≥0

+

(

Ln ∂W̄

∂s
W̄−1

)

≥0

= Pn + L
n ∂W̄

∂s
W̄−1,

where

Pn = −

(

Ln ∂W

∂s
W−1

)

≥0

−

(

Ln ∂W̄

∂s
W̄−1

)

<0

. (4.4)

We can further rewrite the right hand side as

2 (Ln logL)≥0 = Pn + Ln[∂s, W̄ ]W̄−1

= Pn + L
n∂s − W̄e−n∂s∂sW̄

−1.

Since the last term W̄e−n∂s∂sW̄
−1 commutes with L, we can remove it and

obtain the equations

∂L

∂xn
= [Ln∂s + Pn,L]. (4.5)

Written in this form, the Lax equations of the logarithmic extension exhibit
remarkable similarity with the Lax equations (3.1) of the 2+1D extensions. The
only difference is that the role of y is now played by s. Thus the logarithmic
extension may be thought of as a kind of dimensional reduction (identifying ∂y
with ∂s) of the 2 + 1D extension. Inspired by this observation, we can readily
find the evolution equations

∂W

∂xn
= Ln ∂W

∂s
+ PnW,

∂W̄

∂xn
= Ln ∂W̄

∂s
+ PnW̄ (4.6)
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for the dressing operators as counterparts of (3.3).
This is, however, a place where a significant difference also shows up. In the

present case, we can further rewrite (4.6) to such a form as

∂W

∂xn
= (Ln∂s + Pn)W −Wen∂s∂s,

∂W̄

∂xn
= (Ln∂s + Pn)W̄ − W̄e−n∂s∂s,

(4.7)

which rather resembles (2.3). Note here that the roles of e±n∂s/2 in (2.3) are now
played by e±n∂s∂s, which are connected with Ln logL by the dressing operators
as shown in (4.2). These “undressed” generators of time evolutions determine

the exponential factors of the wave functions. The exponential factors eξ(t,z
±1)/2

are thus generated from zs by the first set of generators e±n∂s/2 as

exp

(

∞
∑

n=1

tne
±n∂s/2

)

zs = zseξ(t,z
±1)/2.

In the same sense, the second set of generators e±n∂s∂s give the power (rather

than exponential) functions zξ(x,z
±1) as

exp

(

∞
∑

n=1

xne
±n∂s∂s

)

zs = zs+ξ(x,z±1).

Bearing the last observation in mind, we introduce the wave functions

Ψ(s, z) =Wzs+ξ(x,z)eξ(t,z)/2 =

(

1 +

∞
∑

n=1

wn(s)z
−n

)

zs+ξ(x,z)eξ(t,z)/2,

Ψ̄(s, z) = W̄zs+ξ(x,z−1)eξ(t,z
−1)/2 =

(

∞
∑

n=0

w̄n(s)z
n

)

zs+ξ(x,z−1)eξ(t,z
−1)/2.

(4.7) can be thereby converted to the auxiliary linear equations

∂Ψ(s, z)

∂xn
= (Ln∂s + Pn)Ψ(s, z),

∂Ψ̄(s, z)

∂xn
= (Ln∂s + Pn)Ψ̄(s, z). (4.8)

As in the case of the 2+1-dimensional extension, these auxiliary linear equations
have another expression of the form

∂Ψ(s, z)

∂xn
= (zn∂s +Qn)Ψ(s, z),

∂Ψ̄(s, z)

∂xn
= (z−n∂s +Qn)Ψ̄(s, z), (4.9)

where

Qn = Pn −
∂Ln

∂s
= −

(

∂W

∂s
en∂sW−1

)

≥0

−

(

∂W̄

∂s
e−n∂sW̄−1

)

<0

. (4.10)
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4.3 Bilinear equations

Since the structure of the auxiliary linear equations (4.9) is almost the same as
those of the 2 + 1D extension, we can convert these auxiliary linear equations
into a bilinear form in exactly the same way. Thus, defining the dual wave
functions as

Ψ∗(s, z) = V ∗z−s−ξ(x,z)e−ξ(t,z)/2, Ψ̄∗(s, z) = V̄ ∗z−s−ξ(x,z−1)e−ξ(t,z−1)/2,

we obtain the bilinear equation

∮

dz

2πi
zkΨ(s′ − ξ(a, z),x+ a, t′, z)Ψ∗(s− ξ(b, z),x+ b, t, z)

=

∮

dz

2πi
z−kΨ̄(s′ − ξ(a, z−1),x+ a, t′, z)Ψ̄∗(s− ξ(b, z−1),x+ b, t, z), (4.11)

which holds for k = 0, 1, 2, . . . and arbitrary values of s′, s,x, t′, t except for the
condition (2.7).

It deserves to be stressed here that the integrands in the contour integrals
are single-valued. The multi-valuedness of the power functions zs+ξ(x,z±1) in the
wave functions and the dual wave functions cancels each other. This cancellation
mechanism is based on the special shift

s′ → s′ − ξ(a, z±1), x → x+ a, s→ s− ξ(b, z±1), x → x+ b

of the s and x variables in the integrand. Actually, this special shift was a main
mystery of Milanov’s bilinear formalism; we can now explain its origin in the
2 + 1D extension.

Lastly, by the same trick as used in the derivation of (3.9) and (3.10), we
can derive from (4.11) the bilinear equation

∮

dz

2πi
zk+s′−seξ(t

′−t,z)/2τ(s′ − ξ(a, z),x+ a, t′ − [z−1])

× τ(s− ξ(b, z),x+ b, t+ [z−1]),

=

∮

dz

2πi
z−k+s′−seξ(t−t

′,z−1)/2τ(s′ + 1− ξ(a, z−1),x+ a, t′ + [z])

× τ(s − 1− ξ(b, z−1),x+ b, t− [z])

(4.12)

for the tau function. This equation contains Milanov’s bilinear equation as a
special case.

5 Conclusion

We have thus shown that the 2 + 1D extension and the logarithmic extension
have a quite parallel structure. Relevant equations of these two extended Toda
hierarchy can be paired as follows:
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• Lax equations: (3.1) ↔ (4.1)

• Auxiliary linear equations: (3.2), (3.4) ↔ (4.8), (4.4)

• Evolution equations of dressing operators: (3.3) ↔ (4.6)

• Another form of auxiliary linear equations: (3.5), (3.6) ↔ (4.9), (4.10)

• Bilinear equations of wave functions: (3.8) ↔ (4.11)

• Bilinear equations of tau functions: (3.10) ↔ (4.12)

A new feature of the logarithmic extension is the emergence of the multi-valued
factor zξ(x,z

±1) in the wave functions. The multi-valuedness, however, disap-
pears in the integrand of the bilinear equations. This fact plays a role in the
heuristic part of Milanov’s derivation of bilinear equations [6]. In our approach,
this cancellation mechanics of multi-valuedness is rather a consequence of di-
mensional reduction of the 2 + 1D extension.

Our approach can be readily generalized to the reduction of the 2D Toda
hierarchy defined by the constraint

(L :=) LN = L̄−N̄ ,

where N and N̄ are arbitrary positive integers. The reduced Lax operator L

thus defined takes such a form as

L = BN + B̄N̄ = eN∂s + b1(s)e
(N−1)∂s + bN (s) + c1(s)e

−∂s + · · ·+ cN̄ (s)e−N̄∂s .

The logarithmic extension of this reduced hierarchy coincides with Carlet’s “ex-
tended bigraded Toda hierarchy” [17]. We can derive bilinear equations for the
wave functions and the tau functions, which contains bilinear equations derived
by Milanov and Tseng [18] as a special case.
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