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Abstract

In this work, a shell model for metal clusters up to 220 valence electrons is used
to obtain the fractional occupation probabilities of the electronic orbitals. Then,
the calculation of a statistical measure of complexity and the Fisher-Shannon infor-
mation is carried out. An increase of both magnitudes with the number of valence
electrons is observed. The shell structure is reflected by the behavior of the statistical
complexity. The magic numbers are indicated by the Fisher-Shannon information.
So, as in the case of atomic nuclei, the study of statistical indicators also unveil the
existence of magic numbers in metal clusters.
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Nowadays the calculation of information-theoretic measures on quantum sys-
tems has received a special attention [1,2,3]. The application of these indica-
tors to atoms or nuclei reveals some properties of the hierarchical organiza-
tion of these many-body systems [4,5]. In particular, entropic products such as
Fisher-Shannon information and statistical complexity present two main char-
acteristics when applied to the former systems. On one hand, they display an
increasing trend with the number of particles, electrons or nucleons. On the
other hand, they take extremal values on the closure of shells. Moreover, in
the case of nuclei, the trace of magic numbers is displayed by these statistical
magnitudes [6].
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Metal clusters are useful quantum systems to understand how the physical
properties evolve in the transition from atom to molecule to small particle to
bulk solid [7,8]. They also present a shell structure where it can applied the
statistical indicators before mentioned. As in the case of atoms and nuclei,
the fractional occupation probabilities of valence electrons in the different
orbitals can capture the shell structure. This set of probabilities can be used
to evaluate the statistical quantifiers for metallic clusters as a function of the
number of valence electrons. Similar calculations have been reported for the
electronic atomic structure [4,5] and for nuclei [6]. In this work, by following
this method, we undertake the calculation of statistical complexity and Fisher-
Shannon information for metal clusters.

The jellium model provides an accurate description of some simple metal clus-
ters. In this model, a valence electron is assumed to interact with the average
potential generated by the other electrons and the ions [7,8]. The confinement
potential in the Schrödinger equation leading to shell structure is taken as a
potential intermediate between the three-dimensional harmonic oscillator and
the three-dimensional square well. This yields a filling of shells with a number
N of valence electrons given by the series: 2, 8, 18, 20, 34, 40, 58, 68, 70, 92,
106, 112, 138, 156, 166, 168, 198, 220 and so on. Each shell is given by (nl)w,
where l denotes the orbital angular momentum (l = 0, 1, 2, . . .), n counts the
number of levels with that l value, and w is the number of valence electrons
in the shell, 0 ≤ w ≤ 2(2l + 1).

As an example, we explicitly give the shell configuration of a metal cluster
formed by N = 58 valence electrons. It is obtained:

(N = 58) : (1s)2(1p)6(1d)10(2s)2(1f)14(2p)6(1g)18 . (1)

The fractional occupation probability distribution of electron orbitals {pk},
k = 1, 2, . . . ,Π, being Π the number of shells, can be defined in the same way
as it has been done for calculations in atoms and nuclei [4,5,6]. This normal-
ized probability distribution {pk} (

∑
pk = 1) is easily found by dividing the

superscripts w by the total number N of electrons. Then, from this probability
distribution, the different statistical magnitudes (Shannon entropy, disequilib-
rium, Fisher information, statistical complexity and Fisher-Shannon entropy)
can be obtained.

Here, we undertake the calculation of entropic products, a statistical measure
of complexity C and the Fisher-Shannon entropy P , that result from the
product of two statistical quantities, one of them representing the information
content of the system, and the other one giving an idea of how far the system
is from the equilibrium. The classical indicator of information is the Shannon
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entropy, that in the discrete version is expressed as

S = −
Π∑

k=1

pk log pk . (2)

Any monotonous function of S can also be used for this purpose, such as the
exponential Shannon entropy [9], H = eS or J = 1

2πe
e2S/3. The indicator of

how much concentrated is the probability distribution of the system can be
related with some kind of distance to the equilibrium distribution, that in our
case is the equiprobability. The disequilibrium D given by

D =
Π∑

k=1

(pk − 1/Π)2 , (3)

and the Fisher information I by

I =
Π∑

k=1

(pk+1 − pk)
2

pk
, (4)

where pΠ+1 = 0, are two useful parameters in this direction. Then, the statisti-
cal measure of complexity, C, the so-called LMC complexity [10,11], is defined
as

C = H ·D , (5)

and the Fisher-Shannon information [12,13,14], P , is given by

P = J · I . (6)

The statistical complexity, C, of metal clusters as a function of the number
of valence electrons, N , is given in Fig. 1. We can observe in this figure that
this magnitude fluctuates around an slightly increasing average value N . This
trend is also found for the electronic structure of atoms [5] and for the shell
structure of nuclei [6], reinforcing the idea that in general complexity increases
with the number of units forming a system. However, the shell model supposes
that the system encounters certain ordered rearrangements for some specific
number of units (electrons or nucleons) that coincide with closed shells. In the
present case, this fact is reflected by the notable increase of C in the metal
clusters with one valence electron more than those with closed shells, which
are indicated in Fig. 1, just as happens for atoms when one electron is added
to noble gases or when one nucleon is added to a closed shell in nuclei. Observe
that some major shells do not show local minima at their closing. This effect
is due to the number of valence electrons belonging to each shell: a shell with
a few valence electrons displays a local minimum of C when is closed, but this
is not the case when the number of valence electrons in a shell increases.

The Fisher-Shannon entropy, P , of metal clusters as a function of N is given
in Fig. 2. It presents an increasing trend with N . The spiky behavior of C
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provoked by the shell structure is still present for P but becomes smoother
in this case. P displays notable peaks only at a few N related with the filling
of some major shells, concretely at the numbers 2, 8, 18, 34, 58, 92, 138, 198. It
must be remarked that, similarly as happens with C, the maximum values of
P are taken on the nuclei with one unit more than the former series, although
now the difference is slightly appreciable. Only peaks at 20 and 40 disagree
with the sequence of magic numbers {2, 8, 18, 20, 34, 40, 58, 92, 138, 198}
obtained from experimental data, for instance, for Na clusters [15] and for Cs
clusters [16,17]. Let us observe that the magic numbers are basically marked
by the Fisher information such as it can be seen in Fig. 3.

In summary, the behavior of the statistical complexity C and the Fisher-
Shannon information P with the number of valence electrons in metal clusters
has been reported. The increasing trend of these magnitudes with the number
of valence electrons, N , has been found. The method that uses the fractional
occupation probabilities has been applied to calculate these statistical indica-
tors. As in the case of atoms and nuclei, the shell structure is well displayed
by the spiky behavior of C. On the other hand, P shows an smoother behavior
but with relevant peaks just on the major shells that coincide with the series
of magic numbers in metal clusters. Therefore, the qualitative study of metal
clusters by means of statistical indicators unveil certain physical properties of
them. In fact, we can conclude that this type of statistical measures is able to
enlighten some conformational aspects of quantum many-body systems.
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[5] J. Sañudo and R. Lopez-Ruiz, Phys. Lett. A, 373 (2009) 2549.
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Fig. 1. Statistical complexity, C, vs. number of valence electrons, N . The arrows
indicate the positions of closed shells.
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Fig. 2. Fisher-Shannon entropy, P , vs. the number of valence electrons, N . The
arrows indicate prominent closed shells that are magic numbers. For details, see the
text.
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Fig. 3. Fisher information, I, vs. the number of valence electrons, N . The arrows
indicate prominent closed shells that are magic numbers.
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