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ON THE 7TH ORDER ODE WITH SUBMAXIMAL SYMMETRY

MACIEJ DUNAJSKI AND VLADIMIR SOKOLOV

Abstract. We find a general solution to the unique 7th order ODE admitting ten dimen-
sional group of contact symmetries. The integral curves of this ODE are rational contact
curves in P

3 which give rise to rational plane curves of degree six. The moduli space of
these curves is a real form of the homogeneous space Sp(4)/SL(2).

The 7th order ODE

10(y(3))3y(7) − 70(y(3))2y(4)y(6) − 49(y(3))2(y(5))2 + 280(y(3))(y(4))2y(5) − 175(y(4))4 = 0,
(0.1)

where y = y(x) and y(k) = dky/dxk has recently appeared explicitly [11, 10, 4, 6] or
implicitly [1] is several different contexts. It is the unique (up to contact transformations)
equation admitting ten–dimensional algebra of contact symmetries, and the aim of this
note is to show that its general solution is given by a degree six rational curve of the form

y3 + α(x)y2 + β(x)y + γ(x) = 0, (0.2)

where (α, β, γ) are a quadratic, a quartic, and a sextic respectively with the coefficients
depending on seven parameters as in formula (0.11).

In fact the symmetry algebra of (0.1) was known to Lie [9] who also proved that this is
the maximal algebra of contact vector fields on the plane. It is quite possible that equation
(0.1) and its general solution were also known to Lie. We have been unable to find it in
any of Lie’s works, but we would be grateful to hear from anyone who has.

0.1. Contact Lie algebras. Let U ⊂ R
2 be an open set and let P(T ∗U) be a projectivised

cotangent bundle with a contact one–form ω. A curve γ ⊂ P(TU) is called contact if
ω|γ = 0. A contact transformation is a map f : P(TU) → P(TU) which takes contact
curves into contact curves. Equivalently f∗(ω) = λω for some function λ. Let (x, y) be
the local coordinates on U and let z parametrise the fibers of P(TU), so that we can set
ω = dy − zdx. Consider a one parameter group of contact transformations. Close to the
identity, this is characterised by a contact vector field X such that the contact condition
LXω = cω holds, where LX = d(X ) +X d is the Lie derivative and c is some function.
The contact condition implies that locally there exist a function H = H(x, y, z) such that

XH = −(∂zH)∂x + (H − z∂zH)∂y + (∂xH + z∂yH)∂z . (0.3)

If H = a(x, y)+ zb(x, y) then XH generates a prolongation of a family of point transforma-

tions f : U → U . Otherwise it generates a proper contact flow.

0.2. The symmetry. A remarkable result of Lie is that a maximum dimension of a Lie
algebra of proper contact vector fields on the plane is ten. This maximal, ten–dimensional
Lie algebra is generated by vector fields (0.3) corresponding to functions

1, x, x2, y, z, xz, x2z − 2xy, z2, 2yz − xz2, 4xyz − 4y2 − x2z2. (0.4)
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This algebra is isomorphic to so(5), or equivalently to sp(4). The first seven generators
correspond to prolonged point vector fields and the last three are the proper contact vector
fields.

The algebra (0.4) generates all contact symmetries of equation (0.1): if y(x) is a solution
to (0.1) then so is ỹ(x̃), where

x̃ = x̃(x, y, z, ci), ỹ = ỹ(x, y, z, ci), z̃ = z̃(x, y, z, ci) =
∂xỹ + z∂y ỹ

∂xx̃+ z∂yx̃
, ∂z ỹ = z̃∂zx̃

is the contact transformation generated by the vector fields (0.3) and c1, . . . , c10 are pa-
rameters of this transformation. Equivalently, any of the generators (0.4) satisfies the
linearisation of (0.1) when z = y′.

Another result of Lie [9] is that a maximal dimension of the contact symmetry algebra of
an ODE of order n > 3 is (n+ 4), with maximal symmetry occurring if only if the ODE is

contact equivalent to a trivial equation y(n) = 0. Therefore equation (0.1) is of submaximal
type [10] - it is not equivalent to the trivial equation and its symmetry algebra has the
largest possible dimension. Up to the contact equivalence (0.1) is the unique 7th order
ODE with this property.

0.3. The solution. We verify that the algebraic curve y2+x(x−1)3 = 0 solves (0.1). This
curve is parametrised by

x(t) =
1

t2 + 1
, y(t) = −

t3

(t2 + 1)2
.

The 7–dimensional subalgebra of (0.4) consisting of prolonged point symmetries integrates
to

y → c4y + c1 + c2x+ c3x
2, x → c5x+ c6, and y →

y

(1 + c7x)2
, x →

x

1 + c7x
. (0.5)

Applying this group to the given solution yields the six parameter family of solutions to
(0.1) given by a family of algebraic curves of degree four

(y +Q)2 + P = 0 (0.6)

where Q = Q(x) is an arbitrary quadratic, and P = P (x) is a quartic with one simple
and one triple root. The curves in this family have two singularities: a cusp at (x, y) =
(x0,−Q(x0)), where x0 is the triple root of P and a point at ∞ of type (2, 2, 2). Calculating
the genus of curves in this family yields

g =
3 · 2

2
− 1− 2 = 0

as the point at ∞ is not ordinary and has δ invariant equal to 4. Therefore the family is
rational, and the rational parametrisation is given by

x(t) =
b5 + b6t

2

b0 + t2
, y(t) =

b4t
4 + b3t

2 + b2t+ b1
(b0 + t2)2

.

The six parameters in (0.6) are algebraic expressions in the seven parameters (b0, . . . , b6)
one of which is irrelevant and arises only in the parametrisation.

The family of curves (0.6) is not the general solution to (0.1) as it depends on six
parameters rather than seven. To introduce the additional parameter, and construct the



ON THE 7TH ORDER ODE WITH SUBMAXIMAL SYMMETRY 3

general solution we use the contact transformation generated by1 (0.3) with H8 = z2

x̃(t) = x(t)− 2bz(t), ỹ(t) = y(t)− bz(t)2, z̃(t) = z(t), (0.7)

where

z(t) =
ẏ(t)

ẋ(t)
=

(4b4b0 − 2b3)t
3 − 3b2t

2 + (2b3b0 − 4b1)t+ b2b0
2(b5 − b0b6)(b0t+ t3)

,

and (b, b0, . . . b6) are constant parameters. The relation (0.7) gives a seven–dimensional
family of rational contact curves in P

3. The symplectic group Sp(4) acts on P
3 and preserves

the family (0.7). The symmetry group of any fixed rational curve in this family is SL(2), and
so the seven–dimensional space of solutions to (0.1) is the symmetric space Sp(4)/SL(2). In
the holomorphic category, a rational curve in P

3 can be characterised by a normal bundle,
which in our case is N = O(5) ⊕O(5). The contact modification of the Kodaira theorem
described in [2] can be applied to deduce that we have constructed a complete analytic
family of contact curves: an infinitesimal contact deformation of any fixed curve in the
family (0.7) also belongs to this family.

Alternatively, the general solution to (0.1) can be given by an implicit relation

u(x, y, z) = 0, v(x, y, z) = 0 (0.8)

where (x, y, z) are coordinates on an open set in P
3. Using (0.6) and (0.7) we find

u = (y + bz2 +Q(X))2 + P (X), v = 4P (z +Q′)2 + (P ′)2

where Q = Q(X) is a quadratic, P = P (X) is a quartic with one simple and one triple
root, and X = x+ 2bz. To find an explicit formula for y(x) pick a real root z of the cubic
v = 0, substitute this to u = 0 and solve the remaining quadratic for y. Alternatively
we use the Bezout resultant to produce a planar curve birationaly equivalent to (0.8) by
eliminating z between u and v. To obtain manageable formula consider (0.8) with Q = 0
and P = X(X − 1)3, and find the resultant of u and v. This resultant factorises into two
terms, each giving a rational curve of degree six. We choose one of these two curves2

(

64 b+ 1024 b3
)

y3 +
((

768 b2 + 16
)

x2 − 768xb2 + 288 b2
)

y2

+
(

264x2b− 108 b3 + 192x4b− 72xb− 384x3b
)

y (0.9)

+
(

48x4 − 27 b2 + 54xb2 − 16x3 − 27x2b2 − 48x5 + 16x6
)

= 0.

This curve does not belong to the class (0.6): it has two cusps and one non-ordinary
singularity at ∞ whereas (0.6) has one cusp (apart from the singularity at ∞). The curve
(0.9) possesses the following property: its discriminant is a cube of a quartic Q(x) in x
with two real roots. These roots correspond to the positions of the finite cusps, as in
Figure 1. For any such curve (0.2) the cross-ratio ρ of the roots of Q is an invariant with
respect to transformations (0.5). It is possible to verify that for (0.9) we have ρ = ε, where
ε = exp ( iπ3 ). To bring the curve (0.9) to a canonical form we first set the coefficient of y2

1For completeness we present the contact transformations generated by (0.3) with H9 = 2yz − xz2 and
H10 = 4xyz − 4y2

− x2z2 respectively. They are given by

x̃ =
x(1 + c9z)− 2c9y

1− c9z
, ỹ =

y(1− 2c9z) + c9xz
2

(1− c9z)2
, z̃ =

z

1− c9z
, and

x̃ =
x

1 + 4c10y − 2c10xz
, ỹ =

y + 4c10y
2
− 4c10xyz + c10x

2z2

(1 + 4c10y − 2c10xz)2
, z̃ =

z

1 + 4c10y − 2c10xz

where c9, c10 ∈ R. The degree four curve (0.6) can be obtained applying H9 and the point transformations
to the trivial solution y = x2.

2The second curve is not a solution to the ODE (0.1). Its singular points consist of an irregular point
at ∞ and two finite double points. The discriminant is proportional to Q(x)R(x)2 where Q(x) is a quartic
corresponding to the discriminant of (0.9), and R(x) is another quartic.
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Figure 1. Curve (0.9) with b = 1/2 and curve (0.6) with Q = 0, P = x(x− 1)3.
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to zero by a transformation of the form y → y + c1 + c2x+ c3x
2. After that the remaining

Möbius transformations can be used to set Q(x) = x(x− 1)(x − ρ). This, up to scaling of
y, yields

y3 − 3y
(

x− (1− ε)
)(

x− (1 + ε)
)(

x−
1

3
(1 + ε)

)(

x− (−1 + ε)
)

+

2
(

x− (1− iε)
)(

x− (1+ iε)
)(

x− (i− iε)
)(

x− (−i+ iε)
)(

x− (i+ ε)
)(

x− (−i+ ε)
)

= 0.

The discriminant Q(x) of this curve is proportional to x3(x− 1)3(x− ε)3.
Using this complex canonical form, we easily can find a real one. To do that we find

four roots of the sextic in x in the complex canonical form such that their cross-ratio is
−1. Using the Möbius transformations, we move these roots to ±1 ± i. The result (up to
scaling of x and y) is given by

y3 + 3(3x4 − 6x2 − 1)y + 12x(3x4 + 1) = 0 (0.10)

which can be parametrised by

x(t) =
t(t2 − 3)

3(t2 + 1)
, y(t) = −

4t(t4 + 3)

3(t2 + 1)2
.

To get the general solution for 7th order ODE (0.1) we apply the point transformations
(0.5) to (0.10). The resulting degree six rational curve of the form (0.2) is given by

(

c4y + c1 + c2x+ c3x
2
)3

(0.11)

+3
(

3 (c5x+ c6)
4 − 6 (c5x+ c6)

2 (1− c7x)
2 − (1− c7x)

4
)

(

c4y + c1 + c2x+ c3x
2
)

+12 (c5x+ c6)
(

3 (c5x+ c6)
4 (1− c7x) + (1− c7x)

5
)

= 0.

0.4. Conclusions. We have found the general solution of the 7th order ODE (0.1). This
equation is submaximal as its symmetry algebra is ten–dimensional, wheres the algebra
of the trivial 7th order ODE is eleven–dimensional. The general solution to (0.1) is given
by the seven dimensional orbit of the point transformations (0.5) acting on the canonical
solution (0.10). There also exists a six–dimensional submanifold in the space of solutions
given by degree four curves (0.6). For each contact transformations generated byH8,H9 and
H10 in (0.4) there exists a point transformation such that the composition of the two fixes
(0.10). This gives a stabiliser SL(2) of (0.10) and finally the solution space Sp(4)/SL(2).

The analogous, submaximal 5th order ODE characterises conics in RP
2. In the inhomo-

geneous coordinates (x, y) the five parameter family of conics is

y2 = c1 x
2 + c2 xy + c3 y + c4 x+ c5.
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Eliminating the parameters (c1, . . . , c5) between this equation and its fourth derivatives
and substituting in the fifth derivative yields the ODE

9(y(2))2y(5) − 45y(2)y(3)y(4) + 40(y(3))3 = 0.

This construction goes back to Halphen [8] who wrote the equation as ((y(2))−2/3)(3) = 0.

The seven–dimensional space of solutions M to (0.1) carries a GL(2,R) structure in the
sense of [5, 4]: TM has a pointwise identification with a vector space of homogeneous degree
six polynomials in two variables. The five Wünschmann–Doubrov–Wilczynski invariants
vanish on the ODE (0.1) which implies [3] that the linearisation of (0.1) is equivalent to

a trivial ODE δy(7) = 0. Moreover [6], M also admits a conformal structure of signature
(3, 4). The null vectors of this structure correspond to the six order polynomials

a1x
6 + 6a2x

5 + 15a3x
4 + 20a4x

3 + 15a5x
2 + 6a6x+ a7

with vanishing quadratic invariant [7]

a1a7 − 6a2a6 + 15a3a5 − 10a24.

In [6] it was shown that the conformal structure associated to (0.1) contains a metric with

weak holonomy G̃2: there exists a three form φ on M such that

dφ = Λ ∗ φ, d ∗ φ = 0

where Λ is a constant, and ∗ is the Hodge operator. Taking an analytic continuation
of this structure to the Riemannian signature yields the homology seven–sphere M =
SO(5)/SO(3) with its canonical weak G2 structure originally constructed by Bryant [1].
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