催化学报

Chinese Journal of Catalysis

Vol. 31 No. 1

文章编号: 0253-9837(2010)01-0068-04

DOI: 10.3724/SP.J.1088.2010.90601

研究论文: 68~71

Fe含量对FeAlPO-5催化剂上甲烷还原N2O反应的影响

赵晓旭,程党国,陈丰秋,詹晓力

浙江大学化学工程与生物工程学系,浙江杭州 310027

摘要:采用水热法制备了一系列不同Fe含量的FeAIPO-5催化剂,并将其用于CH4催化还原N2O反应.结果表明,FeAIPO-5催化剂剂在此反应中表现出较高的低温活性.N2吸附、X射线衍射和紫外可见光谱等表征结果表明,水热法制备的FeAIPO-5催化剂具有典型的AIPO-5分子筛结构.Fe含量对催化剂的活性及催化剂中Fe物种的分布有较大影响,当w(Fe)=2.4%时,催化剂除含有可促使CH4低温还原N2O反应的孤立态的Fe物种和低聚态的Fe物种外,还含有相当数量的可使N2O直接催化分解的纳米态的Fe物种.

关键词:铁;AIPO-5分子筛;甲烷;催化还原;氧化亚氮 中图分类号:O643/X7 文献标识码:A

Influence of Fe Content on Catalytic Reduction of N₂O with CH₄ over FeAlPO-5 Catalyst

ZHAO Xiaoxu, CHENG Dang-guo^{*}, CHEN Fengqiu, ZHAN Xiaoli

Department of Chemical and biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China

Abstract: Fe-substituted AIPO-5 zeolite (FeAIPO-5 catalyst) samples with different Fe contents were prepared by the hydrothermal method and used in catalytic reduction of N_2O with CH₄, exhibiting good low-temperature activity. The AIPO-5 and FeAIPO-5 samples were characterized by N_2 physisorption, X-ray diffraction, and UV-visible spectroscopy. The results showed that the FeAIPO-5 samples had the typical structure as that of AIPO-5 zeolite. The Fe content had strong influence on the catalyst activity and the distribution of Fe species. The 2.4% FeAIPO-5 catalyst contained not only isolated Fe^{III} and oligonuclear Fe^{III}, being active for catalytic reduction of N_2O with CH₄, but also a considerable nanosized Fe^{III}, being responsible for N_2O decomposition.

Key words: iron; AlPO-5 zeolite; methane; catalytic reduction; nitrous oxide

氧化亚氮 (N₂O) 是除 CO₂和 CH₄外的第三大温 室气体^[1]. 据报道, N₂O 的温室效应是 CO₂的 310 倍, 是 CH₄的 21 倍^[2]. 当N₂O 传输到平流层时,会转化为 NO,破坏臭氧层^[3]. 18世纪末期以来,大气中 N₂O 的 浓度呈逐年上升的趋势. N₂O 主要来源于农业中的 土壤开采过程^[4],工业中尼龙 66 的生产过程^[2],含氮 酸的生产过程^[5,6]以及煤的燃烧过程^[7];在 NO_x的消 除过程中也会产生 N₂O^[8]. 随着生态破坏的日趋严 重以及环境质量的不断下降,如何有效控制 N₂O 的 排放已经成为一个亟待解决的问题,日益受到人们 的关注. N₂O的脱除方法主要有热分解法、催化直接分解法和催化还原法.近年来,研究人员围绕CH₄催化还原 N₂O开展了大量的工作^[9~12].这主要是由于CH₄的储量丰富且分布广泛,比其他烃类更容易获得;同时,CH₄存在于大多数燃烧过程的尾气中,所以采用甲烷催化还原 N₂O具有更广阔的实用前景和经济价值^[13].目前用于CH₄催化还原 N₂O的催化剂主要是含Fe 催化剂,如FeZSM-5和Fe-BETA等.但是,这些分子筛骨架有强酸中心,在水蒸气存在条件下,骨架上的质子酸会加速骨架脱铝,导致分子筛的水热稳定性较差^[14].我们曾合成了FeAIPO-5 催化

收稿日期: 2009-06-04.

联系人:程党国. Tel: (0571)87952728; Fax: (0571)87951227; E-mail: dgcheng@zju.edu.cn 基金来源:国家自然科学基金 (20806070).

剂,并应用于 CH₄ 催化还原 N₂O 反应.由于 AlPO-5 分子筛骨架呈电中性,故这类分子筛具有良好的水 热稳定性,在反应中也表现出较高的活性和稳定 性^[15,16].本文在前期工作的基础上,进一步考察了 Fe 含量对 FeAlPO-5 催化剂上 CH₄还原 N₂O 反应的影 响,并通过表征手段研究了不同 Fe 物种在反应中的 作用机理.

1 实验部分

1.1 催化剂的制备

将适量的异丙醇铝水解制得 Al(OH)₃,并向其中 依次加入磷酸和硝酸铁,搅拌 1h 后逐滴加入三乙胺 继续搅拌均匀,陈化 12h 后制得凝胶,将其装入带有 聚四氟乙烯内衬的反应釜中,在 140 ℃下晶化 36 h. 晶化产物经过滤、洗涤后于 120 ℃下干燥 12 h,再于 550 ℃ 焙烧 8 h,即制得 FeAlPO-5 催化剂,详见文 献[16,17]. 上述过程中不加硝酸铁可制得 AlPO-5 分 子筛.

1.2 催化剂的表征

样品的 XRD 谱采用 Rigaku D/max-RA 型 X 射线 衍射 仪测定, Cu K_{α} 射线 ($\lambda = 0.154\ 06\ nm$), 管电压 38 kV, 管电流 130 mA. 样品的孔结构采用 N₂吸附法在 Micromeritics ASAP 2020 型自动吸附仪上测定. 其 中平均孔径和比表面积分别用 HK 法和 BET法计算. 样品的 UV-Vis 谱在 TU-1901 型紫外-可见光谱仪上 进行, 扫描范围 200~800 nm. 样品的组成通过 IRIS Intrepid II XPS 型等离子体发射光谱仪测定.

1.3 催化剂的评价

CH4催化还原 N₂O 反应在常压固定床反应器中 进行.反应气中 CH4和 N₂O 的体积分数均为 15%, Ar 为平衡气;气体总流量为 100 ml/min;催化剂 (20~40 目)用量为 0.5 g;反应温度为 300~650 °C.反应物和 产物 (N₂, CO₂, CO和 O₂等)采用科创 8810 型气相色 谱仪 (配有 5A 分子筛填充柱和 402 填充柱, TCD 检 测器)进行在线分析.催化剂的活性用 N₂O和 CH₄的 转化率表示.

2 结果与讨论

2.1 催化剂的元素组成和孔结构

表1为AlPO-5和不同FeAlPO-5样品的元素组成和孔结构性质.可以看出,不同FeAlPO-5样品的

表1 AIPO-5和不同 FeAIPO-5样品的元素组成及孔结构性质

Table 1	Elemental	composition	and	pore	structure	properties	of
AlPO-5 at	nd different	t FeAlPO-5 sa	mple	es			

Samula	Cor	nposition	(%)	$1/(m^2/\sigma)$	d /mm	
Sample	Fe	Al	Р	A/(III ⁻ /g)	$a_{\rm P}/\rm mm$	
AlPO-5	0.00	22.12	25.31	203.9	0.6520	
0.6%FeAlPO-5	0.64	22.91	24.73	202.7	0.6487	
1.2%FeAlPO-5	1.21	21.73	23.81	200.9	0.6484	
1.8%FeAlPO-5	1.85	20.84	22.79	200.1	0.6483	
2.4%FeAlPO-5	2.26	19.91	21.55	180.6	0.6475	

比表面积均略小于 AIPO-5 分子筛的比表面积,尤其 是 2.4%FeAIPO-5 样品的比表面积减小得较为明显. 所有 FeAIPO-5 样品的平均孔径基本保持在 0.65 nm 以下,均略小于 AIPO-5 分子筛的平均孔径. 这与文 献[17]报道的结果相一致.

2.2 催化剂的物相

图 1 为 AlPO-5 和不同 FeAlPO-5 样品的 XRD 谱. 由图 1(a) 可以看出, 各样品的结晶情况良好, 均 在 2*θ* = 7.4°, 12.9°, 15.0°, 19.8°, 21.1°, 22.4°, 26.0°, 29.1°, 30.1°, 34.6°和 37.8°处有 AlPO-5 分子筛的特征 衍射峰. 这与文献[17]报道的结果一致. 由图 1(b) 可 以看出,随着 Fe的加入, 在 2*θ*=19.8°, 21.1°和 22.4°处 的衍射峰均有不同程度的向低角方向位移. 这说明 Fe 离子已取代部分 Al 离子, 进入分子筛的骨架, 由 于 Fe-O 的共价半径比 Al-O 的大, 所以使得分子筛的 晶胞参数变大^[15,17]. 还可以看出, 随着 Fe 的加入, 在 2*θ*=20.5°和 21.6°处出现另外两个衍射峰, 且逐渐向 低角方向位移. 这主要与 FeAl₂(PO₄)₂(OH)₂ 晶相的形 成有关^[15].

2.3 催化剂中Fe物种的形态

UV-Vis 被广泛应用于分析含 Fe 分子筛中 Fe 物种的形态及其所处的化学环境^[18,19].一般认为,分子筛中的 Fe^{III}物种会以 3 种不同的形态存在: (1) 以四面体或者八面体配位形式存在的孤立态的 Fe 物种; (2)存在于分子筛内外表面的低聚态的 Fe 物种; (3)存在于分子筛内外表面的纳米态的 Fe 物种^[18-20]. 图 2 为不同 FeAIPO-5 样品的 UV-Vis 谱.可以看出,所有样品均在 200~800 nm 间有较强的吸收.

参照文献[20], 将图 2 中 UV-Vis 谱进行分峰处 理, 拟合结果如表 2 所列. 其中, 300 nm 以下的吸收 峰归属于孤立态的 Fe 物种; 300~400 nm 间的吸收峰

图 1 AlPO-5 和不同 FeAlPO-5 样品的 XRD 谱

Fig. 1. XRD patterns (a) and spectra magnification (b) of AlPO-5 and different FeAlPO-5 samples. (1) AlPO-5; (2) 0.6%FeAlPO-5; (3) 1.2% FeAlPO-5; (4) 1.8%FeAlPO-5; (5) 2.4%FeAlPO-5.

归属于低聚态的Fe物种; 500 nm以上的吸收峰归属 于纳米态的Fe物种.可以看出,当w(Fe)<2.4%时,三 类Fe物种的分布相差不大;当w(Fe)=2.4%时,孤立 态的Fe物种含量有所减少,而其他两类Fe物种的 含量有所增加,特别是纳米态的Fe物种含量增加尤

图 2 不同 FeAlPO-5 样品的 UV-Vis 谱

Fig. 2. UV-Vis spectra of different FeAlPO-5 samples. (1) 0.6%FeAlPO-5; (2) 1.2%FeAlPO-5; (3) 1.8%FeAlPO-5; (4) 2.4% FeAlPO-5.

为明显. 这与文献[21]报道的 FeZSM-5 相关结果一致.

2.4 催化剂的性能及活性位探讨

图 3 为 AlPO-5 和不同 FeAlPO-5 样品的催化活 性.可以看出,加入少量的Fe能显著提高催化剂的 活性. 随着 Fe 含量的增加, FeAlPO-5 催化剂上 N₂O 的转化率逐渐升高(最高可达100%); CH4的转化率 也有逐渐升高的趋势,但1.8%FeAlPO-5催化剂上 CH₄的转化率最高 (可达 33%),同时检测到 2.4%FeAlPO-5催化剂的反应产物中有一定量的O₂. 这说明Fe含量过高时并没有促进CH4与N2O反应, 而是引发了 N₂O 的直接分解. 这主要是由于 2.4%FeAlPO-5催化剂上存在较多的纳米态Fe物种 所致. 孤立态的Fe物种和低聚态的Fe物种是低温下 CH4催化还原 N2O的活性中心^[20];纳米态的 Fe 物种 是催化N2O直接分解的活性位^[22].在Fe含量相对较 低时,催化剂中以孤立态的Fe物种和低聚态的Fe物 种的作用为主; 当Fe含量较高时,催化剂中纳米态 Fe物种的作用不可忽略.因此,2.4%FeAlPO-5的催

表	2	不同 FeAlPO-5 样品的 UV-Vis 谱分峰拟合结果	
Table 2	Pea	k fitting for UV-Vis spectra of different FeAlPO-5 samples	;

	Peak relative area (%)						
Sample	Isolated Fe ^{III}		Oligonuc	elear Fe ^{III}	Nanosized Fe ^{III}		
	230 nm	275 nm	315 nm	375 nm	460 nm	540 nm	
0.6%FeAlPO-5	33.2	39.3	12.8	9.0	3.5	2.2	
1.2%FeAlPO-5	33.2	38.4	13.1	9.6	3.5	2.2	
1.8%FeAlPO-5	33.0	36.1	12.2	10.0	5.4	3.3	
2.4%FeAlPO-5	26.6	33.0	14.9	11.9	10.3	3.3	

Fig. 3. Catalytic activity of AlPO-5 and different FeAlPO-5 samples. (a) N_2O conversion; (b) CH_4 conversion. (1) AlPO-5; (2) 0.6%FeAlPO-5; (3) 1.2%FeAlPO-5; (4) 1.8%FeAlPO-5; (5) 2.4% FeAlPO-5.

化性能与其他样品的催化性能有所不同.

3 结论

通过水热法合成了一系列不同 Fe 含量的 Fe-AlPO-5 催化剂样品. 这些催化剂样品具有与 AlPO-5 分子筛类似的晶体结构. FeAlPO-5 催化剂对 CH4 催 化还原 N₂O 具有较高的低温活性,其中 1.8%FeAlPO-5 对 CH4 还原 N₂O 的活性较高; 2.4%FeAl-PO-5上的N₂O转化率虽然较高,但CH₄转 化率在470 ℃以上相对较低.这主要是由于不同催 化剂样品中含有的Fe物种不同所致.

参考文献

- 1 Dickinson R E, Cicerone R J. Nature, 1986, 319: 109
- 2 Badr O, Probert S D. Appl Energy, 1992, 41: 177
- 3 Pathak H. Curr Sci, 1999, 77: 359
- 4 Thiemens M H, Trogler W C. Science, 1991, 251: 932
- 5 Perez-Ramirez J, Kapteijn F, Schöffel K, Moulijn J A. Appl Catal B, 2003, 44: 117
- 6 Perez-Ramirez J. Appl Catal B, 2007, 70: 31
- 7 Galle M, Agar D W, Watzenberger O. Chem Eng Sci, 2001, 56: 1587
- 8 Odaka M, Koike N, Suzuki H. Chemosphere, 2000, 2: 413
- 9 Kameoka S, Kita K, Takeda T, Tanaka S, Ito S, Yuzaki K, Miyadera T, Kunimori K. Catal Lett, 2000, 69: 169
- 10 Yoshida M, Nobukawa T, Ito S, Tomishige K, Kunimori K. J Catal, 2004, 223: 454
- 11 Nobukawa T, Sugawara K, Okumura K, Tomishige K, Kunimori K. Appl Catal B, 2007, **70**: 342
- 12 Kondratenko E V, Pérez-Ramírez J. Catal Today, 2007, 119: 243
- 13 Armor J N. Catal Today, 1995, 26: 147
- 14 Pieterse J A Z, Pirngruber G D, van Bokhoven J A, Booneveld S. Appl Catal B, 2007, 71: 16
- 15 Chen F Q, Do M H, Zheng W, Cheng D G, Zhan X L. Catal Commun, 2008, 9: 2481
- 16 Cheng D G, Zhao X X, Chen F Q, Zhan X L. Catal Commun, 2009, 10: 1450
- 17 Wei W, Moulijn J A, Mul G. Microporous Mesoporous Mater, 2008, 112: 193
- 18 Balle P, Geiger B, Kureti S. Appl Catal B, 2009, 85: 109
- 19 Wang L M, Tian B Zh, Fan J, Liu X Y, Yang H F, Yu Ch Zh, Tu B, Zhao D Y. *Microporous Mesoporous Mater*, 2004, 67: 123
- 20 Li L D, Shen Q, Li J J, Hao Zh P, Xu Zh P, Max Lu G Q. Appl Catal A, 2008, 344: 131
- 21 张春雷, 吴志芸, 阚秋斌. 催化学报 (Zhang Ch L, Wu Zh Y, Han Q B. Chin J Catal), 1995, 16: 332
- 22 Giecko G, Borowiecki T, Gac W, Kruk J. Catal Today, 2008, 137: 403