Chinese Journal of Catalysis

Vol. 31 No. 3

文章编号: 0253-9837(2010)03-0302-05

DOI: 10.3724/SP.J.1088.2010.90833

研究论文: 302~306

室温下钯-金属酞菁/分子筛复合催化剂催化甲烷选择氧化制甲醇

樊亚芳^{1,2}, 王春雷¹,马 丁¹,包信和¹ ¹中国科学院大连化学物理研究所催化基础国家重点实验室,辽宁大连116023

²中国科学院研究生院,北京100049

摘要: 在交换了 Fe²⁺, Co²⁺或 Cu²⁺的 Y 型分子筛上, 采用苯酐-尿素固相合成法制备了组装在 Y 型分子筛超笼中的金属酞菁类催 化剂.以H₂O₂为氧化剂, 考察了该金属酞菁/分子筛复合物上甲烷选择氧化制甲醇反应的性能, 并优化了反应条件. 结果表明, 在 室温下, 金属酞菁/分子筛复合催化剂 FePc/Y, CoPc/Y 和 CuPc/Y 对 H₂O₂氧化甲烷反应均有催化作用. 在这些复合物上进一步担 载可催化 H₂O₂原位生成的 Pd, Au 或 PdAu 贵金属, 并考察了其催化分子氧选择氧化甲烷反应的性能. 贵金属与金属酞菁/分子筛 复合催化剂的偶合实现了室温下分子氧对甲烷的活化. 其中, Pd 与 CuPc/Y 间的协同效应使得室温下甲烷选择氧化反应活性有 了较大提高.

关键词: 金属酞菁; 钯; 金; 过氧化氢; 甲烷; 选择氧化; 甲醇 中图分类号: O643 文献标识码: A

Selective Oxidation of Methane to Methanol over Palladium-Metallophthalocyanine Composite Catalysts at Room Temperature

FAN Yafang^{1,2}, WANG Chunlei¹, MA Ding^{1,*}, BAO Xinhe^{1,*}

¹State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China ²Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Iron(II), cobolt(II), and copper(II) phthalocyanines encapsulated inside the supercage of zeolite-Y were prepared by the in situ ligand synthesis method via heating the solid mixture of iron(II)-, cobolt(II)-, and copper(II)-exchanged NaY with phthalic anhydride and urea. Using hydrogen peroxide as the oxidant, the catalytic activity of these composite catalysts for methane selective oxidation was tested, and the reaction conditions were optimized. All these composite catalysts showed activity in selective oxidation of methane by hydrogen peroxide at room temperature. These composite catalysts were further loaded with Pd, Au, or PdAu, and their catalytic activity for methane oxidation with dioxygen as oxidant were examined. The coupling of encapsulated metallophthalocyanine catalysts with precious metal, which could catalyze the in situ generation of H_2O_2 , realized the activation of methane by molecular oxygen at room temperature. The results showed that the synergism between palladium and copper(II) phthalocyanine led to the improved catalytic activity in selective oxidation of methane at room temperature.

Key words: metallophthalocyanine; palladium; gold; hydrogen peroxide; methane; selective oxidation; methanol

甲烷选择氧化制甲醇是甲烷催化转化研究的热 点和难点^[1,2]. 金属酞菁类化合物 (MPc) 是含有 18 个 π电子的多环有机物与金属组成的配合物,具有独特 的电子结构,因而在烃类选择氧化反应中表现出良 好的催化性能^[3,4]. 然而,在均相反应体系中,金属酞 菁分子间强的π-π相互作用导致它们极易聚合为二 聚体或多聚体,且自身也易发生氧化分解,从而导致 催化剂活性降低,大大限制了 MPc 的实际应用^[5].将 金属酞菁类化合物组装在分子筛超笼内,不仅可以 实现活性位的分离,避免分子间的二聚、多聚或自氧 化等副反应的发生,还可以充分利用分子筛超笼的 限域作用,提高金属配合物的催化活性和稳定性^[6,7].

收稿日期: 2009-08-26.

联系人:马 丁. Tel: (0411)84379253; E-mail: dma@dicp.ac.cn
包信和. Tel: (0411)84686637; E-mail: xhbao@dicp.ac.cn
基金来源:国家自然科学基金(20773121); 中国科学院百人计划.

Chan 等^[8]发现, 在气固相反应条件下, 分子筛固载的 金属酞菁类化合物可以将少量甲烷氧化为甲醇. Raja 等^[9]以叔丁基过氧化氢 (TBHP) 为氧化剂, 以封 装在分子筛笼内的铁酞菁和铜酞菁配合物为催化剂, 在液相温和反应条件下, 以较高的活性和选择性实 现了甲烷向甲醇和甲醛的直接转化.

与TBHP相比,分子氧原料易得,价格低廉.因此,用分子氧活化甲烷是人们长期以来所追求的目标.然而,三线态分子氧与单线态甲烷的反应是自旋禁阻的,难以进行^[10].研究表明,在H₂气氛下,分子筛 担载的Pd或Au等贵金属可以活化分子氧并原位生成H₂O₂物种^[11~13];该物种具有较高的氧化能力,可 以直接或在金属酞菁类化合物存在下对有机底物进 行选择氧化^[14].为了避免因H₂与O₂直接接触造成 爆炸的危险,本文采用水气变换反应生成的氢物种 替代原料气中的H₂,考察了担载贵金属(Pd,Au)的 金属酞菁/分子筛复合催化剂上甲烷部分氧化的反 应性能,并与金属酞菁/分子筛复合催化剂上以H₂O₂ 为氧化剂的甲烷选择氧化反应结果进行了比较.

1 实验部分

1.1 催化剂的制备

把成型的 NaY 分子筛 (南京合一化学有限责任 公司, Si/Al 比为 2.7) 粉碎, 筛取颗粒度小于 80 目的 粉末, 并在 500 °C 焙烧 4h 后备用. 各取 2g 的 NaY 分 子筛分别放到 100 ml 的 FeCl₂, CoCl₂和 CuCl₂溶液 (5 mmol/L) 中, 室温搅拌 20 h, 再用去离子水洗涤样品 至无 CI⁻检出, 再在 120 °C 干燥 12 h, 分别记为 Fe/Y, Co/Y和 Cu/Y.

采用苯酐-尿素法制备 NaY 分子筛封装的金属 酞菁催化剂 (MPc/Y)^[15,16].将一定量 MY (Fe/Y, Co/Y 或 Cu/Y)、钼酸铵、苯酐、氯化铵和尿素 (质量比为 1:0.1:0.5:1:1) 研磨均匀,在 240 °C 搅拌 20 min 后,在 220 °C 反应 8h. 然后,把样品磨碎后装入索氏提取器, 以丙酮抽提至溶剂无色,将样品在 100 °C 干燥 12 h, 所得样品分别记为 FePc/Y, CoPc/Y 和 CuPc/Y.

采用等体积浸渍法制备负载贵金属 (Pd, Au 或 Pd-Au)的 MPc/Y 催化剂. 将 0.5g的 MPc/Y 分别与不 同贵金属盐的溶液在室温下搅拌 10h, 然后在 100 °C 干燥 24 h, 所得样品分别记为 1%Pd-MPc/Y, 1%Au-MPc/Y 和 0.5% Pd-0.5% Au-MPc/Y.

1.2 催化剂的表征

催化剂的紫外-可见 (UV-Vis) 漫反射光谱在 JASCO V-500 型紫外-可见漫反射光谱仪上测定,扫 描范围 400~850 nm,扫描速率 100 nm/min.

1.3 催化剂的活性评价

甲烷液相氧化反应在间歇式钛镍合金高压反应 釜中进行.反应釜配有特制的石英内衬,其有效体积 约为30ml.将0.1g催化剂、一定量溶剂(或者氧化剂, 总量为6ml)与磁力搅拌子一并放入反应釜中.用 CH4置换反应釜3次后,充入2MPa的CH4以及0.5 MPa的CO和0.5MPa的O₂(部分实验没有添加CO 和O₂).将反应釜放入油浴,开启搅拌并在设定温度 下反应一定时间.待反应结束后降至室温,将反应釜 放入冰水中冷却30min.用气袋收集气体样品进行 分析.液体样品离心分离后取上层清液进行分析.

样品分析在 Agilent 6890N 型气相色谱仪上进行. TCD 检测器连接 PN 填充柱 (3 mm×1.5 m) 和 TDX-01 填充柱 (3 mm×1.5 m); FID 检测器连接 HP-PLOTQ 毛细管柱 (0.53 mm×30 m).

2 结果与讨论

2.1 MPc/Y催化剂的UV-Vis谱

金属酞菁类分子具有平面正方形的D4,构型,酞 菁中π电子的π-π*跃迁在 600~800 nm 处形成吸收峰, 通常称为Q吸收带.图1给出了FePc/Y,CoPc/Y和 CuPc/Y 样品的 UV-Vis 谱. 可以看出, 各样品在 500~800 nm 范围内均有金属酞菁类分子的特征 Q 吸 收带,表明样品中均含金属酞菁.为了便于比较,图1 还给出了不同溶剂中 FePc, CoPc 和 CuPc 标样的 UV-Vis谱.可以看出,随着溶剂酸性的增强,MPc的 质子化程度逐渐增加,其对称性和UV-Vis 谱也随之 发生变化. 由图 1(f) 可以看出, CuPc 的质子化程度 (即酞菁分子对称性)对其UV-Vis谱的影响.当CuPc 溶解在氯苯中时,位于673 nm 处的吸收峰对应于Q 吸收带,而606nm处弱吸收峰则是Q吸收带的振动 分量^[17]. CuPc 溶解于三氟乙酸中时, CuPc 的Q吸收 带红移并发生分裂,在684和717nm处形成两个吸 收峰. 这是由于CuPc质子化产物CuPc·2H⁺分子的对 称性低于D4h,其Q吸收带被分裂为Qx和Qv两部分, 相应吸收峰也分裂成两个^[18]. CuPc溶解于硫酸中时 形成完全质子化的 CuPc·4H⁺, 其对称性恢复为 D_{4h} ,

Fig. 1. UV-Vis diffuse reflection spectra of FePc/Y (a), CoPc/Y (b), and CuPc/Y (c) and absorption spectra of FePc (d), CoPc (e), and CuPc (f) in chlorobenzene (1), trifluoroacetic acid (2), and sulfuric acid (3).

Q吸收带又成为单个吸收峰,并进一步红移.从FePc 和 CoPc 标样的 UV-Vis 谱可观察到类似的现象.由 此可见, 酞菁分子对称性降低后, 其Q吸收带将发生 宽化和分裂.

Y型分子筛骨架中有六方柱、β笼和八面沸石笼 (超笼),它们的孔径分别为0.22,0.66和1.18nm,而金 属酞菁分子的平均有效直径为1.60nm.虽然3种笼 内均有可供发生离子交换的位置,但由于尺寸效应, 金属酞菁分子只能通过一定程度的扭曲变形(呈马 鞍形)在八面沸石笼中生成^[19].由图1(a)~(c)可见,封 装在Y型分子筛中的MPc/Y的Q吸收带均发生了宽 化和分裂,说明了金属酞菁分子位于Y型分子筛的 超笼中,并且由于受到超笼的限域作用而发生了一 定的扭曲和变形,导致其对称性降低^[20].

2.2 MPc/Y催化剂上H2O2氧化甲烷的反应性能

以 FePc/Y 为催化剂,首先考察了室温下不同溶剂中 H₂O₂氧化甲烷的反应性能,结果列于表 1. 可以看出,水和乙腈对甲醇生成量的影响很小,但对 CO₂ 生成量的影响较大. CO₂可以与水反应生成碳酸,溶 剂效应可能与 CO₂在水中溶解度较大有关. 由于这 两种溶剂对目标产物甲醇生成量的影响非常小,故 本文选用环境友好的水作为溶剂. 表1还给出了室温下 MPc/Y 催化剂中不同金属 配位中心 M 对 H₂O₂选择氧化甲烷反应性能的影响. 由表可见,各催化剂均有催化活性,除生成少量甲醇 外,还有较多完全氧化产物 CO₂;此外,在反应后的 气体中检测到有大量 O₂,这是由于反应过程中 H₂O₂ 大量分解所致.因此,酞菁分子的金属中心对催化剂 活性和选择性的影响很大.各催化剂上甲醇生成量 的大小顺序为 CuPc/Y>CoPc/Y>FePc/Y; CO₂生成量 依次为 CuPc/Y<CoPc/Y<FePc/Y; m O₂生成量的大 小顺序与 CO₂ 的一致.

MPc/Y 催化剂中以 FePc/Y 催化剂的活性最高, 它催化 H₂O₂分解能力也最强. 根据生成约 10% O₂量

表 1	金属酞菁催化剂上H ₂ O2对甲烷的选择氧化反应
Table 1	Selective oxidation of methane by H_2O_2 over MPc/Y cata
lvsts	

Catalant	Solvent	Product yield				
Catalyst		CH ₃ OH (µmol)	CO ₂ (µmol)	O ₂ (%)		
FePc/Y	H ₂ O	0.33	11.7	9.0		
FePc/Y	CH ₃ CN	0.33	17.6	10.8		
CuPc/Y	H_2O	0.82	1.8	2.4		
CoPc/Y	H_2O	0.50	4.8	4.8		
Pd/Y	H_2O	1.05	_	4.6		
_	H_2O	0.37	_	4.4		

Reaction conditions: 2 MPa CH_4 , H_2O_2 as oxidant, room temperature (RT), 10 h.

305

可以推测,所加入的 H₂O₂ 几乎完全分解.实验中可 以看到,当将 H₂O₂加入到分散有 FePc/Y 催化剂的水 溶液中时,有很多小气泡产生,表明 H₂O₂在快速分解. 当将 H₂O₂加入到分散有 CoPc/Y 或 CuPc/Y 催化剂 的水溶液中时,基本观察不到小气泡的产生,说明此 时 H₂O₂分解速率很低,反应后产生的 O₂量较少.尽 管 CuPc/Y 催化 H₂O₂分解的活性最低,但生成甲醇 的量却最多.这是由于生成的甲醇在没有强酸保护 的情况下,将很快被继续氧化为 CO₂. FePc/Y 催化剂 的氧化能力最强,因而甲醇生成量最少; CoPc/Y 催 化剂氧化能力次之,甲醇生成量略有增加. Manassen^[21]在研究金属酞菁催化环己二烯氧化脱氢反应 时也观察到了相同的规律,即催化剂活性的大小顺 序是 FePc>CoPc>CuPc. 这与 MPc 的氧化电位高低 顺序刚好相反.

不加催化剂的空白实验中也生成了少量甲醇, 说明 H₂O₂本身就可以氧化甲烷生成甲醇; MPc/Y 催 化剂的存在促进了 H₂O₂对甲烷的氧化. FePc/Y 催化 剂由于氧化能力过强,导致甲烷完全氧化程度增加; CoPc 和 CuPc 的氧化能力适中,有利于甲醇的生成. 当以 Pd/Y 为催化剂时,甲醇生成量为 1.05 μmol. 这 说明在 H₂O₂存在下, Pd/Y 催化剂选择氧化甲烷生成 甲醇的性能优于 MPc/Y 催化剂.

2.3 担载贵金属的 MPc/Y 催化剂上分子氧氧化甲 烷的反应性能

为了解决H2O2在FePc/Y催化下快速分解而导

致其利用率较低的问题,本文在FePc/Y催化剂上分 别浸渍上1%Pd,1%Au和0.5%Pd-0.5%Au,并在原料 气中加入CO和O2,利用贵金属催化的水气变换反 应生成的氢与分子氧原位生成H₂O₂的反应偶合,考 察了担载贵金属的 MPc/Y 催化剂对分子氧选择氧 化甲烷反应的催化性能,结果列于表2,可以看出,以 1%Pd-FePc/Y为催化剂,反应气体中加入0.5 MPa的 CO时,在室温下反应10h后,产物中可以检测到少 量甲醇,同时还有较多的CO2生成(实验1).如果反 应气体中不加CO,在相同条件下反应120h后,产物 中没有甲醇,仅有少量的CO2生成(实验2).这说明 CO是反应必需的.在CH4,O2和CO共存条件下,当 反应温度升高到80°C时,产物中检测不到甲醇,CO2 生成量为其在室温下的 3.7 倍 (实验 5). 以 1%Au-FePc/Y为催化剂时,无论反应在室温还是在 80°C下进行,产物中仅有CO2,其高温下生成量为室 温时的4倍左右(实验3和6).同样,当以 0.5%Pd-0.5%Au-FePc/Y为催化剂时,80°C时CO2生 成量为室温时的6倍以上(实验4和7).由此可见,贵 金属(特别是Pd)的加入促进了室温下金属酞菁催 化剂上分子氧对甲烷的氧化,反应温度的升高有利 于催化剂活性的提高;但高温下甲烷或甲醇的完全 氧化也变得更加严重,因而甲醇生成量减少.

以 1%Pd-MPc/Y 为催化剂,考察了催化剂中酞 菁分子的金属配位中心对分子氧选择氧化甲烷反应 性能的影响(实验 1,9 和 11).可以看出,这三种催化

Entry	Catalwat	<i>p</i> (H ₂)/MPa	p(CO)/MPa	Temperature (°C)	Time (h)	Product yield (µmol)	
	Cataryst					CH ₃ OH	CO_2
1	1%Pd-FePc/Y	_	0.5	RT	10	0.45	59.5
2	1%Pd-FePc/Y	—	_	RT	120	0.00	1.7
3	1%Au-FePc/Y	—	0.5	RT	10	0.00	6.0
4	0.5%Pd-0.5%Au-FePc/Y	—	0.5	RT	10	0.00	45.6
5	1%Pd-FePc/Y	—	0.5	80	10	0.00	223.1
6	1%Au-FePc/Y	—	0.5	80	10	0.00	24.9
7	0.5%Pd-0.5%Au-FePc/Y	—	0.5	80	10	0.30	288.6
8	1%Pd/Y	—	0.5	RT	10	2.45	14.0
9	1%Pd-CoPc/Y	—	0.5	RT	10	1.96	42.8
10	1%Pd-CoPc/Y	—	_	RT	10	0.00	_
11	1%Pd-CuPc/Y	—	0.5	RT	10	4.41	30.3
12	1%Pd-CuPc/Y	_	_	RT	10	0.00	_
13	1%Pd/Y	0.5	_	RT	10	2.62	_
14	1%Pd-CuPc/Y	0.5	_	RT	10	9.30	_

表 2 贵金属促进的金属酞菁催化剂上分子氧对甲烷的选择氧化反应 ble 2 Selective exidation of methane by O₂ over precious metal promoted MPc/Y catalyst

Reaction conditions: 2 MPa CH₄, 0.5 MPa O₂, 6 ml H₂O as solvent.

剂均有催化甲烷选择氧化的活性,甲醇生成量大小 依次是 1%Pd-CuPc/Y > 1%Pd-CoPc/Y > 1%Pd-FePc/ Y; CO₂ 生成量大小依次是 1%Pd-CuPc/Y < 1%Pd-CoPc/Y < 1%Pd-FePc/Y. 可见, 1%Pd-FePc/Y 催化剂 活性较高,但容易造成甲醇或甲烷的完全氧化,因此 反应后溶液中仅检测到少量甲醇,而生成了大量的 CO₂. 1%Pd-CoPc/Y 催化剂的活性比 1%Pd-FePc/Y 的略低,但甲醇生成量稍高.而 1%Pd-CuPc/Y 催化剂 上甲醇生成量最多.室温下 1%Pd/Y 也具有一定催 化分子氧氧化甲烷反应活性 (实验 8),而当 Pd 与具 有较高氧化性能的 FePc/Y 或 CoPc/Y 相结合时,催化 剂上甲醇生成量反而减少,CO₂生成量增多.相比之 下,CuPc/Y 催化剂氧化活性适中,且可抑制 H₂O₂的 分解,因此它与 Pd 的结合使得甲醇生成量增加.

以 1%Pd-CuPc/Y 为催化剂, 当反应气体中不含 甲烷时, 反应 30 min 后溶液中可检测到约 1 mmol/L 的 H₂O₂, 但没有检测到 H₂. 这可能是由于 H₂+O₂→ H₂O₂是一个快速步骤, 原位生成的 H₂很快就被消耗 掉.无论是以 1%Pd-CuPc/Y 还是以 1%Pd/Y 为催化 剂, 以 H₂代替原料气中的 CO 后, 甲醇产量均明显提 高 (实验 13 和 14), 间接说明原位生成的 H₂参与了催 化过程. 当反应气体中不加 CO 时, 无论是以 1%Pd-CoPc/Y 还是以 1%Pd-CuPc/Y 为催化剂, 反应 后的溶液中均未检测到甲醇 (实验 10 和 12). 这进一 步表明 CO 在反应中的必要性. 可见, 该反应历程首 先是 Pd 催化水气变换反应生成 CO₂和 H₂, 其次是 H₂ 与 O₂反应生成 H₂O₂, 然后, 原位生成的 H₂O₂ 在 CuPc/Y 的催化下将甲烷氧化为甲醇, 实现了温和条 件下分子氧氧化甲烷反应.

3 结论

Y型分子筛担载的金属酞菁类催化剂 FePc/Y, CuPc/Y和CoPc/Y在室温下对H₂O₂氧化甲烷反应均 有催化作用.其中,FePc/Y氧化能力最强,CuPc/Y氧 化能力最弱,但甲醇的生成量最多.将可以原位生成 H₂O₂的贵金属与分子筛担载的金属酞菁催化剂偶 合,实现了室温下水溶液中分子氧对甲烷的选择氧 化反应.其中,Pd与CuPc/Y的协同作用使得甲醇的 生成量多于单独使用CuPc/Y或Pd/Y催化剂时的生 成量.

参考文献

- 1 Tabata K, Teng Y, Takemoto T, Suzuki E, Banares M A, Pena M A, Fierro J L G. *Catal Rev-Sci Eng*, 2002, **44**: 1
- 2 Otsuka K, Wang Y. Appl Catal A, 2001, 222: 145
- 3 Bedioui F. Coord Chem Rev, 1995, 144: 39
- 4 Ratnasamy P, Srinivasa D. Catal Today, 2009, 141: 3
- 5 Sielcken O E, Van Tilborg M M, Roks M F M, Hendriks R, Drenth W, Nolte R J M. *J Am Chem Soc*, 1987, **109**: 4261
- 6 Tolman C A, Herron N. Catal Today, 1988, 3: 235
- 7 Zsigmond A, Notheisz F, Bäckvall J E. *Catal Lett*, 2000, **65**: 135
- 8 Chan Y W, Wilson R B. Abstr Pap Am Chem Soc, 1988, 196: 453
- 9 Raja R, Ratnasamy P. Appl Catal A, 1997, 158: L7
- 周利鹏,杨贯羽,张伟,孙志强,高进,苗虹,陈晨,马红,李 晓强,张巧红,王峰,全新利,徐杰. 自然科学进展(Zhou L P, Yang G Y, Zhang W, Sun Zh Q, Gao J, Miao H, Chen Ch, Ma H, Li X Q, Zhang Q H, Wang F, Tong X L, Xu J. *Prog Natur Sci*), 2007, **17**: 281
- Li G, Edwards J, Carley A F, Hutchings G J. Catal Commun, 2007, 8: 247
- 12 Li G, Edwards J, Carley A F, Hutchings G J. Catal Today, 2007, **122**: 361
- 13 Choudhary V R, Sansare S D, Gaikwad A G. Catal Lett, 2002, 84: 81
- 14 Clerici M G, Ingallina P. Catal Today, 1998, 41: 351
- 15 张岱山,吴越. 催化学报(Zhang D Sh, Wu Y. Chin J Catal), 1983, 4:83
- 16 Metz J, Schneider O, Hanack M. Inorg Chem, 2002, 23: 1065
- 17 Ray S, Vasudevan S. Inorg Chem, 2003, 42: 1711
- 18 Seelan S, Sinha A K, Srinivas D, Sivasanker S. J Mol Catal A, 2000, 157: 163
- 19 齐兴义, 王国甲, 张伟德, 叶兴凯, 吴越. 高等学校化学学 报(Qi X Y, Wang G J, Zhang W D, Ye X K, Wu Y. *Chem J Chin Univ*), 1995, **16**: 791
- 20 Yahiro H, Kimoto K, Yamaura H, Komaguchi K, Lund A. *Chem Phys Lett*, 2005, **415**: 126
- 21 Manassen J. Catal Rev-Sci Eng, 1974, 9: 223