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Starting with an initial random network of oscillators with a heterogeneous frequency distribu-
tion, its autonomous synchronization ability can be largely improved by appropriately rewiring
the links between the elements. Ensembles of synchronization-optimized networks with different
connectivities are generated and their statistical properties are studied.

PACS numbers: 05.45.Xt,05.10.-a

Keywords: Synchronization, Kuramoto model, Networks, Metropolis Optimization.

I. INTRODUCTION

In the last decade, much interest has been attracted to
studies of complex networks consisting of dynamical ele-
ments involved in a set of interactions [1, 2]. Particular
attention has been paid to problems of synchronization
in network-organized oscillator systems [3, 4]. Synchro-
nization phenomena are ubiquous in various fields of sci-
ence and play an important role in the functioning of
living systems [5]. Investigations focused on understand-
ing the relationship between the topological structure of
a network and its collective synchronous behavior [2].
Recently, synchronization properties of systems formed
by phase oscillators on static complex networks, such as
small-world networks [6] and scale-free networks [7, 8],
have been considered. It has also been shown that the
ability of a network to give rise to synchronous behav-
ior can be greatly enhanced by exploiting the topologi-
cal structure emerging from the growth processes [9, 10].
However, full understanding of how the network topology
affects synchronization of specific dynamical units is still
an open problem.
One possible approach is to use evolutionary learn-

ing mechanisms in order to construct networks with pre-
scribed dynamical properties. Several models have been
explored, where dynamical parameters were modified in
response to the selection pressure via learning algorithms,
in such a way that the system evolved towards a speci-
fied goal [11–16]. In our study, this approach is employed
to design phase oscillator networks with synchronization
properties. We consider adaptive evolution of a network
of coupled heterogeneous phase oscillators [17, 18]. In
such systems, heterogeneity of oscillator frequencies com-
petes with the coupling which favors emergence of coher-
ent dynamics [3, 17]. The question is how to connect
a set of phase oscillators with given natural frequencies,
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so that the resulting network would exhibit the strongest
synchronization, under the constraint that the total num-
ber of available links is fixed.

Previously, a related, but different problem of syn-
chronization optimization in a network with the fixed
topology through the modification of connection weigths
was considered [19]. Assuming that the system was in
a phase-locked state, the deterministic steepest descent
method was used to determine the coupling strengths
between elements which lead to the best possible phase
synchronization. In contrast, we consider the systems
which stay in partially synchronized states (that is, are
not fully phase-locked) and ask what should be the op-
timal topology of connections, with each link having the
same strength.

To design optimal networks, stochastic Markov Chain
Monte Carlo (MCMC) method with replica exchange is
used by us. Large ensembles of optimal networks are
constructed and their common statistical properties are
analyzed. As we observe, the typical structure of a
synchronization-optimized network is strongly dependent
on its prescribed connectivity. Sparse optimal networks,
with a small number of links, tend to display a structure
with relatively high clustering, similar to that found for
the networks of chaotic maps [20, 21]. As the connectivity
is increased, synchronization-optimized networks show a
transition to (approximately) bipartite architectures.

The paper is organized as follows. In Sec. II, we intro-
duce a model of heterogeneous phase oscillators occupy-
ing nodes of a directionally coupled network and define
the synchonization measure for this system. The opti-
mization method is also introduced in this section. Con-
struction of the optimized networks and their statistical
analysis are performed in Sec. III. The results are finally
discussed in Sec. IV

http://arxiv.org/abs/1004.1260v1
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II. THE MODEL AND THE OPTIMIZATION

METHOD

We consider N oscillators with different natural fre-
quencies placed onto the nodes of a network. The evolu-
tion of this system is given by

dθi
dt

= ωi +
λ

N

N
∑

j=1

ai,j sin(θj − θi), (1)

where ωi is the natural frequency of oscillator i and λ
is the coupling strength. The weights ai,j define the ad-
jacency matrix a of the interaction network: ai,j = 1 if
oscillator i interacts with oscillator j, and ai,j = 0 oth-
erwise. The adjacency matrix is generally asymmetric.
To quantify synchronization of the oscillators, the Ku-

ramoto order parameter

r(t) =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

exp(iθi)

∣

∣

∣

∣

∣

(2)

is employed. Under perfect synchronization, we have
r = 1, whereas r ∼ O(N−1/2) in absence of coupling
for randomly drawn natural frequencies. A second-order
transition takes place at some critical coupling strength
λc from the desynchronized to the synchronized states
[17].
To measure the degree of synchronization, we nu-

merically integrate Eq. (1) for given initial conditions
θi(t = 0) ∈ [0, 2π) and calculate the average modulus
of r(t) over a long time T,

R(a) =

〈

1

T

∫ T

0

r(t)dt

〉

init.

, (3)

where 〈. . .〉init. represents an average over many realiza-
tions with different initial conditions θi(0).
Our aim is to determine the network a which would ex-

hibit the highest degree of synchronization, provided that
the total number of links is fixed and a set of natural fre-
quencies is given. The network construction can be seen
as an optimization problem. The optimization task is to
maximize the order parameter and, possibly, bring it to
unity by changing the network a. An approximate stan-
dard approach to the problems of complex combinatorial
optimization, such as the traveling salesman problem, is
provided by the method of simulated annealing (see, e.g.
[11]). However, we are interested in the statistical prop-

erties of the synchronization-optimized networks rather
than in a search for the best-optimized network. If mul-
tiple samples are generated using conventional optimiza-
tion methods such as simulated annealing, it is difficult to
control the probability of the repeated appearance of the
same (or similar) items in the obtained set of samples.
To study statistical ensembles of optimized networks,

the MCMC method [22–24], which has previously been
applied to dynamical systems [25–32], will be used. The

canonical ensemble average of a network function f(·) is
introduced as

fβ =
∑

w

f(a) exp(βR(a))

Z(β)
, (4)

where Z(β) =
∑

w exp(βR(a)) is the partition function
and the parameter β plays the role of the inverse tem-
perature.
Hence, the problem is reduced to sampling from the

ensemble with the Gibbs distribution exp(βR(a)). Such
ensemble can be generated, for example, by using the
Metropolis algorithm [33], which is the simplest imple-
mentation of the MCMC method. The Metropolis algo-
rithm, which we use, is essentially standard. The only
important difference is that we should simulate the dy-
namics with a network a at each iterated trial.
This Metropolis algorithm appears to provide a sim-

ple and universal way of generating the Gibbs network
distribution. However, the efficiency of such algorithm
gets worse when β increases, particularly in the case of
a highly jagged landscape R(a). This deficiency can be
eliminated by using instead the Replica Exchange Monte
Carlo (REMC) algorithm, which provides an efficient
method to investigate systems with rugged free-energy
landscapes, specifically at low temperatures [34–36].
In a REMC simulation, a number of replicas {am}

with different inverse temperatures βm are evolved in
parallel. At regular evolution time intervals, the perfor-
mances of a randomly selected, adjacent pair of repli-
cas are compared. The running configurations of the
two selected replicas are exchanged with the probabil-
ity min [1, exp (∆β∆R)], where ∆β = βm+1 − βm is
the difference of the inverse temperatures of the pair
and ∆R = R(am+1) − R(wm) is the difference of their
performances. The exchange of replicas with different
temperatures effectively imitates repeated heating and
annealing, thus preventing trapping in the local per-
formance optima. Note that such stochastic exchange
algorithm preserves the joint probability distribution
Πm exp (βmR(am))/Z(βm), so that the unbiased set of
samples is generated for all inverse temperatures.
Explicitly, the algorithm is defined as follows:

1. The states of replicas {a0m} are initialized by ran-
dom networks (which is chosen as a random Erdös
-Rényi network)

2. The candidate for the next network a
′
m at iteration

step n is obtained from the current network a
(n)
m by

rewiring one of its links. A randomly chosen link is
moved to a randomly chosen link vacancy, so that
the total number of links remains conserved.

3. The evolution equations (1) for the network a
′
m are

integrated using the standard Euler algorithm. The
order parameter is then calculated and averaged
over the time interval t ∈ [0, T ] and over a fixed
number of realizations starting from different ran-
dom initial conditions. Thus, the synchronization
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FIG. 1: (Color online). The evolution of order parameters of
coupled oscillator networks during the optimization process.
The blue solid, red broken, and yellow dotted lines are for
β = β0, β5 and βM , respectively. Note that the blue solid line
is for β0 = 0 and, therefore, it corresponds to the networks
generated by only random rewiring. The parameters are p =
0.2, N = 20, λ = 1.0, γ = 0.3,M = 21, δβ = 10.

property R(a′m) of the candidate network is deter-
mined.

4. Next, a random number x ∈ [0, 1] is uniformly
drawn. If

x <
exp(βR(a′m))

exp(βR(a
(n)
m ))

,

the candidate is accepted and taken as a
(n+1)
m =

a
′
m; otherwise nothing is changed, so that a(n+1) =

a
(n)
m .

5. At regular evolution time intervals, the perfor-
mances of a randomly selected, adjacent pair of
replicas are compared. The running configurations
of the two selected replicas are exchanged with the
probability

min
[

1, exp
{

(βm+1 − βm)(R(a
(n+1)
m+1 )−R(w(n+1)

m )
}]

.

6. Return to Step (2) until the statistical average
Eq. (4) converges.

III. NUMERICAL ANALYSIS

To determine the synchronization degree of a given net-
work at each iteration step of the optimization procedure,
equations (1) were numerically integrated with the time
increment ∆t = 0.05. Averaging over five independent
realizations started from different random initial condi-
tions has been furthermore performed at each iteration
step. Oscillator ensembles of sizes N = 10 and 20 were
considered. Natural frequencies of the oscillators were al-
ways chosen as ωi = −γ+2γi/N , so that they uniformly
distributed within the interval [−γ, γ] [40].

Initial phases θi(0) = 2πfinit(i)/N uniformly dis-
tributed inside the interval [0, 2π), where finit(i) is a
random one-to-one mapping between {1, · · · , N}. Hence,
the order parameter at t = 0 always zero. To construct
initial random networks with a given number K of con-
nections and, thus, the connectivity p = K/N(N − 1), K
off-diagonal elements of the adjacency matrix were ran-
domly and independently selected and set equal to unity.
For time averaging, intervals of length T = 100 and

200 were typically used. The results did not signifi-
cantly depend on T when sufficiently large lengths T
were taken. Using the order parameter, graphs a were
sampled by the REMC optimization method. In par-
allel, evolution of M replicas with the inverse temper-
atures βm = δβ × m, m = 0, 1, . . . ,M was performed
(with M = 21 and δβ = 10). At each five Monte Carlo
steps (mcs), the perfomances of a randomly chosen pair
of replicas were compared and exchanged, as described
above. For display and statistical analysis, sampling at
each every 50 mcs after a transient of 5000 mcs has been
undertaken.

A. Optimization at different temperatures

Synchronization-optimized networks were obtained by
running the evolutionary optimization. In this process,
the order parameter was progressively increasing until a
stationary state has been achieved. Figure 1 displays
the optimization processes at different temperatures. As
clearly seen, when using replicas with the larger inverse
temperature β, the larger values of the order parame-
ter could be reached, although the optimization process
was then more slow. After the transients, statistical av-
eraging of the order parameter over the ensemble with
the Gibbs distribution has been performed, according to
Eq. (4).
In Fig. 2(a), the averaged order parameter R is dis-

played as a function of the connectivity p for several dif-
ferent inverse temperature β. The blue solid circle sym-
bols show the averaged order parameter corresponding
to the replica with β0 = 0, i.e. for an infinitely high
temperature. We see that the averaged order parameter
increases with the network connectivity p even if the net-
works are produced by only random rewiring. The red
open circles show the average order parameters for the
ensemble corresponding to the replicas with the lowest
inverse temperature βM . Generally, greater order pa-
rameters are obtained by running evolution at higher in-
verse temperatures β at any network connectivity p. At
each connectivity p, the order parameter is gradually in-
creased with increasing β and is approximately saturated
at βM . This means that, even if one further increases β,
only slight improvements of the averaged order param-
eter can be expected. Thus, the networks sampled by
the replica with the largest inverse temperature βM are
already yielding a representative optimal ensemble.
Figure 2(b) shows, depending on the network connec-
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FIG. 2: (Color online). Average order parameters as functions of the network connectivity p. The blue filled circles are for the
replica β0, i.e., the ensemble of randomly rewired networks. The red squares, yellow diamonds, green triangles, blue inverted
triangles, and red open circles are for replicas with β = 40, 80, 120, 160, and 200, respectively. (b) Ratio of the average order
parameters for the synchronization-optimized ensemble with the inverse temperature βM and for β0 = 0. (c) Variance of the
order parameters. The red squares are for the random rewired ensemble, the blue circles are for the synchronization-optimized
ensemble. The same parameters as in Fig. 1

tivity p, the ratio RβM
/Rβ0

of the averaged order param-
eters sampled by the optimal network ensemble with βM

to those obtained for the ensemble with purely random
rewiring. Since there is no room for the improvement of
the order parameter when the number of links is small,
the ratio tends to unity as the connectivity p is decreased.
On the other hand, when p = 1, global coupling is real-
ized, for which, under the chosen coupling strength, full
synchronization occurs. As evidenced by this figure, the
difference between the synchronization capacities of the
optimzed and random networks is most pronounced at
the intermediate connectivities p.

In Fig. 2(c), the mean variance Var[R]β = R2
β − Rβ

2

of the order parameters at different connectivities p is
displayed. It can be observed that this mean variance for
the synchronization-optimized ensemble decreases with
an increase in the number of links, while the respective
mean variance for the random rewired ensemble has a
maximum at p = 0.4. Note that, since the transition
from the connected to the disconnected random graphs
occurs at pc = 1/N [1, 2], this behavior is not directly
related to the topological transition in the network itself.

To further analyze the behavior of oscillators in
synchronization-optimized networks, we calculated time-
averaged frequencies, i.e., winding numbers Ωi =

(1/T )
∫ T

0
θi(t)dt of all oscillators i. Histograms of dis-

tributions over the winding numbers were constructed
by counting the numbers of oscillators with the wind-
ing number inside a fixed bin interval, Hk = {Ωi|nδΩ <
Ωi < (k + 1)δΩ}, where k = 0, 1, . . . ,K − 1, K = 10
is the number of bins, and δΩ = 2γ/K is the bin size.
The winding number as a function of the natural fre-
quency is shown in Fig. 3(a). The blue circles show
the entrained cluster with the winding number approxi-
mately equal to zero. The cluster consists of the elements
whose natural frequencies are near the mean natural fre-
quency Ω = 0. While the specific elements of the clus-
ter and its size depend on a particular network in the

synchronization-optimized ensemble, there is a statisti-
cal trend that the entrained cluster consists of the oscil-
lators in the neighborhood of the zero frequency. This
is demonstrated by the histogram of winding numbers
for the synchronization-optimized ensemble in Fig. 3(b).
Note that the oscillators are always ordered according
to their natural frequencies ωi = −γ + 2γi/N which
monotonously increase with i. We see that all elements
get divided into two groups, in which Ωi ≈ 0 or where
the winding number is relatively high. For each particu-
lar network realization, there should be a peak at the fre-
quency of the entrained cluster. The position of this peak
depends however on the realization and, as a result, the
histogram of the winding numbers for the entire ensemble
shows a broad maximum. This behavior is characteristic
for relatively low connectivities. The broad peak gradu-
ally sharpens when the connectivity is increased because
the size of the cluster increases and fluctuations of the
winding number become smaller.

B. Architectures of Synchronization-Optimized

Networks

Typical structures of synchronization-optimized net-
works are shown in Fig. 4. When the connectivity p is
small, such networks usually represent chain fragments.
At a higher connectivity, the network become more com-
plexly organized, as shown in Fig. 4(b).
To statistically characterize the architecture of con-

structed networks, ensemble averages of their adjacency
matrices over the Gibbs ensemble, i.e.,

aβ =
∑

a

a exp(βR(a))/Z(β), (5)

for different connectivities p were computed for β = βM ,
as shown in Fig. 5. Clearly, the optimal network struc-
ture is changing with the number of links. When the
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FIG. 3: (Color online). (a) Time-averaged frequencies (winding numbers) of the oscillators in a synchronization-optimized
network. (b) Statistical distribution of winding numbers for the synchronization-optimized ensemble.The parameters are
p = 0.2, β = βM ; other are the same as in Fig. 1.

FIG. 4: (Color online). Two typical realizations of the
synchronization-optimized network at different connectivities
(a) p = 0.05 and (b) p = 0.2. The blue (gray) nodes indicate
entrained oscillators. The numbers in the nodes are indexes of
the oscillators. The parameters are N = 10, β = βM , M = 11,
and δβ = 10.

number of links is small, the elements of the mean adja-
cency matrix, obtained by averaging over many realiza-
tion from the synchronization-optimized ensemble, are
large near the diagonal. Hence, elements with close nat-
ural frequency tend to connect and form a chain frag-
ment. Moreover, oscillators with the natural frequencies
near the center of the interval are often connected. In-
creasing the number of links, the network becomes more
complicated and off-diagonal elements begin to dominate
instead. The network with the larger p tend to have in-

terlaced structures, seen in Figs. 5(b)(c), where the oscil-
lators with roughly opposite natural frequencies are cou-
pled. A similar trend towards anti-correlations for the
oscillators with opposite frequencies has been noticed in
[15, 16], where a transition from local to global synchro-
nization under an increase of the coupling strength has
been obtained using a different optimization method [16].

This structural transition can be understood as fol-
lows: When connectivity is small, a limited small num-
ber of available links is better used to connect oscillators
with frequencies in the middle of the frequency interval,
where the collective synchronization frequency would lie.
Indeed, such oscillators can be easily entrained and even
a single link may be sufficient to synchronize them. If
connectivity is increased and some further links may be
used, it would not however be efficient to put them into
the middle region: the oscillators there are already syn-
chronized and bringing more connections would not in-
crease the performance. This means that the additional
available links should be rather connected to the elements
in the periphery, outside of the central frequency region.
If predominantly local connections between the elements
on each side are established, this would however lead to
the formation of two clusters, each on a different side
from the center. Within each cluster, oscillators may get
synchronized, but oscillations of the two clusters will still
then be incoherent. Therefore, a better solution would
consist in establishing pairwise connections between the
elements on both sides of the center, i.e. in linking pref-
erentially the opposite oscillators. This is exactly what
we observe in Fig. 5 at the higher connectivity p = 0.3.

C. Degree distributions and cluster organization

To statistically investigate architectures of designed
networks, ingoing and outgoing degrees of their nodes
have been considered and averaged over the ensemble.
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FIG. 5: (Color online). The upper panels show adjacent matrices averaged over the Gibbs ensemble of synchronization-
optimized networks [see Eq. (5)]. The darker color of a matrix element indicates the higher probability of the respective
connections between the elements. The lower panels display the corresponding network averaged over the Gibbs ensemble. The
numbers in the circles show indexes of the oscillators. The thickness of the lines connecting the nodes is proportional to the
frequency of links between them. The network connectivity is (a) p = 0.05, (b) 0.2 and (c) 0.3. Other parameters are same as
in Fig. 1.

Since the network is colored, i.e, each its node has a dif-
ferent natural frequency, the mean in- and out-degree of
the nodes can be plotted as a function of their natural
frequency (Fig. 6). When connectivity p is small, both
in- and out-degrees averaged over the ensemble have a
maximum at ω = 0, i.e, oscillators having smaller mag-
nitudes of the natural frequency tend to be mutually
connected. This unimodal degree distribution is consis-
tent with the linear chain structure shown in Fig. 5 (a).
As p is increased, the mean in-degree distribution be-
comes bi-modal and oscillators having larger magnitudes
of the natural frequency tend to have larger out-degrees.
This tendency becomes stronger when p increases [Fig. 6
(b)(c)].
Furthermore, we calculated the mean numbers of iso-

lated nodes as a function of p. The isolated nodes have
been classificed into three categories, as those which have
no in-coming, no out-going, and neither in-coming nor

out-going connections. The numbers of such isolated
nodes are, respectively,

s+(w) =
N
∑

i=1

∆(
N
∑

j=1

ai,j)

s−(w) =

N
∑

j=1

∆(

N
∑

i=1

ai,j)

s±(w) =

N
∑

k=1

∆(

N
∑

i=1

ai,k +

N
∑

j=1

ak,j), (6)

where ∆(w) is the Kronecker symbol, ∆(w) = 1 for w = 1
and ∆(w) = 0 otherwise. We averaged these numbers
over the Gibbs ensemble for β = β0 and βM and deter-

mined the ratio s±βM
/s±β0

of the average number of isolated
nodes in the synchronization-optimized networks to that
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FIG. 6: (Color online). Degrees, averaged over the the Gibbs ensemble of synchronitaion-optimized networks, as functions of

the natural frequency of the oscillator. The in-degree k−

βM
, out-degree k+

βM
, and degree k±

βM
are plotted by the blue circles, red

squares and yellow diamonds. N = 10, β = βM ; The network connectivity is (a) p = 0.1, (b) p = 0.2 and (c) p = 0.3. Other
parameters the same as in Fig. 1.

FIG. 7: (Color online). The ratio of the number of isolated
nodes, averaged over the replicas with βM (synchronization-
optimized networks) to that averaged over the replicas with β0

(randomly rewired networks) as a function of the connectivity
p. The data for the nodes isolated with respect to incoming
(blue circles) and outgoing (red squares) connections, as well
as for the completely isolated nodes (yellow diamonds), is
shown. The same parameters as in Fig. 1.

in the networks obtained by random rewiring (see Fig. 7).
The results do not depend on the choice of βm quali-

tatively.
When p is small, the ratio of completely isolated nodes

is larger than one. This comes from the fact that the links
are used intensively between the nodes having smaller
magnitudes of the natural frequency, at the cost of con-
nections of periphery oscillators. Thus, the number of
isolated nodes is large. Starting from p ≃ 0.23, this ra-
tio becomes however less than one, so that the optimized
networks tend to have less completely isolated nodes as
their random counterparts. We can also notice that the
relative number of nodes without ingoing connections be-
comes high at about p ≃ 0.23 and then sharply drops
down. The number of nodes without the outgoing con-
nections in the optimized networks remains always larger
than in the random networks.
As already suggested by Fig. 5 (b)(c), synchronization-

optimized network with larger connectivities may be sim-
ilar to bipartite graphs. A bipartite graph is a graph
whose nodes can be divided into two disjoint sets A and
B, so that every link connects a node in A to a node
in B and vise versa [37]. To demonstrate that our op-
timized networks are indeed similar to bipartite graphs,
we divide all oscillators into two groups A and B with
the negative and positive natural frequencies. An intra-
connection is defined as a link between nodes belonging
to the same group, while an interconnection is a link
between the nodes in A and B. Thus, the number of
intraconnections is given by

nintra(w) = (

N/2,N
∑

i=1,j=N/2

+

N,N/2
∑

i=N/2,j=1

)ai,j ,

and the number of interconnection is

ninter(w) = (

N/2,N/2
∑

i=1,j=1

+

N,N
∑

i=N/2,j=N/2

)ai,j .

The mean ratio ninter
βm

/nintra
βm

of inter- to intraconnections
in the synchrony-optimized ensemble for β5, β10, β15 and
β20 as a function of the connectivity p is shown in Fig. 8.
This ratio is smaller than unity when connectivity p is
small. It increases with p and reaches a maximum in the
vicinity of the transition point, where the bipartite-like
structure emerges. Further above the transition point,
the ratio gradually decreases to unity, since the number of
links increases until all-to-all connections are established
[41].

D. Closeness, betweenness and clustering

To characterize network structure quantitatively, we
calculated the closeness, betweenness and clustering coef-
ficient [2, 38]. Again, averaging was performed over many
realizations of synchronization-optimized networks, sam-
pled with the Gibbs distribution (Eq. 4).
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FIG. 8: (Color online). The ratio of inter- to intra- connec-
tions as a function of the connectivity p for β = β5 (blue cir-
cles), β10 (red squares), β15 (yellow diamonds) and β20 (green
triangles). N = 10. The same other parameters as in Fig. 1.

The betweenness centrality of a node is the number of
geodesics (i.e., shortest paths) going through it. If there
is more than one geodesic between two nodes, the number
of geodesics which connect these two nodes via a consid-
ered node is divided by the total number of geodesics
that connect the two nodes. The betweenness centrality
is thus defined by

Cbtw(v) =
∑

s,t

∑

s6=t

σs,t(v)

σs,t
,

where σ is the number of shortest paths from node s to
node t and σs,t(v) is the number of shortest paths from
s to t that pass through node v.
The closeness centrality of a node specifies how easily

other nodes can be reached from it (or, in other words,
how easily it can be reached from the other nodes). It is
defined as the sum of the lengths of all geodesics leading
to or from the given node, divided by the total number
n of nodes minus one,

Ccls(v) =
1

n− 1

∑

t

dg(v, t),

where dg(u, v) is geodesic distance between the nodes u
and v (i.e., the length of the shortest path connecting
them).
The clustering coefficient of a node specifies the num-

ber of neighbours of this node which are in turn mutual
neighbours. It is defined as

Ctrn(v) =
tv

ckv

2

,

where kv is the degree of a node v and tv is the number
of links between its neighbors, ckv

2 is the number of pairs
that can be made by using kv neighbors.
The above properties are defined for each node. To

characterize the entire network, we average them over all
nodes.

In order to quantify differences between
synchronization-optimized networks and networks gener-

ated by random rewiring, ratios CK(w)βm
/CK(w)β0

can

be used, where CK is the respective property of net-
work, such as closeness, betweenness, or clustering,
βm is inverse temperature and β0 = 0. In Fig. 9,
we show these ensemble-averaged network properties
depending on the connection probability p for several
inverse temperatures. Obviously, these ratios should
approach unity at p = 0 or at p = 1, because the
difference in synchronization of optimized and random
networks vanishes in these two limits. The ratios for the
closeness have pronounced minimima in the transition
region. The ratio in the vicinity of the transition point
decreases when the performance of optimized network
increases, i.e., the network ensemble with higher inverse
temperature.

On the other hand, the betweenness and clustering co-
efficient gradually increase with the connectivity p and
reach a maximum in the transition region. Note that in
recent work [39] it was found that, both in random and
scale-free networks, increase the clustering coefficient fa-
vors formation of oscillator sub-populations synchronized
at different frequencies.

IV. CONCLUSIONS

We have designed synchronization-optimized networks
with a fixed number of links for a heterogeneous os-
cillator population. This has been done by using the
Markov Chain Stochastic Monte Carlo method comple-
mented by the Replica Exchange algorithm. A transition
from the linear to bipartite-like networks has been found
under increasing the number of links. At low connectiv-
ity, synchronization-optimized networks typically repre-
sent small chains connecting oscillators with close nat-
ural frequencies. As the number of links increases, the
networks become interlaced and oscillators with oppo-
site natural frequencies tend to be connected. Therefore,
synchronization-optimized network begin to resemble bi-
partite graphs. This structural change of synchronion-
optimized network is clearly revealed through the analy-
sis of inter- and intraconnections.

Thus, we have shown that the efficient design of oscil-
lator networks with the improved synchronization prop-
erties is possible. The architectures of such optimal net-
works strongly depend on the constraints, such as the
total number of links available. Through the appropriate
rewiring of a network, a strong gain in the synchroniza-
tion signal can be achieved.

Although our study has been performed for a sim-
ple system of phase oscillators, similar evolutionary opti-
mization methods can be applied to construct networks
of different origins, where the dynamics of individual os-
cillators may be significantly more complex.
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FIG. 9: (Color online). Statistical properties of synchronization-optimized networks as functions of the connectively p. (a) the
ratio of closeness, averaged over the replicas with βm to that averaged over the replicas with β0, (b) the ratio of betweenness,
and (c) the ratio of transitivity, for different βm, where m = 10 (blue circles), m = 15 (red squares), and m = 20 (yellow
diamonds). The same parameters as in Fig. 1.
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