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Abstract

We introduce the total s-energy of a multiagent system and bound its maximum asymptotic
value. This offers a new analytical lens on bidirectional agreement dynamics. We use our
results to bound the convergence rates of dynamical systems for synchronization, flocking, opinion
dynamics, and social epistemology.

1 Introduction

We introduce an analytical device for the study of multiagent agreement systems. The total s-energy
of an infinite sequence of graphs (Gt)t≥0 embedded in Euclidean d-space is a Dirichlet series that
encodes all of the edge lengths. If xi(t) denotes the position in Rd of node i of Gt, then the total
s-energy is defined as

E(s) =
∑
t≥0

∑
(i,j)∈Gt

‖xi(t)− xj(t)‖s2 . (1)

The definition generalizes both the graph Laplacian and the Riesz s-energy of points on a sphere.
The total s-energy may diverge everywhere. For bidirectional agreement systems, however, we show
that it converges precisely for s > 0. We establish asymptotic bounds for any s between 0 and 1,
which we then use to bound the convergence rates of classical systems in synchronization, flocking,
opinion dynamics, and social epistemology. We also establish a new bound for products of certain
stochastic matrices. Most of our proofs are algorithmic and bypass algebraic graph theory. This
work shows the benefits of approaching multiagent dynamical systems algorithmically [5, 7].

1.1 Multiagent Dynamics

Moreau [29] introduced a geometric framework for multiagent agreement dynamics of appealing gen-
erality. He established qualitative convergence criteria but no quantitative results. The introduction
of the total s-energy is an attempt to fill this gap.

∗A preliminary version of this work appeared in Proc. 26th Annual ACM Symposium on Computational Geometry,
2010. This work was supported in part by NSF grant CCF-0634958 and NSF CCF-0832797.
†Department of Computer Science, Princeton University, chazelle@cs.princeton.edu
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Bidirectional agreement systems. Our model is a quantitative version of Moreau’s. It consists
of n agents located at the points x1(t), . . . , xn(t) in Rd at any time t ≥ 0, together with an infinite
sequence (Gt)t≥0 of undirected graphs over n ≥ 2 nodes (corresponding to the agents) with d = O(1);
each node has a self-loop. These graphs represent the various configurations of a communication
network changing over time. The neighbors of i form the set Ni(t) = { j | (i, j) ∈ Gt }, which includes
i. At time t, each agent i moves anywhere within the convex hull

Ci(t) = conv{xj(t) | j ∈ Ni(t) },

but not too close to the boundary. Formally, we pick a point ωi(t) centrally located within Ci(t):
our choice is the Löwner-John center ωi(t) of Ci(t), ie,1 the center of the minimum-volume ellipsoid
E that encloses Ci(t)—minimum relative to the dimension of the affine hull of Ci(t). It is well known
that E , and hence ωi(t), are unique and that the ellipsoid derived from E by scaling it by a factor of
1/d about ωi(t) is entirely contained inside Ci(t): in other words, Ci(t) is sandwiched between two
concentric ellipsoids centered at ωi(t) and differing by a factor of d [11]. Fix a parameter 0 < ρ ≤ 1.
At time t, the next position of agent i is subject to the constraint:

xi(t+ 1) ∈ (1− ρ)Ci(t) + ρωi(t). (2)

Informally, this forces agent i to stay within a slightly shrunken version of its neighbors’ convex hull
(Figure 1). The freedom of an agent decreases as ρ increases; when ρ = 1, the system is deterministic.
For this reason, we may always assume that ρ is smaller than a suitable constant. All the agents are
updated in parallel at each step t = 0, 1, 2, etc. We show that this process always converges and we
bound how long it takes (§1.3). The model defines a bidirectional agreement system. We conclude
the presentation with a few general remarks.

Figure 1: The agent can move anywhere inside the pentagon but may not touch the thick boundary.

• The model is affine-invariant (ie, the dynamics commutes with affine transformations). It is
heavily nondeterministic: both the choice of communication graphs and the motion of the
agents are left in the hands of an adversary. In applications, of course, the “adversary” is
often endogenous.

• Choosing the mass center (or any other interior point) instead of the Löwner-John center is
an option—in fact, it is our option for reversible systems—but in general it leads to bounds
that are not quite as good. The choice of convex hulls is made partly for convenience. We
could use smallest enclosing boxes, for example, albeit at the price of losing affine invariance;
see [1, 24] for generalizations of Moreau’s model to different shapes.

1We must emphasize that Ci(t) and ωi(t) are only analytical devices and that their computational complexity is
irrelevant.
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• The condition ρ > 0 is essential. Without it, a 2-agent system with a single edge could see the
agents swap places forever without converging. Obviously, any convergence bound must grow
inversely with ρ.

Much of the previous work on agreement systems has been concerned with conditions for con-
sensus (ie, for all agents to come together), beginning with the pioneering work of [36, 37] and
then [1, 3, 4, 15, 16, 20, 29, 30]. Bounds on the convergence rate have been obtained under various
connectivity assumptions [4, 30] and for specialized closed-loop systems [6, 26]. The convergence
of unrestricted bidirectional agreement systems can be derived from the techniques in [15, 23, 29].
Bounding the convergence rate, however, has been left open. This is the main focus of this paper.

Figure 2: Reflecting the system about the agent i that we wish to fix.

The fixed-agent agreement model. We can fix one agent i if we so desire. By this, we mean
skipping the update rule at an agent i selected once and for all. To see why, create the point
reflection of the n−1 mobile agents about the fixed agent i to create a bidirectional system of 2n−1
agents (Figure 2). Every mobile agent (and its reflected copy) mimics the behavior of its counterpart
in the original n-agent system while respecting (2). The fixed agent now lies at the (Löwner-John)
center of the centrally symmetric convex hull Ci(t) and hence does not need to move, irrespective of
the value of ρ. To summarize, any n-agent agreement system with one fixed agent can be simulated
with a (2n − 1)-agent bidirectional agreement system with the same value of ρ and at most twice
the diameter. We apply this result to truth-seeking systems in §2.2.

Why not stochastic matrices? It is customary to model agreement systems by using products
of (row-)stochastic matrices. The total s-energy suggests an alternative. Consider a Cartesian
system of reference and let yi(t) denote the first coordinate of agent i at time t. Fix t, i and let yl
(resp. yr) denotes the minimum (resp. maximum) of yj(t) over all j ∈ Ni(t); note that both l and
r depend on t, i. By definition of the Löwner-John center ωi(t),(

1− ρ

2d

)
yl +

ρ

2d
yr ≤ yi(t+ 1) ≤ ρ

2d
yl +

(
1− ρ

2d

)
yr . (3)

These conditions are necessary in general and also sufficient if d = 1. Let us now reverse our
perspective and, instead of (2), assume that the dynamics of the agents is given by

xi(t+ 1) =

n∑
j=1

pij(t)xj(t), (4)
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where the matrix P (t) with entries pij(t) is stochastic and xi(t) ∈ Rd. When can we say that
the coordinates yi(t) form an agreement system in one dimension? (Note that we do not attempt
to interpret (4) as an agreement system in Rd but only, by projection, in R.) First, we need a
communication graph Gt: we define it by including the edge (i, j) if pij(t) > 0; we also add a
self-loop at i, whether pii(t) is positive or not. This, in turn, defines Ni(t). The convex hull Ci(t) is
now the interval [yl, yr]; likewise, the Löwner-John center is the midpoint 1

2(yl + yr). Setting d = 1
in (3), the system yi(t) obeys the dynamics of a one-dimensional bidirectional agreement system
with parameter ρ as long as the following two conditions are satisfied: for all t,{

Mutual confidence: No pair pij(t), pji(t) has exactly one zero;

No extreme influence: For all i, min{ pil(t), pir(t) } ≥ ρ/2 .
(5)

Condition (5) is weaker than the usual set of three constraints found in the literature [15, 23], which,
besides mutual confidence, include: self-confidence (nonzero diagonal entries) and nonvanishing
confidence (lower bound on all nonzero entries). Our model requires lower bounds on only two
entries per matrix row. Previous work [5, 23] highlighted the importance of self-confidence for the
convergence of agreement systems. Our results refine this picture, the moral of the story being:
To reach harmony in a group, individuals may be influenced extremely by non-extreme positions but
must be influenced non-extremely by extreme positions (yl or yr). In the case of a two-agent system,
this maxim coincides with the need for self-confidence; in general, the latter is not needed.

Reversible agreement systems. We mention an important special case, which captures the
notion of reversibility geometrically. Assume that each Gt is connected. Choose ρ no greater than
the minimum degree ratio at each node, ie, ρ ≤ Ni(t)/Ni(t

′) for all i, t, t′. This allows each agent to
pick a time-invariant “motion parameter” qi between |Ni(t)| and 1

ρ |Ni(t)|, for all t ≥ 0. Let mi be
the mass center of Ci(t), ie,

mi(t) =
1

|Ni(t)|
∑

j∈Ni(t)

xj(t) .

The next position of agent i is given by

xi(t+ 1) = xi(t) +
|Ni(t)|
qi

(
mi(t)− xi(t)

)
.

This fits within the previous model because agent imoves towardmi(t) in a straight line by a distance
at least a fraction ρ of its distance to mi(t), now playing the role of ωi(t). We call this model a
reversible agreement system. The agents obey the dynamics (4), written in vector notation as

xi(t+ 1) =
∑

j∈Ni(t)

pij(t)xj(t),

where

pij(t) =


1− (|Ni(t)| − 1)/qi if i = j;

1/qi if i 6= j ∈ Ni(t);

0 else.

(6)

We take note of the identity qipij(t) = qjpji(t). This is the standard balanced condition of a
reversible Markov chain, with (qi) in the role of the stationary distribution (up to scaling). One
can check that a lazy random walk in a connected graph can be modeled by a reversible agreement
system. The difference is that we do not require the graph to be fixed. We bound the convergence
time of reversible systems in §1.3.
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1.2 The Total s-Energy

There is no obvious reason why the total s-energy, as defined in (1), should ever converge, so we
treat it as a formal series for the time being. We prove that it converges for any s > 0 and we
bound its maximum value, En(s), over all moves and n-node graph sequences. We may assume unit
initial diameter throughout, D = diam {x1(0), . . . , xn(0)} = 1, since the total s-energy obeys the
power-law DsEn(s).

Theorem 1.1. The maximal total s-energy of an n-agent bidirectional agreement system with unit
initial diameter satisfies2

En(s) ≤

{
ρ−O(n) for s = 1;

s1−nρ−n
2−O(1) for 0 < s < 1.

There is a lower bound of O(ρ)−bn/2c on En(1) and of s1−nρ−Ω(n) on En(s) for n large enough, any
s ≤ s0, and any fixed s0 < 1.

Since En(s) ≤ En(1) for s ≥ 1, the theorem proves the convergence of the total s-energy for all
s > 0. When the graph remains connected at all times, it is sometimes more useful to define the
total s-energy as the sum of the s-th powers of the diameters. It maximum value, for unit initial
diameter, is denoted by

EDn (s) =
∑
t≥0

(
diam {x1(t), . . . , xn(t)}

)s
.

Theorem 1.2. The maximal diameter-based total s-energy of an n-agent reversible agreement sys-
tem with unit initial diameter satisfies

n−2En(s) ≤ EDn (s) ≤ n

s

(2δn

ρ

)s/2+1
,

for all 0 < s ≤ 1, where δ is the maximum degree of any node in the graph sequence.

We proceed with general remarks about the function E(s). All of the terms in the series are
nonnegative, so we can assume them rearranged in nonincreasing order. This allows us to express
the total s-energy as a general Dirichlet series:

E(s) =
∑
k≥1

nke
−λks, (7)

where λk = − ln dk and nk is the number of edges of length dk. Thus, E(s) is the Laplace transform
of a sum of scaled Dirac delta functions centered at x = λk. This implies that the total s-energy
can be inverted and, hence, provides a lossless encoding of the edge lengths. We show that E(s)
converges for any real s > 0. By the theory of Dirichlet series [12], it follows that E(s) is uniformly
convergent over any finite region D of the complex plane within <(s) ≥ r, for any r > 0; furthermore,
the series defines an analytic function over D. It is not hard to determine the maximum s-energy of
a 2-agent system with unit initial diameter. For ρ = 1− 1/e and s = x+ iy, it satisfies (Figure 3):

|E(s)| = 1/
√

1− 2e−x cos y + e−2x .

2The constants implied in the asymptotic notation are absolute, so that, with our assumption that ρ is small
enough, expressions such as ρO(n), O(ρ)−n, and ρ−Ω(n) all denote lower bounds.
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Figure 3: By analytic continuation, the maximum total s-energy of a two-agent system is a meromorphic
function over the whole complex plane; the function is depicted in absolute value.

The singularities are the simple poles s = 2πik, for all k. The total s-energy can be continued
meromorphically over the whole complex plane. We conjecture that the same holds true for En(s)
in general.3

Figure 4: Convergence is reached when the agents fall within groups with disjoint convex hulls of diameter
at most ε and no further interaction ever takes place between the groups.

1.3 Convergence

Given 0 < ε < 1/2, we say that a step t is trivial (where ε is understood) if Gt has no edges or
all of them are of length at most ε. The communication count Cε is defined as the total number of
nontrivial steps: roughly speaking, it is the number of nonmicroscopic moves. The system is said
to ε-converge if the n agents can be partitioned at some time t into subsets with disjoint convex
hulls, each one of diameter at most ε, so that no edge in Gt′ ever joins two of these subsets for any
t′ ≥ t (Figure 4). Consensus refers to the case of a one-set partition. Informally, convergence means
that, visually, the system is forever frozen. Of course, an adversary can always delay convergence
by throwing in the graph Gt consisting of n isolated nodes, so in our model’s full generality, with
notable exceptions, some of which we discuss below, the convergence time cannot be bounded.

3This is obviously false for nonmaximal s-energies: for example, the function
∑
k e
−sk! is a valid total s-energy, but

its singularities form a dense subset of its line of convergence (the imaginary axis), hence an impassable barrier for
any analytic continuation into <(s) < 0.
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Theorem 1.3. For any 0 < ε < 1/2, an n-agent bidirectional agreement system εn-converges by
the time its last nontrivial step has elapsed. If the communication network remains connected at all
times, then the system εn-converges to consensus within Cε time.

Theorem 1.4. For any 0 < ε < 1/2, the maximum communication count Cε(n) of any n-agent
bidirectional agreement system with unit initial diameter satisfies

O(ρ)−bn/2c log 1
ε ≤ Cε(n) ≤ min

{
1
ε ρ
−O(n) , (log 1

ε )n−1ρ−n
2−O(1)

}
.

If the initial diameter D is not 1, then we must replace ε by ε/D in the bounds for Cε(n). We easily
check that the bound is tight as long as ε is not unreasonably small (ie, 1/ε is not superexponential).

Corollary 1.5. If ε ≥ ρO(n), then Cε(n) = ρ−Θ(n).

Remark 1.6. In the upper bounds of the theorem and its corollary we can replace Cε(n) by “max-
imum number of nontrivial steps before the system ε-converges.” Indeed, Theorem 1.3 shows that
ε-convergence is reached after at most Cε/n steps have witnessed edges longer than ε/n; meanwhile,
substituting ε/n for ε does not change the asymptotic bounds.

Theorem 1.7. For any 0 < ε < ρ/n, an n-agent reversible agreement system ε-converges to
consensus in time O(1

ρ δn
2 log 1

ε ), where δ is the maximum degree in the graph sequence.

The theorem implies the polynomial mixing time of lazy random walks in connected graphs:
we get the usual upper bound on the mixing time, with ρ controlling the laziness factor. The
communication count is related to the total s-energy via the obvious inequality:

Cε ≤ ε−sE(s).

In view of this relation, the two upper bounds in Theorem 1.4 follow directly from those in Theo-
rem 1.1: simply set s = 1 and s = (n − 1)/ ln 1

ε , respectively. Note that the second assignment

can be assumed to satisfy s < 1, since it only concerns the case where 1
ερ
−O(n) is the domi-

nant term in the right-hand side of the expression in Theorem 1.4. For reversible systems, we
set s = 1/ ln 1

ε , and observe that the number of steps witnessing a diameter in excess of ε is at most
ε−sEDn (s) = O(1

ρ δn
2 log 1

ε ), hence Theorem 1.7. 2

Communication and consensus. It has often been observed that if some agent communicates
with all others infinitely often then the system evolves to consensus [29]. We provide a quantitative
version of this fact. Agent i is said to communicate with agent j if there exists a sequence of times
t0 < · · · < tk and agents i1, . . . , ik such that the edges (i, i1), (i1, i2), . . . , (ik−1, ik), (ik, j) belong to
Gt0 , Gt1 , . . . , Gtk . Two agents i and j communicate with each other if i communicates with j or
the other way around. Communication is not quite a symmetric relation but almost. Indeed, if i
communicates with j at least n− 1 times during nonoverlapping time intervals, then agent j must
communicate with i at least once. To see why, observe that, until j communicates with i, whenever
i communicates with j, the set of agents with whom j communicates increases by at least one

7



compared with the previous communication. Indeed, because of self-loops, this set cannot decrease.
Moreover, any further communication from i to j must penetrate that set, hence involve an edge
with exactly one endpoint in it; this can happen at most n− 1 times. If any two agents at distance
greater than ε always communicate in the future, the system ε-converges to consensus. This follows
directly from this result:

Theorem 1.8. Given any 0 < ε < 1/2, consider two agents who always communicate at some point
in the period following a separation by ε or more. The agents are then guaranteed to be at most ε
apart when the system ε-converges. The total number of communications between them, counting
only one after each such separation, is bounded by

min
{

1
ε ρ
−O(n) , (log 1

ε )n−1ρ−n
2−O(1)

}
.

2 Applications

We highlight the utility of the total s-energy by looking at five examples: opinion dynamics; social
epistemology; synchronization; flocking; and products of stochastic matrices.

2.1 Opinion Dynamics

The Krause opinion dynamics model [13, 18] is a sociological framework for tracking opinion polar-
ization in a population. In its d-dimensional version, the bounded-confidence model, as it is often
called, sets a parameter 0 < δ < 1 and, at time 0, specifies the opinions of n agents as n points in
the unit cube [0, 1]d, for d = O(1). At time t ≥ 0, each opinion x moves to the position given by
the average of every opinion in the Euclidean ball centered at x of radius δ. Viewed as a multiagent
agreement system, Gt consists of n nodes (the agents) with edges joining any two of them within
distance δ of each other. The time transition is specified by

xi(t+ 1) =
1

|Ni(t)|
∑

j∈Ni(t)

xj(t), (8)

where Ni(t) is the set of neighbors of node i in Gt, which includes i itself. The system is known
to converge [2, 18, 22, 23]. Theorem 1.4 allows us to bound how long it takes to reach equilibrium.
Consider a Cartesian coordinate system. In view of (5, 8), we may set pij(t) = 1/|Ni(t)| and ρ = 2/n
to make the opinion dynamics system along each coordinate axis conform to a one-dimensional
multiagent agreement model (2). We can assume that the diameter D along each axis is at most
δn. Indeed, by convexity, if along any coordinate axis the n opinions have diameter greater than
δn, then they can be split into two subsets with no mutual interaction now and forever. Set ε = δ/2
and let tε be the smallest t such that Gt consists only of edges in Rd of length at most ε. During
the first dCε/

√
d (n) + 1 steps, it must be the case that, at some time t, the graph Gt contains only

edges of length at most ε. By Theorem 1.4, therefore

tε ≤ d3/2D

ε
nO(n) = nO(n). (9)

Each connected component of Gtε is a complete graph. To see why, observe that if opinion x is
adjacent to y in Gtε and the same is true of y and z, then x and y are at a distance at most
2ε = δ, hence are connected and therefore at distance at most ε at time tε. This “transitive closure”
argument proves our claim. This implies that the opinions within any connected component end
up at the same position at time tε + 1. Of course, when two opinions are joined together they can
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never get separated. The argument is now easy to complete. Either Gtε consists entirely of isolated
nodes, in which case the system is frozen in place, or it consists of complete subgraphs that collapse
into single points. The number of distinct opinions decreases by at least one, so this process can be
repeated at most n− 2 times. By (9), this proves that Krause opinion dynamics converges in nO(n)

time. We summarize our result.

Theorem 2.1. Any initial configuration of n opinions in the bounded-confidence Krause model with
equal-weight averaging converges to a fixed configuration in nO(n) time.

Martinez et al [26] have established a polynomial bound for the one-dimensional case, d = 1.
While extending their proof to higher dimension might be difficult, a polynomial bound could well
hold for any constant d.

2.2 Truth-Seeking Systems

In their pioneering work on computer-aided social epistemology, Hegselmann and Krause considered
a variant of the bounded-confidence model that assumes a cognitive division of labor [14]. The idea
is to take the previous model and fix one agent, the truth, while keeping the n − 1 others mobile.
A truth seeker is a mobile agent joined to the truth in every Gt. All the other mobile agents are
ignorant, meaning that they never connect to the truth via an edge, although they might indirectly
communicate with it via a path. Any two mobile agents are joined in Gt whenever their distance is
less4 than δ. Hegselmann and Krause [14] showed that, if all the mobile agents are truth seekers,
they eventually reach consensus with the truth. Kurz and Rambau [19] proved that the presence of
ignorant agents cannot prevent the truth seekers from converging toward the truth. The proof is
quite technical and the authors leave open the higher-dimensional case. We generalize their results
to any dimension and, as a bonus, bound the convergence rate.

Theorem 2.2. Any initial configuration of n opinions in the truth-seeking model converges, with all
the truth seekers coalescing around the truth. If, in addition, we assume that the initial coordinates
of each opinion as well as the radius δ are encoded as O(n)-bit rationals then, after nO(n) time,
all the truth seekers lie within a ball of radius 2−cn

n
centered at the truth, for any arbitrarily large

constant c > 0. Ignorant agents either lie in that ball or are frozen in place forever. This holds in
any fixed dimension.

Proof. Along each coordinate axis, a truth-seeking system falls within the fixed-agent agreement
model and, as we saw in §1.1, can be simulated by a (2n − 1)-agent one-dimensional bidirectional
agreement system with at most twice the initial diameter. Convergence follows from Theorem 1.3.
As we observed in the previous section, restricting ourselves to the equal-weight bounded confidence
model allows us to set ρ = 2/(2n−1). (We could easily handle arbitrary weights but this complicates
the notation without adding anything of substance to the argument.) That all truth seekers reach
consensus with the truth is a consequence of Theorem 1.8. Kurz and Rambau [19] observed that
the convergence rate cannot be bounded as a function of n and ρ alone because it also depends on
the initial conditions (hence the need to bound the encoding length of the initial coordinates).

Set ε = 2−bn for some large enough constant b > 0, and define tε as the smallest t such that Gt
consists only of edges not longer than ε. The same argument we used in (9) shows that tε = nO(n).
The subgraph of Gtε induced by the mobile agents consists of disjoint complete subgraphs. Indeed,
the transitive closure argument of the previous section shows that the distance between any two

4We follow [2] in linking mobile agents less than δ apart: using open balls makes the proofs a little easier.
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agents within the same connected component is at most 2ε = 21−bn < δ (the inequality following
from the O(n)-bit encoding of δ), hence at most ε. For similar reasons, because 4ε < δ, the truth
agent cannot join more than one of these complete subgraphs; therefore, all the subgraphs consist of
ignorant agents, except for one of them, which contains all the truth seekers and to which the truth
agent is joined. This truth group might contain some ignorant agents as well, ie, mobile agents not
connected to the truth. For that reason, the truth group might not form a complete subgraph. At
time tε + 1, the truth group has collapsed into either a single edge with the truth at one end or a
collinear 3-agent system consisting of the truth, a truth seeker, and an ignorant agent. (We refer to
a single agent or truth seeker although it may be a collection of several of them collapsed into one.)
All the other complete subgraphs collapse into all-ignorant single agents. By Theorem 2.1, there is
a time

t0 = tε + nO(n) = nO(n) (10)

by which the all-ignorant agents will have converged into frozen positions unless they get to join
with agents in the truth group at some point.

Case I. Assume that the all-ignorant agents do not join with any agent in the truth group at any
time t > tε: The truth group then behaves like a one-dimensional fixed-agent system with 2 or 3
agents embedded in Rd. We assume the latter, the other case being similar, only easier. We saw
in §1.1 how such a system can be simulated by a one-dimensional 5-agent bidirectional system of at
most twice the diameter. Recall that agents may represent the collapse of several of them, so we
must keep the setting ρ = 2/(2n−1). The 5-agent system remains connected at all times; therefore,
by Theorems 1.3 and 1.4, it β-converges to consensus in t0 +nO(1)(log 1

β )4 time. By (10), this implies

that, for any fixed c > 0, the agents of the truth group are within distance 2−cn
n

of the truth after
nO(n) time.

Case II. Assume now that an all-ignorant agent z joins with an agent y of the truth group at time
t1 but not earlier in [tε, t1). That means that the distance ‖y(t1)z(t1)‖2 dips below δ for the first
time after tε. We want to show that t1 ≤ t0 +nO(n), so we might as well assume that t1 > t0. Recall
that t0 is an upper bound on the time by which the all-ignorant agents would converge if they never
interacted again with the truth group past tε. Let L be the line along which the truth group evolves
and let σ be its (nonempty) intersection with the open ball of radius δ centered at z(t1) = z(t0).
Note that σ cannot be reduced to a single point. This implies that the shortest nonzero distance ∆
between the truth and the endpoints of σ is well-defined. We claim that ∆ ≥ 2−n

O(n)
. Here is why.

It is elementary to express ∆ as a feasible value of a variable in a system of m linear and quadratic
polynomials over m variables, where m is a relatively small constant (depending on d); the details
are unnecessary. The coefficients of the polynomials can be chosen to be integers over ` = nO(n)

bits. (We postpone the explanation.) We need a standard root separation bound [41]. Given a
system of m integer-coefficient polynomials in m variables with a finite set of complex solution
points, any nonzero coordinate has modulus at least 2−`γ

O(m)
, where γ − 1 is the maximum degree

of any polynomial and ` is the number of bits needed to represent any coefficient. This implies our
claimed lower bound of 2−n

O(n)
on ∆.

Why is ` = nO(n)? At any given time, consider the rationals describing the positions of the n
agents and put them in a form with one common denominator. At time 0, each of the initial positions
now requires O(n2) bits (instead of just O(n) bits). A single time step produces new rationals whose
common denominator is at most n! times the previous one, while the numerators are sums of at
most n previous numerators, each one multiplied by an integer at most n!. This means that, at time
t, none of the numerators and denominators require more than O(n2 + tn log n) bits. The system
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of equations expressing ∆ can be formulated using integer coefficients with O(n2 + t0n log n) bits,
hence the bound of ` = nO(n). Next, we distinguish between two cases.

• The truth is not an endpoint of σ: Then there is a closed segment of L centered at the
truth that lies either entirely outside σ or inside it. Because ∆ ≥ 2−n

O(n)
, the segment can

be chosen of length at least 2−n
O(n)

. Setting β = 2−n
c0n , for c0 large enough, shows that

t1 ≤ t0 + nO(1)(log 1
β )4 = nO(n).

• The truth is an endpoint of σ: Quite clearly, β-convergence alone does not suffice to bound
t1; so we reason as follows. When the truth group has β-converged (for the previous value of
β), the only way its mobile agents avoided falling within σ (in which case the previous bound
on t1 would hold) is if the truth group ended up separated from σ by the truth (lest one of
the mobile agents lay in σ). By convexity, however, this property remains true from then on,
and so z can never join y, which contradicts our assumption.

When agents y and z join in Gt at time t = t1, their common edge is of length at least δ/3 unless y or
z has traveled a distance at least δ/3 between tε and t1. In all cases, the system must expend 1-energy
at least δ/3 during that time interval. By Theorem 1.1, this can happen at most nO(n)(3/δ) = nO(n)

times. (We easily verify that the same argument can be repeated safely even though the bit lengths
will increase.) At the completion of this process (should it happen), we are back to Case I. 2

Figure 5: Four coupled oscillators connected by four edges.

2.3 Kuramoto Synchronization

The Kuramoto model is a general framework for nonlinear coupled oscillators, with a dazzling array
of applications: circadian neurons, chirping crickets, microwave oscillators, yeast cell suspensions,
pacemaker cells in the heart, etc. Winfree’s pioneering work on the subject led Kuramoto to formu-
late the standard sync model for coupled oscillators [34, 40]. The system consists of n oscillators:
the i-th one has phase θi and natural frequency ωi. In its original formulation, the model is a
mean-field approximation that assumes all-pair coupling. A more realistic assumption is to use a
time-varying network to model communications. Considerable work has been done on this problem;
see [10, 17, 21, 25, 27, 31, 32, 39, 42] for a small sample. Further research introduced a time-1 dis-
cretization of the continuous model [25, 29, 33, 35]. Assuming all oscillators share the same natural
frequency, a fixed phase shift yields the dynamics:

θi(t+ 1) = θi(t) +
K∆T

|Ni(t)|
∑

j∈Ni(t)

sin(θj(t)− θi(t)),

11



where |Ni(t)| is the degree of i in the communication graph Gt, which, as always, counts the self-loop
at i (Figure 5). As in [29], we also assume that all the agents start in the same open half-circle. By
shifting the origin, we express this condition as α − π/2 ≤ θi(0) ≤ π/2, for some arbitrarily small
positive constant α. This implies that

sin(θj(0)− θi(0)) = aij(θj(0)− θi(0)),

for α/4 ≤ aij ≤ 1. By (5); therefore, to make the dynamics conform to a bidirectional multiagent
agreement system at time 0, it suffices to enforce the constraints:

2nρ

α
≤ K∆T ≤ 1− ρ

2
.

Choosing ρ = bα/n for a small enough constant b > 0, we note that the constraints are roughly
equivalent to 0 < K∆T < 1. By convexity, the angles at time 1 remain within [α−π/2, π/2]; there-
fore, our previous argument can be repeated to show that the synchronization dynamics fits within
the bidirectional agreement model. The result below follows from Corollary 1.5 and Remark 1.6.

Theorem 2.3. Any Kuramoto synchronization system with n agents initialized in an open half-
circle ε-converges after nO(n) nontrivial steps, for any ε > n−cn and any constant c > 0.

2.4 Flocking

Beginning with Reynolds’s pioneering work in the mid-eighties, bird flocking has generated an
abundant literature, with a sudden flurry of interest in the last few years. Mathematically, flocking
appears more complex than the previous agreement systems because the communication network is
specified not by the variables the system seeks to “agree upon” but by their integrals. Specifically,
the graphs Gt are a function of the birds’ positions while the agreement dynamics averages their
velocities. Many models have been studied in the literature but most of them are variants of the
following [5, 9, 16, 38]: given the initial conditions z(0) and z(1), for any t > 0,{

z(t) = z(t− 1) + v(t);

v(t+ 1) = (P (t)⊗ I3)v(t).
(11)

The vectors z(t), v(t) encode the positions and velocities of the n birds in 3-space: each vector is
formed by stacking the n relevant triplets into one vector in R3n; P (t) is an n-by-n stochastic matrix
whose nonzero entries correspond to the edges of Gt; the communication graph Gt links any two
birds within a fixed distance of each other. The tensor product P (t) ⊗ I3 is the 3n-by-3n matrix
formed by replacing each entry of P (t) by a 3-by-3 diagonal matrix with copies of that entry along
the diagonal; it is a common notational device to indicate that the averaging should be carried out
separately along each coordinate axis. Intuitively, each bird averages out its own velocity with those
of its neighbors in Gt: all of its neighbors weigh equally in the average except perhaps for itself, ie,
for fixed i, all nonzero pij(t)’s are equal, with the possible exception of pii(t); all nonzero entries in
P (t) are assumed to be at least n−O(1), as are the rational initial conditions; finally, all the diagonal
entries are strictly positive.

By (5), it suffices to set ρ = n−b, for a large enough constant b > 0, to make flocking conform to
the bidirectional multiagent agreement model, with v(t) encoding into a single vector the n points
(x1(t), . . . , xn(t)). By Corollary 1.5 and Remark 1.6, the system ε-converges within nO(n) nontrivial
steps for ε ≥ n−cn and any constant c > 0. We showed in [6] that the sequence Gt always converges
to a fixed graph G, but that the number of steps to get there can be astronomical: it can be as high
as a tower-of-twos of height on the order of log n, which, amazingly, is tight.
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Theorem 2.4. The velocities of n birds ε-converge after nO(n) nontrivial steps, for any ε > n−cn

and any constant c > 0.

2.5 Products of Stochastic Matrices

Let P be the family of n-by-n stochastic matrices such that each P ∈ P satisfies the three standard
constraints: (i) self-confidence (nonzero diagonal entries); (ii) mutual confidence (no pair pij , pji with
exactly one 0); and (iii) nonvanishing confidence (each positive entry being at least p). Lorenz [23]
and Hendrickx and Blondel [15] independently proved the following counterintuitive result: in any
finite product of matrices in P, each nonzero entry is at least pO(n2). What is surprising is that this
lower bound is uniform, ie, does not depend on the number of multiplicands in the product. Not
only does stochasticity play a key role, but so do conditions (i–iii). We improve the lower bound to
its optimal value.

Theorem 2.5. Let P be the family of n-by-n real stochastic matrices such that each P ∈ P satisfies:
each diagonal entry is nonzero; each positive entry is at least p; and no pair pij , pji contains exactly
one zero. In any finite product of matrices in P, each nonzero entry is at least pn−1. The bound is
optimal.

3 The Proofs

It remains for us to prove the upper bounds of Theorem 1.1 (see §3.2 for the case s = 1 and §3.3 for
the case s < 1), Theorem 1.2 (see §3.1), Theorem 2.5 (see §3.3), Theorems 1.3 and 1.8 (see §3.5), as
well as the lower bounds of Theorems 1.1 and 1.4 (see §3.4). We begin with Theorem 1.2.

3.1 The Reversible Case

Let πi = qi/
∑

j qj . We easily verify that π = (π1, . . . , πn) is the (time-invariant) stationary distri-
bution of the stochastic matrix P = P (t) specified by (6):

pij =


1− (|Ni| − 1)/qi if i = j;

1/qi if i 6= j ∈ Ni;

0 else.

The discussion focuses on a fixed step so we drop the argument t from the notation for simplicity. Let
y = (y1, . . . , yn), where yi is the first coordinate of xi(t), and, for u, v ∈ Rn, let 〈u, v〉π =

∑
πiuivi.

We can always choose the origin of our Cartesian coordinate system so that 〈y,1〉π = 0. Because π is
the stationary distribution, this property is time-invariant; in particular, 〈Py,1〉π = 0. The following
derivations on the Dirichlet form 〈y, (I − P )y〉π are standard [8, 28]. Because P is reversible, we
can decompose y = aivi in an eigenbasis {vi} for P orthonormal with respect to 〈·〉π. Any positive
pij is at least 1/qi ≥ ρ/δ, where δ > 1 is the maximum degree in any Gt (including self-loops). Let
1 = λ0 > λ1 ≥ · · · ≥ λn−1 ≥ 2ρ/δ − 1 be the eigenvalues of P , with the labeling matching the vi’s:
briefly, the gap is strict between the two largest eigenvalues because the graph is connected; the
smallest eigenvalue is separated from−1 by at least 2ρ/δ because (δP−ρI)/(δ−ρ) is itself a reversible
Markov chain (with the same eigenvectors), hence with spectrum in [−1, 1]. If µ = max{λ2

1, λ
2
n−1}
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then, by reversibility, πipij = πjpji, and

〈y, y〉π − 〈Py, Py〉π = 〈y, (I − P 2)y〉π =
∑
i,j

aiaj〈vi, (I − P 2)vj〉π =
∑
i

a2
i (1− λ2

i )

≥ (1− µ)
∑
i

a2
i ≥ (1− µ)

∑
i,j

aiaj〈vi, vj〉π = (1− µ)〈y, y〉π.
(12)

Because P is reversible and πipij ≥ ρ/δn, for any vector z,

〈z, (I − P )z〉π =
1

2

∑
i,j

πipij(zi − zj)2 ≥ ρ

δn

∑
(i,j)∈Gt

(zi − zj)2.

Set z = v1; by orthonormality, 〈z,1〉π = 0 and 〈z, z〉π = 1; therefore z must contain a coordinate
za such that |za| ≥ 1 and another one, zb, of opposite sign. If L is a simple path in Gt connecting
nodes a and b, then, by Cauchy-Schwarz,

1− λ1 = 〈z, (I − P )z〉π ≥
ρ

δn

∑
(i,j)∈L

(zi − zj)2 ≥ ρ

δn2

( ∑
(i,j)∈L

|zi − zj |
)2

≥ ρ

δn2
(za − zb)2 ≥ ρ

δn2
.

Since ρn−2/δ ≤ 2ρ/δ ≤ 1 + λn−1, it follows that

µ ≤
(

1− ρ

δn2

)2
≤ 1− ρ

δn2
,

and, by (12),

〈Py, Py〉π ≤ µ〈y, y〉π ≤
(

1− ρ

δn2

)
〈y, y〉π.

By analogy, for x = (x1(t), . . . , xn(t)), we define 〈x, x〉π =
∑

i πi‖xi(t)‖22 and again we may assume
that

∑
i πixi(t) lies at the origin in Rd. It then follows that

〈Px, Px〉π ≤
(

1− ρ

δn2

)
〈x, x〉π.

Let EDn (L, s) be the maximum value of the (diameter-based) total s-energy of an n-agent reversible
agreement system such that 〈x, x〉π = L at time 0. By the triangle inequality, the distance between
any two agents is at most

2 max ‖xi‖2 ≤ 2
√
L/minπi ≤

√
2Lδn/ρ ;

therefore,
EDn (L, s) ≤ EDn ((1− ρn−2/δ)L, s) + (2Lδn/ρ)s/2.

The total s-energy obeys the scaling law EDn (αL, s) = αs/2EDn (L, s). The definition of EDn (s)
assumes unit initial diameter, which implies that 〈x, x〉π ≤ 1, hence EDn (s) ≤ EDn (1, s) and

EDn (s) ≤ (2δn/ρ)s/2

1− (1− ρn−2/δ)s/2
≤ n

s

(2δn

ρ

)s/2+1
,

which proves Theorem 1.2. We used an inequality that is worth mentioning for later use: for any
0 ≤ x, y ≤ 1,

(1− x)y ≤ 1− xy. (13)

2
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3.2 The General Case: s = 1

We prove the upper bound of Theorem 1.1 for s = 1. We show that En(1) ≤ ρ−O(n), with the
constant in the exponent being roughly 2. To do that, we introduce a wingshift system. Since we
will focus on a single transition at a time, we write ai, bi instead of xi(t), xi(t + 1) for notational
convenience, and we relabel the agents so that 0 ≤ a1 ≤ · · · ≤ an ≤ 1. Given a1, . . . , an, the agents
move to their next positions b1, . . . , bn adversarially and then repeat this process endlessly in the
manner described below. Let `(i) and r(i) be indices satisfying the following inequalities:

rule 1: 1 ≤ `(i) ≤ i ≤ r(i) ≤ n and (` ◦ r)(i) ≤ i ≤ (r ◦ `)(i);

rule 2: a`(i) + δi ≤ bi ≤ ar(i) − δi, where δi = ρ(ar(i) − a`(i)).

Each agent i picks an associate to its left and one to its right, `(i) and r(i), respectively. It then shifts
anywhere in the interval [a`(i), ar(i)], though keeping away from the endpoints by a small distance
δi. This process is repeated forever, with each agent given a chance to change associates at every
step. Wingshift systems can be used to simulate projections of agreement systems. Indeed, if we
project a d-dimensional bidirectional agreement system, with parameter ρ′, onto a line then, by (3),
once we identify yl with a`(i) and yr with ar(i), we get a wingshift system satisfying

a`(i) +
ρ′

2d
(ar(i) − a`(i)) ≤ bi ≤ ar(i) −

ρ′

2d
(ar(i) − a`(i)),

hence a wingshift system with ρ = ρ′/(2d). In other words, projecting a bidirectional agreement
system onto a line gives us a wingshift system for a value of ρ equal to a fraction 1/(2d) of that
parameter’s value in the agreement system. Rule 1 says that the interval [`(i), r(i)] should contain
i as well as all agents j pointing to i. This is also necessary. Consider three agents a1 = 0, a2 = 1

2 ,
a3 = 1, with `(1) = r(1) = `(2) = 1 and r(2) = `(3) = r(3) = 3. Agents 1 and 3 are stuck in
place while agent 2 can move about almost anywhere: convergence cannot be assured. Intuitively,
iterating the functions ` and r in alternation should produce an outward-growing spiral ending in a
cycle. Specifically, if we follow the path i, r(i), l(r(i)), r(l(r(i))), etc, we spiral around i along edges
of nondecreasing length until we eventually fall into a two-edge cycle of the form l(r(j)) = j. The
wingshift graph consists of the nodes 1, . . . , n and the directed edges (i, `(i)) and (i, r(i)).

Figure 6: A six-node wingshift graph.

By analogy, we define the total 1-energy of the wingshift system as V =
∑

t≥0 Vt, where

Vt =

n∑
i=1

(ar(i) − a`(i)).

Theorem 3.1. The maximal total 1-energy of an n-agent wingshift system with unit initial diameter
and parameter ρ is at most ρ−O(n).
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Summing the total 1-energy of the wingshift system formed along each coordinate axis by a
bidirectional agreement system gives us an upper bound of ρ−O(n) on the total 1-energy of the
latter, which establishes the upper bound of Theorem 1.1 for s = 1 and arbitrary d. We omitted a
number of scaling factors of no asymptotic significance: (i) a factor of 2d for ρ to account for the
switch from agreement to wingshift; (ii) a factor of d to account for all d projections; and (iii) a
factor of n to account for the fact that the energy is computed over all the edges in an agreement
system but only over the two edges from each node in a wingshift system. 2

Recall that ρ > 0 is smaller than a suitable constant, a fact we shall assume throughout. We
need some notation to describe rightward paths in the wingshift graph: r(i, 0) = i and r(i, k) =
r(r(i, k−1)) for k > 0. We define the distance between an agent and its right associate, ∆i = ar(i)−ai.
When traversing a rightward path i = r(i, 0), r(i, 1), . . . , r(i, k) etc, a sudden drop in ∆r(i,k) is of
particular interest; so we define

ki = min
{
k ≥ 1 |∆r(i,k) ≤ ρ

2 ∆r(i,k−1)

}
.

Since, for k large enough, r(i, k) = r(i, k + 1), hence ∆r(i,k) = 0, a drop by a factor of at least ρ/2
is certain to occur and thus ki is always well-defined (even if r(i) = i, in which case ki = 1). We
now show that agent r(i, ki), which we call a stopper, must move left by an amount proportional to
∆i. What makes this result interesting is that it points to some obligatory motion that the system
must undergo; in other words, staying in place is not an option, unless the system consists entirely
of self-loops.

Lemma 3.2. For any agent i, its stopper s = r(i, ki) satisfies as − bs ≥ (1 + ρ)(ρ2)ki∆i.

Proof. Note that the index s has nothing to do with the s-energy—no risk of confusion since we
focus here on the 1-energy. Recall that bs is the position at time t+ 1 of the agent associated with
as at time t; unlike the latter, bs may not be the s-th agent from the left. By Rule 1,

ar(r(i,ki)) − a`(r(i,ki)) ≥ ∆r(i,ki−1) + ∆r(i,ki) .

By definition, ∆r(i,ki) ≤
ρ
2 ∆r(i,ki−1); therefore, by Rule 2,

br(i,ki) ≤ ar(r(i,ki)) − ρ(ar(r(i,ki)) − a`(r(i,ki))) ≤ ar(i,ki) + ∆r(i,ki) − ρ(∆r(i,ki−1) + ∆r(i,ki))

≤ ar(i,ki) + ((1− ρ)ρ/2− ρ)∆r(i,ki−1) ≤ ar(i,ki) − (1 + ρ)(ρ/2)ki∆i .

The last inequality follows from the fact that ∆r(i,ki−1) ≥ (ρ/2)ki−1∆i. The reason the inequality is
not strict is that both sides are equal if ki = 1. 2

We bound V by tallying the total motion of the system, M =
∑

t≥0Mt, where Mt =
∑n

i=1 |ai − bi|.
Recall that ai and bi are the positions of agent i at times t and t+ 1, respectively.

Lemma 3.3. If M is finite, then V ≤ n2nρ1−nM .

Proof. Obviously,

V =
∑
t≥0

n∑
i=1

(ar(i) − a`(i)) ≤
∑
t,i

{
(ai − a`(i)) + (ar(i) − ai)

}
≤
∑
t,i

∆i +
∑
t,i

∆′i ,
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where ∆′i = ai − a`(i). By Lemma 3.2,

∑
t≥0

n∑
i=1

∆i ≤
∑
t≥0

n∑
i=1

(2

ρ

)ki
(ar(i,ki) − br(i,ki)) ≤ n

(2

ρ

)n−1∑
t≥0

n∑
i=1

|ai − bi| .

A mirror-image argument yields the same upper bound on
∑

t,i ∆′i. 2

By symmetry, we can assume that at least half of the contribution to M is provided by rightward
motions, ie, 1

2M ≤
∑

t,i{ bi − ai | bi > ai }. Thus we can conveniently ignore all leftward travel for
accounting purposes. We use an amortization technique that involves assigning a credit account to
each agent and requiring them to spend an amount equal to the distance they travel to the right.
We also have a bank where credits can be deposited, withdrawn, or borrowed. In the end, we will
ensure that bank loans do not exceed deposits, so that the initial credit accounts provide an upper
bound on 1

2M . The power of the method is that agents can trade credits among one another. This
creates an “economy” of credits, regulated by rules, which we embed within an algorithmic proof.

Let rk (ai) be the rank of agent i. Initially, the agents are labeled from left to right, a1 ≤ · · · ≤ an,
so that rk (ai) = i; ties are broken arbitrarily. When agent i is moved from ai to bi, the ranks are
updated in the obvious way; ties are broken by minimizing the number of agents whose ranks are
changed. So, for example, if a1 = a2 = 0 and a3 = a4 = 1

2 , then moving a1 to b1 = 1
2 changes the

ranking (1, 2, 3, 4) into (2, 1, 3, 4); or, say, moving a4 to b4 = 0 produces the ranking (1, 2, 4, 3). We
call this lazy tie-breaking. We denote by ai(t) the position of agent i at time t. For convenience, we
focus on the time interval [0, 1] and use a continuous time scale, with ai(0) = ai and ai(1) = bi. The
notation rk (ai(t)) refers to the time-t rank of agent i within the set of all agents at time 0 ≤ t ≤ 1.
We schedule the motion of each agent i from ai to bi one at a time in a specific fashion described
below.

Invariant: The credit account of each agent i is supplied at time t with at least
ai(t)α

rk (ai(t)) credits, where α = 9/ρ.

The cost of a right shift ai → bi (ai < bi) is bi−ai plus whatever is needed to update the agents’
accounts. Note that moving agent i to the right affects not only its own account but also those of
the agents it passes over, whose ranks decrease by one, and who may therefore release credits and
deposit them into the bank. The cost attached to shifting agent i is paid for by borrowing from the
bank, a loan that will be paid back later by the stopper r(i, ki), ie, not by the borrower. To explain
how this works, we partition the set of all agents into equivalence classes consisting of all the agents
i with the same stopper s = r(i, ki). We define the set Ps of the immediate predecessors of s, in
the wingshift graph, that claim s as their stopper; the set Hs

j consists of all the nodes that lead
rightward to j ∈ Ps: in other words, for any stopper s,{

Ps = { j 6= s | r(j) = s and kj = 1 };
Hs
j = { i 6= j | r(i, ki − 1) = j and j ∈ Ps }.

Note that some Ps or Hs
j might be empty. First, for each stopper s from right to left, we move

all the right-shifting agents in each Hs
j and pass on the cost to agent j. Second, we move each

such agent j to bj , charging the bank for the cost. Finally, we move the stopper s to the left and
use the credits released to pay back the bank. All remaining left moves, which are self-paying, are
then carried out. Why don’t we account for all the nodes claiming s as a stopper uniformly? We
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distinguish between Ps and {Hs
j } because their relations to the stopper are fundamentally different:

the defining feature of Ps is to witness a big drop in the length ∆k, whereas the opposite is true for
Hs
j . The accounting mechanism will vary accordingly, with Hs

j charging its cost to Ps, and then Ps
passing on its costs to s via a bank loan.

• For each stopper s in decreasing rank order, do:

[1] For each agent j ∈ Ps ordered by nonincreasing value of max{aj , bj}, do:

[1.1] Move from ai to bi any agent i ∈ Hs
j such that ai < bi. Charge

agent j for all the costs.

[1.2] If aj < bj then move agent j from aj to bj . In both cases, borrow
from bank to cover all charges incurred by agent j.

[2] Move agent s left from as to bs. Use released credits to clear all out-
standing bank loans.

• Move from ai to bi any agent i such that bi < ai.

Step [1] Fix s. We process each agent j ∈ Ps in the order j1, . . . , jν such that cj1 ≥ · · · ≥ cjν ,
where ck = max{ak, bk}. We resolve ties in decreasing rank order of ak; in other words, if cjk = cjl
and rk (ajk(t)) > rk (ajl(t)), then we process jk before jl (where t is the time right before step [1]
for the current stopper s). Recall that lazy tie-breaking ensures that each agent has a distinct rank
at any time. Fix j = jl. The execution of step [1.1] occurs in the period denoted by [tl,1, tl,2), while
that of step [1.2] takes place during [tl,2, tl+1,1). No agent moves left in step [1]. Agents of Hs

j may
right-shift during [tl,1, tl,2) but agent j itself remains in place in that time interval. The sets Ps and
Hs
j are disjoint over all j, s, so no agent in Hs

j has moved prior to tl,1. But couldn’t a stopper in Hs
j

(indeed, Hs
j may include stoppers) have moved left in earlier executions of step [2]? No. The reason

is that we process stoppers from right to left.

Step [1.1] Consider the motion of an agent i ∈ Hs
j (j = jl) during the period [tl,1, tl,2); the order

in which we schedule the processing of these agents is immaterial. We use summation by parts to do
the accounting. Picture a slow, continuous motion. An infinitesimal motion δ at any time requires
(αq + 1)δ credits, with q the current rank of agent i: αqδ to maintain the credit invariant and δ
to pay for the actual move. Whenever i passes over another agent m because ai(t) reaches a value
x = am(t) along the way and bi > x, we switch the identities of agents i and m. This is done only
for accounting purposes in the analysis of step [1.1]. This way, agent m can then proceed to the
right to complete the journey of agent i if need be. Further swaps may then occur before the motion
ai → bi is over. The benefit of this perspective is that the ranks of the new, so-called virtual, agents
no longer change: only their positions do. Instead of tallying the individual costs of each right shift
ai → bi, we simply add up the costs of the fixed-ranked virtual agents.

Each one of the n virtual agents has a distinct rank k at time tl,1: call it vk. Processing Hs
j may

move some of them to the right (perhaps more than once in fact), so let Dk ≥ 0 be the total distance
traveled by agent vk while processing Hs

j . Any shift in vk at time t ∈ [tl,1, tl,2) implies the existence
of an interval [ai, bi] ⊂ [ai, ar(i)), where i ∈ Hs

j , that contains the position of vk at time t. Being
in Hs

j or Ps, the ki − 1 agents r(i), r(i, 2), . . . , r(i, ki − 1) = j did not move between during [0, tl,1).
(Note that ki > 1.) They may have moved to the right between tl,1 and t but they always remained
between the moving virtual agent vk and the fixed position aj : the reason is that, by definition, vk
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cannot overtake any agent, while no agent in Hs
j can right-shift past aj . As we mentioned earlier,

they cannot have moved left either. It follows that ki ≤ rk (aj(t))− k+ 1. (Observe that aj(t) = aj
but rk (aj(t)) may be different from the original rank of aj at time 0.) Of all the ai’s used in relation
to vk over the course of step [1.1], we take the index i corresponding to the smallest ai. We derive
an upper bound on the distance traveled by vk in the time interval [tl,1, tl,2). For any k, there exist
i and t ∈ [tl,1, tl,2) such that

Dk ≤ aj − ai =

ki−2∑
l=0

∆r(i,l) ≤
ki−2∑
l=0

∆j

(ρ
2

)l+1−ki
≤ 2∆j

2− ρ

(ρ
2

)1−ki
≤ 2∆j

(ρ
2

)k−rk (aj(t))
.

Summing over all virtual agents vk allows us to bound the number Al of credits that agent j = jl
needs to cover the costs incurred in processing Hs

j in the time period [tl,1, tl,2). No agent of Hs
j can

move to the right of j during [t, tl,2) and, of course, none can pass j from right to left in that time
interval; therefore,

rk (aj(t)) = rk (aj(tl,2)) > 1,

and agent jl is charged

Al =

rk (aj(tl,2))−1∑
k=1

(αk + 1)Dk ≤
rk (aj(tl,2))−1∑

k=1

2∆j(α
k + 1)

(ρ
2

)k−rk (aj(tl,2))
≤ ∆jα

rk (aj(tl,2)), (14)

where, we recall, α = 9/ρ and tl,2 is the time at which step [1.1] ends for fixed s and j = jl.

Figure 7: Covering the charges of agent j = jl.

Step [1.2] We keep the values of s and j = jl ∈ Ps set above. By Lemma 3.2, stoppers can only
move left so, by scheduling stoppers from right to left, we ensure that s has not moved yet. Recall
that, by definition of jl ∈ Ps, we have kjl = 1 and s = r(jl). As illustrated in Figure 7, define

xl = as − 1
2ρ∆jl . (15)

By definition, jl 6= s; therefore ∆jl > 0; by Rule 2, the larger of ajl and bjl does not exceed
as− ρ∆jl < xl. Applying Lemma 3.2 to agent jl shows that, in step [2], the stopper s will move left
past xl, as, indeed, bs = br(jl,kjl )

= br(jl,1) ≤ as − 1
2(1 + ρ)ρ∆jl < xl. Summarizing these bounds,{

max{ ajl , bjl } < xl , for each l ;

bs < min{xl | 1 ≤ l ≤ ν } .
(16)
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We introduce
σl = min

{
rk (ai(tl,2)) |xl ≤ ai(tl,2) and 1 ≤ i ≤ n

}
. (17)

Informally, σl would be the rank of xl, were it the position of an actual agent, measured once we
are done handling Hs

jl
in step [1.1]. Since as(tl,2) = as > xl, the agent of rank σl exists and, by

definition, is unique. Furthermore, by (16), it will not change even if agent jl is shifted to bjl during
[tl,2, tl+1,1) in step [1.2]. We define µl inductively by µ1 = σ1 and

µl = min{σl, µl−1 − 1},

for 1 < l ≤ ν. We show that agent jl needs to borrow no more than Bl credits from the bank, where

Bl = |xl − as|
(

1− 1

α

)
αµl . (18)

The key fact driving our analysis is that

µl ≥ rk (ajl(tl+1,1)) + 1 . (19)

We prove this by induction, beginning with the case l = 1. By (16), xl > max{ ajl , bjl } = ajl(tl+1,1).
(Recall that tl+1,1 is the time when agent jl has just been moved to bjl if it is to the right.) This
shows that agent jl cannot reach across to the right of xl; therefore, the agent i of rank σl at time
tl,2 still has that same rank at time tl+1,1. Since ai(tl+1,1) = ai(tl,2) ≥ xl > ajl(tl+1,1), it then follows
that

µl = σl = rk (ai(tl,2)) = rk (ai(tl+1,1)) > rk (ajl(tl+1,1)) ;

hence (19). Suppose now that l > 1. The argument we just gave can be repeated verbatim for the
case µl = σl, so we can assume that σl > µl−1 − 1, and that µl = µl−1 − 1. The key observation is
that agents jl are processed by nonincreasing value of max{ajl , bjl}. By lazy tie-breaking, therefore,
the value of rk (ajl(tl+1,1)) strictly decreases as l goes from 1 to ν. (This is not simply a result of
agent jl landing at or to the left of agent jl−1, but also of the absence of leftward motion; indeed,
note that the strict monotonicity of rk (ajl(tl+1,1)) is a claim about ranks at different times.) This
immediately implies (19) by induction. By (14), agent jl was charged in step [1.1] a number of
credits

Al ≤ ∆jlα
rk (ajl (tl,2)) ≤ ∆jlα

rk (ajl (tl+1,1))

credits. If step [1.2] moves the agent jl to bjl (ie, bjl > ajl) then this debt will increase by no

more than (1 + αrk (ajl (tl+1,1)))∆jl : the term ∆jl is to pay for the motion itself; the other term is
a conservative upper bound easily derived from the “continuous motion” argument. In both cases,
therefore, agent jl is charged A′l ≤ 3αrk (ajl (tl+1,1))∆jl . By (15, 18, 19) and α = 9/ρ,

Bl ≥
ρ

2

(
1− 1

α

)
αrk (ajl (tl+1,1))+1∆jl ≥

ρ

6
(α− 1)A′l ≥ A′l ,

which proves that agent jl has enough credits borrowed from the bank to pay for step [1].5

5The reader may have noticed that we did not use the factor of 1−1/α in the expression for Bl given in (18). Why
then do we have it? This is a technical trick to make the geometric-like sum in (21) “telescope.”
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Step [2] We need to tally the release of credits past time tν+1,1 produced by moving the stoppers
to the left and show there are at least B1 + · · ·+Bν of them. Turning once again to the summation-
by-parts argument, we track the leftward motion of s and rewrite the sum as an integral,

ν∑
l=1

Bl = −
∫ bs

as

ν∑
l=1

(αµl − αµl−1)Il(u) du,

where Il(u) = 1 if xl ≤ u ≤ as and 0 otherwise. We need the minus sign because the integral
runs in the negative direction. At time tν+1,1, the stopper s proceeds to the left continuously until
it reaches bs. Since leftward travel costs nothing, an infinitesimal motion δ at position u releases
δαq(u) credits, where q(u) is the lowest rank of any agent, at time tν+1,1, at or to the right of u (or
n if there is no such thing). (Note that q(u) compares the moving agent s against a snapshot of
the agents, excluding s, taken at the beginning of step [2].) We can also express the release as the

integral R = −
∫ bs
as
αq(u) du. It suffices to prove that

αq(u) ≥
ν∑
l=1

(αµl − αµl−1)Il(u). (20)

If l1 < · · · < lk are the indices l such that Il(u) = 1 then, by the strict monotonicity of µl,

ν∑
l=1

(αµl − αµl−1)Il(u) =
k∑
j=1

(α
µlj − αµlj−1

) ≤ αµl1 . (21)

Because of the ordering of jl, by (16), the rank of agent jl remains unchanged between tl,2 and tν+1,1,
so we could replace tl,2 by tν+1,1 in the definition of σl in (17) and get the same value of σl. This
shows that µl1 , being at most σl1 , does not exceed the rank of the smallest-ranked ai(tν+1,1) ≥ xl1 .
Given Il1(u) = 1, we have u ≥ xl1 ; hence q(u) ≥ µl1 and (20). This establishes the soundness of our
credit invariant: allocating each agent i at time 0 with aiα

rk (ai) credits is sufficient to pay for all
the costs, while maintaining the credit invariant. Since each ai ≤ 1, this implies that

1
2M ≤

n∑
i=1

aiα
rk (ai) ≤

n∑
i=1

αi < 2
(9

ρ

)n
.

The proof of Theorem 3.1 (and hence the upper bound of Theorem 1.1 for s = 1) follows from
Lemma 3.3. 2

3.3 The General Case: s < 1

We prove the upper bound of Theorem 1.1 for 0 < s < 1. Instead of assuming unit diameter, we
allow any initial configuration within the unit cube [0, 1]d; the notation Fn(s) refers to the maximum
total s-energy under these conditions. Obviously, En(s) ≤ Fn(s). We show that the total s-energy
satisfies the recurrence: F1(s) = 0 and, for n ≥ 2,

Fn(s) ≤ 2nFn−1(s) + (1− (ρ/4d)n)sFn(s) + ds/2n3. (22)

Consider a Cartesian system of reference and let yi(t) again denote the first coordinate of agent i
at time t. If the neighbors of agent i span an interval [α, β] ⊆ [0, 1] then, by (3),

yi(t+ 1) ∈ (1− γ)[α, β] + 1
2(α+ β)γ, (23)
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where γ = ρ/d. All agents are initially “dry,” except for a selected agent, denoted by its index 1,
which is wet and will spread its “wetness” from one agent to the next, causing the geometry to
change in the process. Once wet, an agent always remains so. Again, we use an algorithmic proof:

[1] Initially, all agents are dry except for agent 1. Set S(0) = {y1(0)}.

[2] For t = 0, 1, . . . ,∞:

[2.1] Declare wet any agent adjacent to a wet agent in Gt.

[2.2] S∗(t)← S(t)∪ { positions at time t of dry agents just turned wet }.
[2.3] Move each agent i from yi(t) to yi(t+1). [ If no newly wet agent, then we

may carry all motion within S(t) = S(t∗) in isolation from the n− |S(t)|
other agents. ]

[2.4] S(t+ 1)← { positions at time t+ 1 of agents corresponding to S∗(t) }.

The sets S∗(t) track wetness propagation. We interpret both S(t) and S∗(t) as multisets, for
example by labeling each position with the agent’s index. Let ‖S(t)‖ denote the length of the
smallest interval enclosing S(t) and let {tk}k≥1 be the times t ≥ 0, in chronological order, at which
|S∗(t)| > |S(t)|. Recall that ρ is smaller than a suitable constant. We show that:

‖S(tk)‖ ≤ 1−
(γ

4

)k
. (24)

The smallest interval [a, b] defining ‖S(tk)‖ is in [0, 1]. By flipping the interval [a, b] defining if
necessary, we can assume that a + b ≥ 1. Because ‖S(t1)‖ = 0, we can safely assume by induction
that (24) holds up to tk; hence a ≥ 1

2(γ/4)k. Since ‖S(t)‖ can increase only when at least one
dry agent becomes wet, ie, at times of the form t = tl, we can prove (24) for tk+1 by showing that
‖S(tk+1)‖ ≤ 1−(γ/4)k+1, which follows from [0, 1

2aγ)∩S(tk+1) = ∅. We proceed by contradiction.
Consider an agent i contributing to S(tk + 1) with yi(tk + 1) < 1

2aγ. In Gtk , the set Ni(tk) includes
at least one (not newly) wet agent; therefore, in (23), β ≥ a and hence yi(tk + 1) ≥ 1

2aγ, which is
impossible and proves (24).

The set S(tk) can only gain agents, as k grows, but the set may stop growing before it absorbs
all of them. Note this has to do with the graphs Gt and not with the positions of the agents, so it
can be used uniformly along each coordinate axis. When t is not of the form tk, step [2.3] indicates
that the adversary can act on S(t) in isolation from the rest. Therefore, the s-energy expended
during steps tk−1, . . . , tk − 1 is bounded by F|S(tk)|(s) + Fn−|S(tk)|(s). At time tk, the extra energy
involved is ∑

(i,j)∈Gtk

‖xi(t)− xj(t)‖s2 ≤
(
n

2

)
ds/2.

Using obvious monotonicity properties, it follows that, up to the highest value of tk, the s-energy is
bounded by

n−1∑
l=1

{
Fl(s) + Fn−l(s) +

(
n

2

)
ds/2

}
≤ 2nFn−1(s) + n3ds/2.
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When tk reaches its highest value t, if |S(t + 1)| < n then all the energy has been accounted for
above. Otherwise, we must add the energy expended by the n agents past t. By (24), however, at
time t + 1, the n agents fit within a cube of side length 1 − (ρ/4d)n. So, all we need to do is add
(1− (ρ/4d)n)sFn(s) inductively to the s-energy; hence (22). The case n = 2 is worthy of attention
because it is easy to solve exactly. The problem is inherently one-dimensional, so we can assume
that the two agents start at opposite corners of the unit d-cube and move toward each other by the
minimum allowed distance. This gives us the equation F2(s) = ds/2 + (1− ρ)sF2(s); hence, by (13),

F2(s) =
ds/2

1− (1− ρ)s
≤ ds/2

sρ
. (25)

We now consider the case n > 2. By (13, 22),

Fn(s) ≤ 2nFn−1(s) + n3ds/2

s(ρ/4d)n
.

By (25) and the monotonicity of Fn(s), we verify that the numerator is less than 3n3Fn−1(s);
therefore, for n > 2,

Fn(s) ≤ 3n3Fn−1(s)

s(ρ/4d)n
≤ s1−nρ−n

2−O(1).

This proves the upper bound of Theorem 1.1 for s < 1. 2

We now turn to Theorem 2.5. Recall that P is the family of n-by-n stochastic matrices such that
each P ∈ P satisfies: (i) each diagonal entry is nonzero; each positive entry is at least p; no pair
pij , pji contains exactly one zero. The entry (i, j) of a product of t such matrices can be viewed as
the position of agent i after t iterations of a bidirectional system with ρ = 2p, by (5), and an initial
vector consisting of 0 everywhere, except for 1 at position j. Referring back to the boxed algorithm,
we designate agent j as the one initially wet, with all the others dry. Let m(t) be the minimum
value in S(t). At every time tk when S(t) grows in size, the minimum m(t) cannot approach 0 closer
than ρ(m(t)/2). Since |{tk}| < n, agent j cannot be at a position smaller than pn−1. The lower
bound proof suggests a trivial construction that achieves the very same bound and therefore proves
its optimality. This completes the proof of Theorem 2.5. 2

3.4 The Lower Bounds

We prove the lower bounds in Theorems 1.1 and 1.4.

The case s < 1. We describe an algorithm An(a, b) that moves n agents initially within [a, b]
toward a single point a + (b − a)x(n) while producing a total s-energy equal to (b − a)sE(n, s).
Clearly, E(1, s) = 0, so assume n > 1. We specify An(0, 1) as follows. Place n−1 agents at position
0 and one at position 1. The graph G0 consists of a single edge between agent 1 at position 1 and
agent 2 at position 0. At time 0, agent 2 moves to position α = ρ/2 while agent 1 shifts to 1 − α.
The n−2 other agents stay put. Next, apply An−1(0, α) to the set of all agents except 1. This brings
them to position αx(n− 1). Finally, apply An(αx(n− 1), 1−α) to all the agents. The operations of
An leave the center of mass invariant, so if x(n) exists it must be 1/n. Here is a formal argument.
The attractor point x(n) satisfies the recurrence

x(n) = αx(n− 1) + (1− αx(n− 1)− α)x(n),
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where, for consistency, x(1) = 1. This implies that

1

x(n)
= 1 +

1

x(n− 1)
;

therefore x(n) = 1/n, as claimed. The total s-energy E(n, s) satisfies the relation: E(1, s) = 0; and,
for n > 1,

E(n, s) = αsE(n− 1, s) + (1− αx(n− 1)− α)sE(n, s) + 1

≥ αsE(n− 1, s) + 1

1− (1− 2α)s
≥ α(n−2)s

(1− (1− 2α)s)n−1
.

Since α = ρ/2 is small enough, (1 − 2α)s ≥ 1 − 3αs and E(n, s) ≥ s1−nρ−Ω(n), for any n large
enough, s ≤ s0, and fixed s0 < 1 (with ρ going to 0 as s0 tends to 1). We observe that Algorithm An
cannot start the second recursive call before the first one is finished, which literally takes forever.
This technicality is easily handled, however, and we skip the discussion. This completes the proof
of the lower bound of Theorem 1.1 for s < 1. 2

The case s = 1. Suppose that each Gt joins the two nodes of a 2-agent system. The length of the
edge can be made to shrink exponentially fast at a rate of 1−ρ. We show that having n agents allows
us to mimic the behavior of a 2-agent system with ρ replaced by ρΘ(n). Without loss of generality,
we assume that n is an even integer 2m ≥ 4. Our construction is symmetric by reflection along the
X-axis about the origin, so we label the agents −m, . . . ,−1, 1, . . . ,m from left to right, and restrict
our discussion to the m agents with positive coordinates. (Equivalently, we could fix one agent.)
The evolution of the system consists of phases denoted by θ = 0, 1, 2, etc. At the beginning of phase
θ, agent i lies at x1(θ) = (1− ρm)θ for i = 1 and at6

xi(θ) = xi−1(θ) + ρi−1(1− ρm)θ,

for 2 ≤ i ≤ m. As usual, we assume that ρ > 0 is small enough. The system includes a mirror
image of this configuration about the origin at all times. Note that all the agents are comfortably
confined to the interval [−2, 2], so the diameter D is at most 4.

We now describe the motion at phase θ in chronological order, beginning with agent m. During
phase θ, the first graph Gt (t = θm) consists of exactly two edges: one joining m and m− 1 (with
its mirror image across x = 0); the graph Gt+1 joins m− 1 with m− 2 (and its mirror image); etc.
The last graph in phase θ, Gt+m−1, follows a different pattern: it joins the two agents indexed 1
and −1. Except for m, all of these agents (to right of the origin) are moved twice during phase θ:
first to the right, then to the left. Specifically, agent 1 ≤ i < m moves right at time t + m − i − 1
and left at time t+m− i. We use barred symbols to denote the intermediate states, ie, the location
after the rightward moves. At phase θ,

Gt :

{
xm(θ + 1) = αmxm−1(θ) + (1− αm)xm(θ) = (1− ρm)xm(θ);

x̄m−1(θ) = 1
2xm−1(θ) + 1

2xm(θ) = xm−1(θ) + 1
2ρ

m−1(1− ρm)θ .

We easily verify the identities above for αm = (ρ− ρm+1)/(1− ρ). For i = m− 1,m− 2, . . . , 2, with
Gt+m−i joining agent i− 1 and i, the two moves are specified by:

Gt+m−i :

{
xi(θ + 1) = αixi−1(θ) + (1− αi)x̄i(θ) = (1− ρm)xi(θ) ;

x̄i−1(θ) = (1− βi)xi−1(θ) + βix̄i(θ) = xi−1(θ) + 1
2ρ
i−1(1− ρm)θ ,

6We deviate from our usual notation by letting the argument of xi(θ) refer to the phase of the construction and
not the time t.
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where βi = 1/(2 + ρ) and

αi =
ρ

2 + ρ
+

2(1− ρi)ρm−i+1

(1− ρ)(2 + ρ)
.

Finally, at time t+m− 1, choosing α1 = (ρ+ 2ρm)/(4 + 2ρ) allows us to write

Gt+m−1 : x1(θ + 1) = −α1x̄1(θ) + (1− α1)x̄1(θ) = (1− ρm)x1(θ) .

All the coefficients αi are Θ(ρ), so we can rescale ρ by a constant factor to make the dynamics
conform to a standard one-dimensional bidirectional agreement system with parameter ρ. Obviously
the system converges to consensus. In each phase θ, the union of the intervals formed by the edges
of all of that phase’s graphs Gt covers [−xm(θ), xm(θ)]; therefore, the total 1-energy is at least

2
∞∑
θ=0

xm(θ) =
2(1− ρm)

1− ρ

∞∑
θ=0

(1− ρm)θ > ρ−m.

This proves the lower bound of Theorem 1.1 for s = 1. For any positive ε < 1/2, the length of the
edge in Gt+m−1, which is 2x1(θ), does not fall below ε until θ is on the order of ρ−m log 1

ε , which
establishes the lower bound of Theorem 1.4. 2

3.5 The Remaining Proofs

Proof of Theorem 1.3. Let t0 − 1 be the time of the last (ie, Cε-th) nontrivial step. Iterate on the
following process: initially make each agent at time t0 its own one-vertex convex hull; then as long
as two convex hulls are within distance ε, remove them and replace them by the convex hull of their
union. (Pick any pair if there are several candidates.) By construction, no two of the final hulls
are within ε of each other. But, by convexity, each one of them can only evolve, at time t > t0,
within the region it occupies at time t0, so the distance between any two of them cannot decrease
ever after; hence it remains greater than ε. Since all subsequent steps at and following t0 are trivial,
further interaction and motion is confined to within each hull. By induction, we see that if any
of these final hulls at time t0 has k points then its diameter cannot exceed (k − 1)ε. This proves
that the system has εn-converged at time t0. Assume now that the communication network remains
connected at all times. Let t = tε be the first time at which all the edges of Gt are of length at most
ε. Obviously, tε ≤ Cε. Since Gtε is connected, the diameter of the set of n agents is less than εn:
this means that the system has εn-converged to consensus. 2

Proof of Theorem 1.8. We know by Theorem 1.3 that the system ε-converges eventually. Suppose
that agents i and j are more than ε apart at time t1. By assumption, i and j communicate during
some time interval [t1, t2]. (It does not matter who communicates with whom.) Picture all agents
having dry hands at time t1, except for i and j, whose hands are respectively white and red. At any
time t ≥ t1, each pair of neighbors in Gt shake hands. Wetness propagates according to the obvious
rules: (i) two wet (shaking) hands remain wet; (ii) two dry hands remain dry; (iii) two hands of
mixed status both become wet. Because of the self-loops, once wet, an agent remains wet forever.
An agent can be dry or wet and the latter category has three types: white; red; white and red.

Consider the smallest ball Wt centered at xi(t1) (ie, at the position of agent i at time t1) that
encloses all the white agents at time t; similarly, Rt is the smallest ball centered at xj(t1) that
encloses all the red agents at time t. Suppose that, between t1 and t2, no edge of Gt exceeds ε/2n
in length. Then, by convexity, no agent can move by more than ε/2n in one step. Since the edges
along which the white water flows are of length at most ε/2n, the radius of Wt can grow by at most
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ε/2n + ε/2n in a single step: ε/2n for the acquisition of any new agent and another ε/2n for its
displacement. Note that it can also shrink. By convexity, however, the ball Wt can grow only if it
absorbs at least one new white agent; therefore, it can grow at most l − 1 times if l is the number
of white agents absorbed by it (including i). The same is true of Rt. This shows that, as long
as they do not meet, the balls have a combined radius of at most (n − 2)ε/n, hence remain more
than 2ε/n apart. By our previous upper bound on the single-step growth of these balls, they can
therefore never meet; it follows that communication between i and j is impossible. This implies the
existence of an edge in Gt (t1 ≤ t ≤ t2) of length greater than ε/2n. The number of such times t
is bounded by Cε/2n. After all steps witnessing an edge of length greater than ε/2n have elapsed,
agents i and j stay permanently within ε of each other (else they could never communicate again,
which would contradict our assumption). Since we count communications only over nonoverlapping
time intervals, the number of them following a separation between agents i and j in excess of ε is
at most Cε/2n. The proof follows then from Theorem 1.4. 2
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