	第29卷第23期	中 国 电 机 工 程 学 报	Vol.29 No.23 Aug. 15, 2009
80	2009年8月15日	Proceedings of the CSEE	©2009 Chin.Soc.for Elec.Eng.

文章编号: 0258-8013 (2009) 23-0080-04 中图分类号: TK 314; TN 24 文献标志码: A 学科分类号: 470-20

激光诱导击穿光谱测量未燃碳的煤种适应性分析

姚顺春1, 陆继东1, 潘圣华1, 蒋梅城1, 谢承利2, 李捷2, 李娉1

(1. 华南理工大学电力学院, 广东省 广州市 510640;

2. 煤燃烧国家重点实验室(华中科技大学), 湖北省 武汉市 430074)

Coal Suitability of the Measurement of Unburned Carbon by Laser-induced Breakdown Spectroscopy

YAO Shun-chun¹, LU Ji-dong¹, PAN Sheng-hua¹, JIANG Mei-cheng¹, XIE Cheng-li², LI Jie², LI Ping¹
 (1. School of Electric Power, South China University of Technology, Guangzhou 510640, Guangdong Province, China; 2. State Key Laboratory of Coal Combustion (Huazhong University of Science & Technology), Wuhan 430074, Hubei Province, China)

ABSTRACT: Laser-induced breakdown spectroscopy was used to analyze unburned carbon in fly ash. The samples were gotten using fast ashing method and excited by pulse laser and plasma was formed at atmospheric pressure. The emitted signal which contains the information of unburned carbon in fly ash was detected. The calibration curve constructed base on six samples of one kind of coal ash, and two samples of other two kinds of coal ash were analyzed. The experimental results show that calibration curve constructed with the data from same kind of coal ash can be used to analyze the different kinds of fly ash using proper data processing method. The relative standard deviation of repetition of measured values are less than 8.08%, the relative errors are less than 2.27%. It is indicated that laser-induced breakdown spectroscopy is suitable for rapidly detect unburned carbon in fly ash with receptible applicability.

KEY WORDS: laser-induced breakdown spectroscopy; unburned carbon of fly ash; coal suitability; quantitative analysis

摘要:将激光诱导击穿光谱技术(laser-induced breakdown spectroscopy, LIBS)应用于粉煤灰未燃碳的分析。通过快速 灰化法制取不同含碳量的粉煤灰样品。利用脉冲激光在大气 常压环境下激发样品,探测等离子体发射信号,得到未燃碳 的光谱信息。由一种煤样制得的 6 组灰样构建未燃碳定标曲 线,分析另外 2 种不同煤种的灰样未燃碳含量,以验证激光 诱导击穿光谱技术分析粉煤灰未燃碳的煤种适应性能力。研 究结果表明,通过采用适当的数据处理方法,由一种煤样制 取的粉煤灰建立定标曲线,可分析不同煤种的粉煤灰样品,

并能得到良好的定量分析结果。分析信号重复测量值的相对标准偏差小于 8.08%,未燃碳定量分析的相对误差小于 2.27%。证明了激光诱导击穿光谱技术适用于粉煤灰未燃碳的快速测量,并具有良好的煤种适应性能力。

关键词:激光诱导击穿光谱;粉煤灰未燃碳;煤种适应性; 定量分析

0 引言

粉煤灰未燃碳作为锅炉运行的一项重要经济 技术指标,是评价锅炉燃烧效率的重要依据。实时 检测粉煤灰未燃碳有利于指导运行,正确调整风煤 比和合理的煤粉细度,提高锅炉燃烧控制水平。传 统的重量燃烧法耗时长,分析滞后,无法快速反映 锅炉燃烧工况。近年来,陆续出现了一些粉煤灰未 燃碳在线分析仪,目前电厂投用最为广泛的在线未 燃碳监测仪基本都是采用微波法。微波测量技术存 在测量腔堵灰、受煤种变化影响大、测量稳定性和 精度不够理想,大部分仪器维护量较大等缺陷^[1-2], 难以满足生产工艺的要求。

激光诱导击穿光谱技术作为一种快速成分分 析技术,有望应用于燃煤领域的快速监测^[3-7]。Noda 和Kurihara等人^[8-9]将LIBS技术应用于燃煤电厂飞 灰未燃碳的在线监测,采用ICCD作为等离子体信号 探测器,评估含碳量等级水平,但是设备成本较高, 不利于市场推广。笔者所在单位验证了LIBS技术针 对同煤种灰样所含未燃碳的定量分析能力^[10]。而目 前动力煤市场供应偏紧,电厂燃煤来源不稳定,煤 质波动大。不同煤质的物理化学特性有所不同,这 就要求相关的分析仪器具有良好的煤种适应性能

基金项目:国家自然科学基金项目(50576029)。

Project Supported by National Natural Science Foundation of China (50576029).

力。本文在基于微型光纤光谱仪的实验台架上,选 用不同的电厂常用燃煤,通过快速灰化法制取不同 含碳量的粉煤灰样品,由一个煤种的灰样构建定标 曲线,分析不同煤种灰样的未燃碳含量,研究LIBS 技术的煤种适应性能力。

1 实验和样品介绍

1.1 样品制备

选用 3 种常用电厂燃煤(烟煤)的空干基煤样进 行研磨,并筛分出粒径小于 0.1 mm的样品。按照快 速灰化法操作标准,将筛分好的煤样均匀放置于灰 皿中,缓缓推入已经加热到 850℃的马弗炉中,待 煤样不再冒烟时,将煤样推进炉中炽热部分。关闭 炉门,使其在(815±10)℃的温度下灼烧。为了得到 一系列含不同未燃碳的粉煤灰样品,控制不同的灼 烧时间。从炉中取出灰皿,先在空气中冷却 5 min 左右,再放到干燥器中冷却至室温。最后根据重量 燃烧法测定煤灰样品的未燃碳含量,样品按照未燃 碳含量高低排列,如表 1 所示。其中 3#和 5#样品 由 2 种不同煤种制得,其余样品由同一煤种制得。

表1 粉煤灰样品含碳量

Tab. 1	Un	burnee	d carbo	on con	tent of	fly as	n samp	les %
样品	1#	2#	3#	4#	5#	6#	7#	8#
含碳量	1.79	3.97	5.44	5.52	8.83	9.14	10.12	13.14

1.2 实验介绍

实验所用台架如图 1 所示。实验系统介绍可参 考文献[11]。脉冲激光由反射镜反射透过垂直方向 上的聚焦透镜(焦距为 200 mm)。聚焦后烧蚀样品, 形成高温等离子体。在合适的延时后开始采集等离 子体信号,信号通过光纤传输至光谱仪进行分光, 由CCD探测同时转化为数据信号传入计算机进行 数据保存和处理。

进行压片处理^[12-13]。这虽然可以一定程度上提高等 离子体信号强度和测量精密度,但样品预处理相对 比较耗时,增长了测试周期,还会增加LIBS整体测 量系统的复杂性。为了简化样品预处理过程,实验 直接将粉末状粉煤灰样品放置在旋转平台的样品 池中,在大气常压环境下被击穿。为了减小样品不 均匀性对测量结果的影响,旋转平台保持一定的旋 转速度,避免连续2次脉冲激光作用在样品的同一 点上,同时平均20次脉冲信号,得到一组光谱数 据。设定光谱仪开始数据采集相对于激光器发送触 发信号的延迟时间为400ns,信号采集的积分时间 为2ms,以获取较高信噪比的等离子体发射光谱 信号。

2 实验结果与分析

利用 40 mJ的脉冲激光分别作用于 8 组粉煤灰 样品,得到 190~215 nm波段光谱如图 2 所示。

由图 2 可以看出,不同煤灰样品对应的光谱图 整体上比较相似,但是具体元素对应的特征谱线强 度,以及背景强度均不按一定规律变化。从图 3 也 可以看出,1#~8#样品 C 谱线强度和未燃碳含量之 间基本不存在明显的对应关系,这主要是由不同灰

样的基体差异引起的。基体效应是影响LIBS检测的 重要因素之一,定量分析时可以通过选择合适的内 标降低其影响^[14-15]。Yoon等人^[16]定量分析陶瓷中的 Fe、Ca和Mg元素时,选择陶瓷所含的主要元素Si 作为内标。Ebinger等人^[17]选择土壤所含的主要元素 Si和AI的谱线强度总和作为内标,定量分析土壤中 的C含量。

利用LIBS技术定量分析粉煤灰未燃碳,需要构 建元素谱线信息和含量之间的定标曲线,并具有良 好的一一对应关系。激光诱导击穿光谱内标法定量 分析的基本公式为^[18]:

$$R = \frac{I}{I_0} = \frac{aC^b}{a_0 C_0^{b_0}}$$
(1)

式中: I为分析谱线强度; C为待测元素的浓度; I_0 为 内标强度; C_0 为内标含量; $a \pi b$ 为常数。一般 $b \leq 1$, 其值与光源特性,样品中待测元素含量,元素性质 及谱线性质等因素有关。

粉煤灰的主要成分为SiO₂、Al₂O₃、Fe₂O₃、CaO 和未燃碳,其中以SiO₂、Al₂O₃和Fe₂O₃为主。不同 粉煤灰所含的3种氧化物总量相对恒定,低钙灰中 总含量约为85%左右^[19]。内标含量在一定范围内变 化,较分析元素恒定的条件下,可以认为*I*/*I*₀的变 化主要反映了分析元素浓度*C*的变化^[11]。所以在分 析粉煤灰未燃碳时,可以选择Si、Al和Fe谱线强度 总和作为内标,良好的处理效果通过多次重复实验 得到验证。分析线和内标线的特征参数可从原子光 谱标准与技术数据库NIST中查得。本文所选的分析 谱线均不存在明显的自吸收效应,可取*b*=1。

根据上述结论,式(1)可以表示为:

$$R = \frac{I_{\rm C}}{I_{\rm Si+Al+Fe}} = a'C_{\rm C}$$
(2)

式中: *a*'为定标系数; *I*_{Si+Al+Fe}为 3 种元素谱线强度 总和; *R*为C谱线强度和内标强度之比; *C*_C为粉煤灰 未燃碳含量。

由式(2)可知, 谱线强度比和未燃碳含量之间存 在函数关系, 可根据不同样品的谱线强度比和未燃 碳含量建立定标曲线。

燃煤电厂来煤不稳定的实际情况,要求相应的 分析技术具有良好的煤种适应性能力。对于 LIBS 技术分析未燃碳而言,需要根据已经构建好的定标 曲线,分析不同煤种的粉煤灰样品。为了验证 LIBS 技术的煤种适应性能力,在8组实验灰样中,选取 6 组由同一煤种制得的粉煤灰样品构建未燃碳分析 曲线,其余2组不同煤种的粉煤灰样品作为检验样品,定标曲线如图4所示。

图 4 粉煤灰未燃碳定标曲线 Fig. 4 Calibration curves of unburned carbon in fly ash samples

图 4 中每个数据点为重复 5 次测量的平均值, 误差棒表示重复 5 次测量值的相对标准偏差(RSD)。 1#~8#样品的RSD在 2.07%~8.08%之间。由此可以 看出,LIBS分析粉煤灰未燃碳重复测量值的RSD均 小于 10%,这也是典型的LIBS测量信号RSD 值 ^[20]。由 6 组灰样得到的定标曲线拟合度为 0.99,将 2 组检验样品的谱线强度比测量值代入定标曲线, 得到相应的未燃碳含量值,如表 2 所示。

表 2 3#和 5#样品的定量分析结果

1ab. 2	Canoration value of 5# and 5# samples				
样品	参考浓度	分析浓度	绝对误差	相对误差	
3#	5.44	5.56	0.12	2.21	
5#	8.83	8.63	0.20	2.27	

表 2 中的分析浓度为 5 次重复测量的平均值, 3#和 5#样品未燃碳含量定量分析的绝对误差分别 为 0.12% 和 0.20%,相对误差分别为 2.21% 和 2.27%。

3 结论

本文通过快速燃烧法制得不同含碳量的粉煤 灰样品,利用 LIBS 技术分析了粉煤灰所含的未燃 碳。不同煤种灰样之间存在明显的基体差异,通过 选择合适的内标,可以消弱基体效应的影响,得到 具有良好拟合度的定标曲线和较佳的定量分析结 果。因此在燃煤电厂来煤多变的生产条件下,可以 利用 LIBS 技术快速分析粉煤灰未燃碳含量,且具 有良好的煤种适应性能力。

参考文献

 刘鸿,周克毅.锅炉飞灰测碳仪的技术现状及发展趋势[J].锅炉 技术,2004,35(2):65-68.

Liu Hong, Zhou Keyi. Recent research and development of unburned carbon in fly ash detector[J]. Boiler Technology, 2004, 35(2): 65-68(in Chinese).

- [2] 阎高伟,谢刚,谢克明,等.基于多传感器融合技术的飞灰含碳 量测量[J].中国电机工程学报,2006,26(7):35-39.
 Yan Gaowei, Xie Gang, Xie Keming, et al. Measurement for unburned carbon in fly ash based on multi-sensor fusion techniques
 [J]. Proceedings of the CSEE, 2006, 26(7): 35-39(in Chinese).
- [3] Gaft M, Sapir S I, Modiano H, et al. Laser induced breakdown spectroscopy for bulk minerals online analyses[J]. Spectrochimica Acta (Part B), 2007, 62(12): 1496-1503.
- [4] Gaft M, Dvir E, Modiano H, et al. Laser induced breakdown spectroscopy machine for online ash analyses in coal[J]. Spectrochimica Acta (Part B), 2008, 63(10): 1177-1182.
- [5] Mateo M P, Nicolas G, Yanez A. Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations[J]. Applied Surface Science, 2007, 254(4): 868-872.
- [6] 刘彦,陆继东,李娉,等.内标法在激光诱导击穿光谱测定煤粉 碳含量中的应用[J].中国电机工程学报,2009,29(5):1-4. Liu Yan, Lu Jidong, Li Ping, et al. Determination of carbon content in pulverized coal with laser-induced breakdown spectroscopy by internal standard method[J]. Proceedings of the CSEE, 2009, 29(5): 1-4(in Chinese).
- [7] 谢承利,陆继东,李捷,等.基于激光感生击穿光谱的燃煤结渣 特性评估[J].中国电机工程学报,2007,27(23):24-27.
 Xie Chengli, Lu Jidong, Li Jie, et al. Study on real-time evaluation of slagging propensities of coals based on laser-induced breakdown spectroscopy[J]. Proceedings of the CSEE, 2007, 27(23): 24-27(in Chinese).
- [8] Noda M, Deguchi Y, Iwasaki S, et al. Detection of carbon content in a high-temperature and high-pressure environment using laserinduced breakdown spectroscopy[J]. Spectrochimica Acta (Part B), 2002, 57(4): 701-709.
- [9] Miki K, Koji I, Yoshinori I, et al. Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy[J]. Applied Optics, 2003, 42(30): 6159-6165.
- [10] 吴戈,陆继东,余亮英,等.激光感生击穿光谱技术测量飞灰含碳量[J].热能动力工程,2005,20(4):365-368.
 Wu Ge, Lu Jidong, Yu Liangying, et al. The measurement of carbon content in fly ash by laser-induced breakdown spectroscopy[J]. Journal of Engineering for Thermal Energyand Power, 2005, 20(4): 365-368(in Chinese).
- [11] 姚顺春,陆继东,谢承利,等.强度比定标法分析激光诱导击穿 碳谱线[J].强激光与粒子束,2008,20(7):1089-1092.
 Yao Shunchun, Lu Jidong, ,Xie Chengli, et al. Quantitative analysis laser induced carbon plasma by intensity ratio calibration[J]. High

Power Laser and Particle Beams, 2008, 20(7): 1089-1092(in Chinese).

- [12] Gondal M A, Hussain T, Yamani Z H, et al. The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy[J]. Talanta, 2007, 72(2): 642-649.
- [13] Kuzuya M, Murakami M, Maruyama N. Quantitative analysis of ceramics by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta (Part B), 2003, 58(5): 957-965.
- [14] Onge L S, Kwong E, Sabsabi M, et al. Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta (Part B), 2002, 57(7): 1131-1140.
- [15] Walid Tawfik Y. Mohamed. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera[J]. Optics & Laser Technology, 2008, 40(1): 30-38.
- [16] Yoon Y, Kim T, Yang M, et al. Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy[J]. Microchemical Journal, 2001, 68(2-3): 251-256.
- [17] Ebinger M H, Norfleet M. L, Breshears D D, et al. Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement[J]. Soil Science Society of America, 2003, 67(5): 1616-1619.
- [18] 辛仁轩.等离子体发射光谱分析[M].北京:化学工业出版社,2005: 125-126.
- [19] 王福元. 吴正严. 粉煤灰利用手册[M]. 北京: 中国电力出版社, 1997: 63.
- [20] Celio P, Juliana C, Lucas M C, et al. Laser induced breakdown spectroscopy[J]. Journal of the Brazilian Chemical Society, 2007, 18(3): 463-512.

收稿日期:2009-02-17。 作者简介:

姚顺春(1983一),男,博士研究生,主要从事 激光测量与诊断技术在燃烧领域的应用研究, yao.shunchun@mail.scut.edu.cn;

陆继东(1957一),教授,博士生导师,长江学 者特聘教授,研究方向为清洁燃烧理论与技术、热 力系统的优化运行以及激光测量与诊断技术, idlu@scut.edu.cn:

潘圣华(1983一),男,硕士研究生,主要从事 激光测量与诊断技术在燃烧领域的应用研究;

蒋梅城(1984一),女,硕士研究生,主要从事 激光测量与诊断技术在燃烧领域的应用研究。

(责任编辑 王庆霞)

第23期