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Tracking Stopping Times
Through Noisy Observations

Urs Niesen and Aslan Tchamkerten

Abstract

A novel quickest detection setting is proposed which is a generalization of the well-known Bayesian change-
point detection model. Suppose{(Xi, Yi)}i≥1 is a sequence of pairs of random variables, and thatS is a stopping
time with respect to{Xi}i≥1. The problem is to find a stopping timeT with respect to{Yi}i≥1 that optimally
tracksS, in the sense thatT minimizes the expectedreaction delayE(T − S)+, while keeping thefalse-alarm
probability P(T < S) below a given thresholdα ∈ [0, 1]. This problem formulation applies in several areas, such
as in communication, detection, forecasting, and quality control.

Our results relate to the situation where theXi’s and Yi’s take values in finite alphabets and whereS is
bounded by some positive integerκ. By using elementary methods based on the analysis of the tree structure of
stopping times, we exhibit an algorithm that computes the optimal average reaction delays for allα ∈ [0, 1], and
constructs the associated optimal stopping timesT . Under certain conditions on{(Xi, Yi)}i≥1 andS, the algorithm
running time is polynomial inκ.

Index Terms

Algorithm, quickest detection problem, decision theory, synchronization, forecasting, monitoring, sequential analysis

I. PROBLEM STATEMENT

The tracking stopping time (TST) problem is defined as follows. Let {(Xi, Yi)}i≥1 be a sequence of
pairs of random variables. Alice observesX1, X2, . . . and chooses a stopping time (s.t.)S with respect
to that sequence.1 Knowing the distribution of{(Xi, Yi)}i≥1 and the stopping ruleS, but having access
only to theYi’s, Bob wishes to find a s.t. that gets as close as possible to Alice’s. Specifically, Bob aims
to find a s.t.T minimizing the expected reaction delayE(T − S)+ , E max{0, T − S}, while keeping
the false-alarm probabilityP(T < S) below a certain thresholdα ∈ [0, 1].

Example 1. Monitoring
Let Xi be the distance of an object from a barrier at timei, and letS be the first time the object

hits the barrier, i.e.,S , inf{i ≥ 1 : Xi = 0}. Assume we have access toXi only through a noisy
measurementYi, and that we want to raise an alarm as soon as the object hits the barrier. This problem
can be formulated as the one of finding a s.t.T with respect to theYi’s that minimizes the expected
reaction delayE(T − S)+, while keeping the false-alarm probabilityP(T < S) small enough. ♦

Another situation where the TST problem applies is in the context of communication over channels
with feedback. Most of the studies related to feedback communication assume perfect feedback, i.e., the
transmitter is fully aware of the output of the channel as observed by the receiver. Without this assumption
— i.e., if the feedback link is noisy — a synchronization problem may arise between the transmitter and
the receiver which can be formulated as a TST problem, as shown in the following example.

Example 2. Communication

The authors are with the Massachusetts Institute of Technology, Cambridge, MA 02139. Email:{uniesen,tcham}@mit.edu
This work was supported in part by NSF under Grant No. CCF-0515122, by DoD MURI Grant No. N00014- 07-1-0738, and by a

University IR&D Grant from Draper Laboratory.
1 Recall that a stopping time with respect to a sequence of random variables{Xi}i≥1 is a random variableS taking values in the positive

integers such that the event{S = n}, conditioned on{Xi}
n
i=1, is independent of{Xi}

∞
i=n+1 for all n ≥ 1. A stopping timeS is non-

randomizedif P(S = n|Xn = xn) ∈ {0, 1} for all xn ∈ Yn andn ≥ 1. A stopping timeS is randomizedif P(S = n|Xn = xn) ∈ [0, 1]
for all xn ∈ Xn andn ≥ 1.
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Fig. 1. The decoding timeS depends on the output of the forward channel. The encoder decides to stop transmission at timeT based on
the output of the feedback channel. If the feedback channel is noisy,S andT need not coincide.

It is well known that the presence of a noiseless feedback link allows to dramatically increase the
reliability for a given communication delay (see, e.g., [1]). However, to take advantage of feedback,
variable length codes are often necessary.2 This can be observed by looking at a non-perfect binary
erasure channel. In this case, any block coding strategy yields a strictly positive error probability. In
contrast, consider the variable length strategy where the encoder keeps sending the bit it wishes to convey
until it is successfully received. This simple strategy achieves error-free communication at a rate equal to
the capacity of the channel in question. Can we still use thiscoding strategy if the feedback channel is
(somewhat) noisy? Because of the noisy feedback link, a synchronization problem between the decoder
and the encoder arises: if the first non-erased output symboloccurs at timeS, what should be sent at
time S + 1? This agreement problem occurs because the encoder observes now only a noisy version of
the symbols received by the decoder (see Fig. 1). In particular, the first non-erased output symbol may
not be recognized as such by the encoder.3

Instead of treating the synchronization issue that resultsfrom the use of variable length codes over
channels with noisy feedback, let us consider the simpler problem of finding the minimum delay needed
by the encoder to realize that the decoder has made a decision. In terms of the TST problem, Alice
and Bob represent the decoder and the encoder, theXi’s and Yi’s correspond to the input and output
symbols of the feedback channel, whereasS andT represent the decoding time and the time the encoder
stops transmission, respectively. HereE(T − S)+ represents the delay needed by the encoder to realize
that the decoder has made a decision, and we aim to minimize itgiven that the probability of stopping
transmission too early,P(T < S), is kept below a certain thresholdα.

Note that, in the context of feedback communication, it would be reasonable to define the communication
rate with respect to the overall delayS + (T − S)+ = max{S, T}. This definition, in contrast with the
one that takes into account only the decoding time (such as for rateless codes), puts the delay constraint
on both the transmitter and the receiver. In the Example 8, weinvestigate the highest achievable rate with
respect to the overall communication delay if the “send until a non-erasure occurs” strategy is used and
both the forward and the feedback channels are binary erasure. ♦

Example 3. Forecasting
A large manufacturing machine breaks down as soon as its cumulative fatigue hits a certain threshold.

Knowing that a machine replacement takes, say, ten days, theobjective is to order a new machine so
that it is operational at the time the old machine breaks down. This prevents losses due to an interrupted
manufacturing process as well as storage costs caused by an unused backup machine.

The problem of determining the operating start date of the new machine can be formulated as follows.
Let Xn be the cumulative fatigue up to dayn of the current machine, and letS denote the first dayn
that Xn crosses the critical fatigue threshold. Since the replacement period is ten days, the first dayT a

2The reliability function associated with block coding schemes is lower than the one associated with variable length coding. For symmetric
channels, for instance, the reliability function associated with block coding schemes is limited by the sphere packingbound, which is lower
than the best optimal error exponent attainable with variable length coding ([2], [3]).

3For fixed length coding strategies over channels with noisy feedback we refer the reader to [4], [5].
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new machine is operational can be scheduled only on the basisof a (possibly randomized) function of
{Xi}

T−10
i=1 . By definingYi to be equal toXi−10 if i > 10 and else equal to zero, the dayT is now a s.t.

with respect to{Yi}i≥1, and we can formulate the requirement onT as aiming to minimizeE(T − S)+

while keepingP(T < S) below a certain threshold. ♦

Note that, in the forecasting example, in contrast with the monitoring and communication examples,
Alice has access to more information than Bob. From the process she observes, she can deduce Bob’s
observations — here simply by delaying hers. This feature may be interesting in other applications. The
general formulation where Alice has access to more information than Bob is obtained by letting the
observation available to Alice at timei beXi = (X̃i, Ỹi), and the observation available to Bob beYi = Ỹi.

Example 4. Bayesian Change-Point Detection
In this Example we will see how the TST setting generalizes the Bayesian version of the change-point

detection problem, a long studied problem with applications to industrial quality control and that dates
back to the1940’s [6]. The Bayesian change-point problem is formulated as follows. Let θ be a random
variable taking values in the positive integers. Let{Yi}i≥1 be a sequence of random variables such that,
given the value ofθ, the conditional probability ofYn givenY n−1 , {Yi}

n−1
i=1 is P0(·|Y

n−1) for n < θ and
is P1(·|Y

n−1) for n ≥ θ. We are interested in a s.t.T with respect to theYi’s minimizing the change-point
reaction delayE(T − θ)+, while keeping the false-alarm probabilityP(T < θ) below a certain threshold
α ∈ [0, 1].

Shiryaev (see, e.g.,[7],[8, Chapter 4.3]) considered the Lagrangian formulation of the above problem:
Given a constantλ ≥ 0, minimize

E(T − θ)+ + λP(T < θ)

over all s.t.’sT . Assuming a geometric prior on the change-pointθ and that before and afterθ the
observations are independent with common density functionf0 for t < θ andf1 for t ≥ θ, Shiryaev showed
that the optimalT stops as soon as the posterior probability that a change occurred exceeds a certain
fixed threshold. Later Yakir [9] generalized Shiryaev’s result by considering finite-state Markov chains.
For more general prior distributions onθ, the problem is known to become difficult to handle. However,
in the limit α → 0, Lai [10] and, later, Tartakovsky and Veeravalli [11], derived asymptotically optimal
detection policies for the Bayesian change-point problem under general assumptions on the distributions
of the change-point and observed process.4

To see that the Bayesian change-point problem can be formulated as a TST problem, it suffices to define
the sequence of binary random variables{Xi}i≥1 such thatXi = 0 if i < θ andXi = 1 if i ≥ θ, and to let
S , inf{i : Xi = 1} (i.e., S = θ). The change-point problem defined byθ and{Yi}i≥1 becomes the TST
problem defined byS and{(Xi, Yi)}i≥1. However, the TST problem cannot, in general, be formulatedas
a Bayesian change-point problem. Indeed, the Bayesian change-point problem yields for anyk > n

P(θ = k|Y n = yn, θ > n)

=
P(Y n = yn, θ > n|θ = k)P(θ = k)

P(Y n = yn|θ > n)P(θ > n)

=
P(Y n = yn|θ = k)P(θ = k)

P(Y n = yn|θ > n)P(θ > n)

= P(θ = k|θ > n) (1)

sinceP(Y n = yn|θ = k) = P(Y n = yn|θ > n). Therefore, conditioned on the event{θ > n}, the first
n observationsY n are independent ofθ. In other words, given that no change occurred up to timen,
the observationsyn are useless in predicting the value of the change-pointθ. In contrast, for the TST
problem, in general we have

P(S = k|Y n = yn, S > n) 6= P(S = k|S > n) (2)

4For the non-Bayesian version of the change-point problem werefer the reader to [12], [13], [14].
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Fig. 2. Typical shape of the expected delayd(α) as a function of false-alarm probabilityα. The break-points are achieved by non-randomized
stopping times.

becauseP(Y n = yn|S = k) 6= P(Y n = yn|S > n). ♦

As is argued in the last example, the TST problem is a generalization of the Bayesian change-point
problem, which itself is analytically tractable only in special cases. This makes an analytical treatment
of the general TST problem difficult. Instead, we present an algorithmic solution to this problem for an
arbitrary process{(Xi, Yi)}i≥1 and an arbitrary stopping timeS bounded by some constantκ ≥ 1. The
proof of correctness of this algorithm provides insights into the structure of the optimal stopping time
T tracking S, and into the tradeoff between expected delayE(T − S)+ and probability of false-alarm
P(T < S). Under some conditions on{(Xi, Yi)}i≥1 andS, the computational complexity of this algorithm
is polynomial inκ.

The rest of the paper is organized as follows. In Section II, we provide some basic properties of the TST
problem defined over a finite alphabet process{(Xi, Yi)}i≥1, and in Section III we provide an algorithmic
solution to it. In Section IV, we derive conditions under which the algorithm has low complexity and
illustrate this in Section V with examples.

II. THE OPTIMIZATION PROBLEM

Let {(Xi, Yi)}i≥1 be a discrete-time process where theXi’s andYi’s take value in some finite alphabets
X andY , respectively. LetS be a s.t. with respect to{Xi}i≥1 such thatS ≤ κ almost surely for some
constantκ ≥ 1. We aim to find for anyα ∈ [0, 1]

d(α) , min
T :P(T<S)≤α

T≤κ

E(T − S)+ (3)

where the s.t.’sT are possibly randomized. Note that the restrictionT ≤ κ induces no loss of optimality.
Now, the set of all s.t.’s over{Yi}i≥1 is convex, and its extreme points are non-randomized s.t.’s

([15], [16]). This implies that any randomized s.t.T ≤ κ can be written as a convex combination of
non-randomized s.t.’s bounded byκ, i.e.

P(T = k) =
∑

j

wjP(Tj = k)

for any integerk, where{Tj} denotes the finite set of all non-randomized s.t.’s bounded by κ, and where
thewj ’s are nonnegative and sum to one. Hence, because false-alarm and expected reaction delay can be
written as

P(T < S) =
∑

j

wjP(Tj < S)

E(T − S)+ =
∑

j

wjE(Tj − S)+ ,

the functiond(α) is convex and piecewise linear, with break-points achievedby non-randomized s.t.’s. Its
typical shape is depicted in Figure 2.



5

For λ ≥ 0, define the Lagrangian

Jλ(T ) , E(T − S)+ + λP(T < S). (4)

Lemma 1. We have
d(α) = sup

λ≥0
min
T≤κ

(Jλ(T ) − λα) ,

where the minimization is over all non-randomized s.t.’s bounded byκ.

Proof. The convex minimization problem in (3) admits at least one feasible point, namelyT = κ. Therefore
strong Lagrange duality holds (see, e.g., [17, Chapter 5]),and we obtain

d(α) = sup
λ≥0

min
T≤κ

(Jλ(T ) − λα) . (5)

Becaused(α) is convex with extreme points achieved by non-randomized s.t.’s, we may restrict the
minimization in (5) to be over the set of non-randomized s.t.’s bounded byκ.

III. A N ALGORITHM FOR COMPUTING d(α)

We first establish a few preliminary results later used to evaluateminT Jλ(T ). Emphasis is put on the
finite tree representation of bounded s.t.’s with respect tofinite alphabet processes. We then provide an
algorithm that computes the entire curved(α).

We introduce a few notational conventions. The setY∗ represents all finite sequences overY . An
element inY∗ is denoted either byyn or by y, depending on whether or not we want to emphasize its
length. To any non-randomized s.t.T , we associate a unique|Y|-ary treeT (i.e., all the nodes ofT have
either zero or exactly|Y| children) having each node specified by somey ∈ Y∗, whereρy represents the
vertex path from the rootρ to the nodey. The depth of a nodeyn ∈ T is denoted byl(yn) , n. The
tree consisting only of the root is the trivial tree. A nodeyn ∈ T is a leaf if P(T = n|Y n = yn) = 1.
We denote byL(T ) the leaves ofT and byI(T ) the intermediate (or non-terminal) nodes ofT . The
notationT (T ) is used to denote the (non-randomized) s.t.T induced by the treeT . Given a nodey in
T , let Ty be the subtree ofT rooted iny. Finally, letD(Ty) denote the descendants ofy in T . The next
example illustrates these notations.

Example 5. LetY = {0, 1} andκ = 2. The treeT depicted in Figure 3 corresponds to the non-randomized
s.t.T taking value one ifY1 = 1 and value2 if Y1 = 0. The setsL(T ) andI(T ) are given by{00, 01, 1}
and{ρ, 0}, respectively. The subtreeT0 of T consists of the nodes{0, 00, 01}, and its descendantsD(T0)
are{00, 01}. The subtreeTρ is the same asT , and its descendantsD(Tρ) are{0, 1, 00, 01}. ♦

00 01

0 1

ρ

Fig. 3. Tree corresponding to the s.t.T defined byT = 1 if Y1 = 1, andT = 2 else.

Below, we describe an algorithm that, for a given s.t.S, constructs a sequence of s.t.’s{T (T m)}M
m=0 and

Lagrange multipliers{λm}
M
m=0 with the following two properties. First, theT m’s andλm’s are ordered in

the sense thatT M ⊂ T M−1 ⊂ . . . ⊂ T 0 and0 = λM ≤ λM−1 ≤ . . . ≤ λ1 ≤ λ0 = ∞. (Here the symbol
⊂ denotes inclusion, not necessarily strict.) Second, for any m ∈ {0, . . . , M} andλ ∈ (λm, λm−1] the tree
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T m−1 minimizesJλ(T ) , Jλ(T (T )) among all non-randomized s.t.’s. The algorithm builds uponideas
from the CART algorithm for the construction of classification and regression trees [18].

Before we state the algorithm, we need to introduce a few quantities. Given a non-randomized s.t.T
represented by its|Y|-ary treeT , we write the LagrangianJλ(T ) as

Jλ(T ) = E(T − S)+ + λP(T < S)

=
∑

y∈L(T )

P(Y = y)
(

E

(

(l(y) − S)+|Y = y
)

+ λP

(

S > l(y)|Y = y
)

)

=
∑

y∈L(T )

b(y) + λa(y)

=
∑

y∈L(T )

Jλ(y),

where

a(y) , P(Y = y)P(S > l(y)|Y = y),

b(y) , P(Y = y)E
(

(l(y) − S)+|Y = y
)

,

Jλ(y) , b(y) + λa(y) .

We extend the definition ofJλ(·) to subtrees ofT by setting

Jλ(Ty) ,
∑

γ∈L(Ty )

Jλ(γ).

With this definition5

Jλ(Ty) =

{

Jλ(y) if y ∈ L(T ),
∑

γ∈Y Jλ(Tyγ) if y ∈ I(T ).

Similarly, we define

a(Ty) ,
∑

γ∈L(Ty )

a(γ),

b(Ty) ,
∑

γ∈L(Ty )

b(γ).

For a givenλ ≥ 0 andT , defineT (λ) ⊂ T to be the subtree ofT having the same root, and such that
Jλ(T (λ)) ≤ Jλ(T

′) for all subtrees (with same root)T ′ ⊂ T , andT (λ) ⊂ T ′ for all subtrees (with same
root) T ′ ⊂ T satisfyingJλ(T (λ)) = Jλ(T

′). In words, among all subtrees ofT yielding a minimal cost
for a givenλ, the treeT (λ) is the smallest. As we shall see in Lemma 2, such a smallest subtree always
exists, and henceT (λ) is well defined.

Remark.Note thatTy(λ) is different from (T (λ))y. Indeed,Ty(λ) refers to the optimal subtree ofTy

with respect toλ, whereas(T (λ))y refers to subtree rooted iny of the optimal treeT (λ).

Example 6. Consider again the treeT in Figure 3. AssumeJλ(ρ) = 4, Jλ(0) = 2, Jλ(1) = Jλ(00) =
Jλ(01) = 1. Then

Jλ(T ) = Jλ(1) + Jλ(00) + Jλ(01) = 3,

Jλ(T0) = Jλ(00) + Jλ(01) = 2.

5We usedT , T , Ty , and y, as possible arguments ofJλ(·). No confusion should arise from this slight abuse of notation, since for
non-randomized s.t.’s all of these arguments can be interpreted as trees.
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The smallest optimal subtree ofT having the same root isT (λ) = {ρ, 0, 1} and

Jλ(T (λ)) = Jλ(0) + Jλ(1) = 3.

The smallest optimal subtree ofT0 having the same root isT0(λ) = {0} and

Jλ(T0(λ)) = Jλ(0) = 2.

♦

Given a|Y|-ary treeT , andλ ≥ 0, the following lemma shows thatT (λ) always exists and characterizes
T (λ) and Jλ(T (λ)). The reader may recognize the finite-horizon backward induction algorithm whose
detailed proof can be found in standard textbooks (e.g., [19, Chapter 3 and 4]).

Lemma 2. Given a|Y|-ary treeT and λ ≥ 0. For everyy ∈ I(T ),

Jλ(Ty(λ)) = min{Jλ(y),
∑

γ∈Y

Jλ(Tyγ(λ))},

and

Ty(λ) =







{y} if Jλ(y) ≤
∑

γ∈Y Jλ(Tyγ(λ))

{y} ∪γ∈Y Tyγ(λ) else.

The optimal treeT (λ) and the corresponding costJλ(T (λ)) are given byJλ(Ty(λ)) andTy(λ) evaluated
at y = ρ.

Proof. By induction on the depth of the tree starting from the root.

From the structure of the cost functionJλ(·), the larger the value ofλ, the higher the penalty on the
error probability. Therefore one expects that the larger the λ the “later” the optimal treeT (λ) will stop.
Indeed, Lemma 3 states that the tree corresponding to the optimal s.t. of a smallerλ is a subtree of the
tree corresponding to the optimal s.t. of a largerλ. In other words, ifλ ≤ λ̃, in order to findT (λ), we
can restrict our search to subtrees ofT (λ̃).

Lemma 3. Given a treeT , if λ ≤ λ̃ thenT (λ) ⊂ T (λ̃).

Proof. We have

a(Ty) =
∑

yγ∈L(Ty )

P(S > l(yγ)|Y l(yγ) = yγ)P(Y l(yγ) = yγ)

≤
∑

yγ∈L(Ty )

P(S > l(y)|Y l(yγ) = yγ)P(Y l(yγ) = yγ)

= a(y). (6)

Similarly one shows thatb(Ty) ≥ b(y).
By contradiction, assumeλ ≤ λ̃, but T (λ) is not a subset ofT (λ̃). Then there existsy ∈ L(T (λ̃))

such thaty ∈ I(T (λ)). By definition ofT (λ̃) and Lemma 2

Jλ̃(y) ≤ Jλ̃(Ty(λ)),

and thus
b(y) + λ̃a(y) ≤ b(Ty(λ)) + λ̃a(Ty(λ)). (7)

Now, sincea(Ty(λ)) ≤ a(y), andλ ≤ λ̃,

(λ − λ̃)a(y) ≤ (λ − λ̃)a(Ty(λ)). (8)

Combining (7) and (8) yields

b(y) + λa(y) ≤ b(Ty(λ)) + λa(Ty(λ)),
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and therefore
Jλ(y) ≤ Jλ(Ty(λ)).

Sincey ∈ I(T (λ)), this contradicts the definition ofT (λ) by Lemma 2.

The next theorem represents a key result. Given a treeT , it characterizes the smallest valueλ can take
for which T (λ) = T . For a non-trivial treeT , define for anyy ∈ I(T )

g(y, T ) ,
b(Ty) − b(y)

a(y) − a(Ty)
,

where we set0/0 , 0. The quantityg(y, T ) captures the tradeoff between the reduction in delayb(Ty)−
b(y) and the increase in probability of false-alarma(y) − a(Ty) if we stop at some intermediate nodey

instead of stopping at the leavesL(Ty) of T .

Theorem 4. For any non-trivial treeT

inf
{

λ ≥ 0 : T (λ) = T
}

= max
y∈I(T )

g
(

y, T
)

.

Proof. Let T be a non-trivial tree andy ∈ I(T ). We have

g(y, T ) =
Jλ(Ty) − λa(Ty) − Jλ(y) + λa(y)

a(y) − a(Ty)

=
Jλ(Ty) − Jλ(y)

a(y) − a(Ty)
+ λ.

By (6), a(Ty) ≤ a(y), and hence the following implications hold:

g(y, T ) ≤ λ ⇐⇒ Jλ(y) ≥ Jλ(Ty),

g(y, T ) < λ ⇐⇒ Jλ(y) > Jλ(Ty).
(9)

Therefore, ifmaxy∈I(T ) g(y, T ) < λ then

Jλ(y) > Jλ(Ty) (10)

for all y ∈ I(T ).
We first show by induction that if

max
y∈I(T )

g(y, T ) < λ

thenT (λ) = T . Consider a subtree ofT having depth one and rooted iny, say. Since by (10)Jλ(y) >
Jλ(Ty), we haveTy(λ) = Ty by Lemma 2. Now consider a subtree ofT with depthk, rooted in a different
y, and assume the assertion to be true for all subtrees ofT with depth up tok−1. In order to findTy(λ),
we use Lemma 2 and compareJλ(y) with

∑

γ∈Y Jλ(Tyγ(λ)). SinceTyγ is a subtree ofT with depth less
thank, we haveTyγ(λ) = Tyγ by the induction hypothesis. Therefore

∑

γ∈Y

Jλ(Tyγ(λ)) =
∑

γ∈Y

Jλ(Tyγ) = Jλ(Ty),

and sinceJλ(Ty) < Jλ(y) by (10), we haveTy(λ) = Ty by Lemma 2, which concludes the induction
step. Hence we proved that ifmaxy∈I(T ) g(y, T ) < λ, thenT (λ) = T .

Second, suppose
max

y∈I(T )
g
(

y, T
)

= λ.
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· · · T 2 T 1 T 0

λ

λ1λ2λ3

Fig. 4. For allm ∈ {0, 1, . . . , M − 1} the treeT m is the smallest tree minimizing the costJλ(·) for any λ ∈ (λm+1, λm].

In this case there existsy ∈ I
(

T
)

such thatJλ

(

Ty

)

= Jλ(y). We consider the cases whenTyγ(λ) and
Tyγ are the same for allγ ∈ Y and when they differ for at least oneγ ∈ Y . If Tyγ(λ) = Tyγ for all γ ∈ Y
then

∑

γ∈Y

Jλ

(

Tyγ(λ)
)

= Jλ

(

Ty

)

= Jλ(y),

and thusT (λ) 6= T by Lemma 2. IfTyγ(λ) 6= Tyγ for at least oneγ ∈ Y then T (λ) 6= T again by
Lemma 2.

Finally, when
max

y∈I(T )
g
(

y, T
)

> λ

thenT (λ) 6= T follows from the previous case and Lemma 3.

Let T 0 denote the complete tree of depthκ. Starting withλ0 = ∞, for m = {1, . . . , M} recursively
define

λm , inf{λ ≤ λm−1 : T m−1(λ) = T m−1 },

T m , T m−1(λm),

whereM is the smallest integer such thatλM+1 = 0, and withλ1 , ∞ if the set over which the infimum
is taken is empty. Lemma 3 implies that for two consecutive transition pointsλm and λm+1, we have
T 0(λ) = T 0(λm) for all λ ∈ (λm+1, λm] as shown in Figure 4.

The following corollary is a consequence of Lemma 3 and Theorem 4.

Corollary 5. For m ∈ {1, . . . , M}

λm = max
y∈I(T m−1)

g(y, T m−1), (11)

T m = T m−1 \
⋃

y∈I(T m−1):
g(y,T m−1)=λm

D(T m−1
y

). (12)

Moreover, the set{(αm, dm)}M
m=1 with

αm , P(T (T m) < S),

dm , E(T (T m) − S)+,

are the break-points ofd(α).

Proof. Let T m−1 be fixed. Equation (11) follows directly from Theorem 4. For (12), notice that asJλ(T )
is continuous inλ, the definition ofλm yieldsJλm

(T m−1) = Jλm
(T m). HenceT m is the smallest subtree

of T m−1 with same root, and having a cost equal toJλm
(T m−1). From (9) and Lemma 2, we deduce that

T m is obtained fromT m−1 by removing the descendants of anyy ∈ I(T m−1) such thatg(y, T m−1) = λm.
It remains to show that{(αm, dm)}M

m=1 are the break-points ofd(α). By Lemma 1, the break-points
are achieved by non-randomized s.t.’s. By Lemma 3 we haveT m = T 0(λm), i.e., T m is the smallest
subtree ofT 0 having the same root and minimizing the costJλm

(T ). Hence, among the minimizers of
Jλm

(T ), T m yields the largestP(T (T ) < S). Therefore each pair(αm, dm) is a break-point. Conversely,
given a break-point ofd(α), let T be the smallest subtree ofT 0 achieving it. ThenT = T 0(λ) for
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someλ. SinceT 0(λm) = T m we have that{T 0(λ)}λ∈R = {T m}M
m=0, and thereforeT = T m for some

m ∈ {1, . . . , M}.

From Corollary 5, we deduce the algorithm below that fully characterizesd(α) by computing its set of
break-points{(αm, dm)}M

m=1.

Algorithm: Compute the break-points{(αm, dm)}M
m=1 of d(α)

m ⇐ 0
λ0 ⇐ ∞
T 0 ⇐ complete tree of depthκ
repeat

m ⇐ m + 1
λm ⇐ maxy∈I(T m−1) g

(

y, T m−1
)

T m ⇐ T m−1 \
⋃

y∈I(T m−1):
g(y,T m−1)=λm

D(T m−1
y

)

αm ⇐ P(T (T m) < S)
dm ⇐ E(T (T m) − S)+

until λm = 0
M ⇐ m − 1

As a |Y|-ary tree has less than|Y|κ non-terminal nodes, the algorithm terminates after at mostthat many
iterations. Further, one may check that each iteration has arunning time that isexp(O(κ)). Therefore,
the worst case running time of the algorithm isexp(O(κ)). This is to be compared, for instance, with
exhaustive search that has aΩ(exp exp(κ)) running time (because all break-points ofd(α) are achieved
by non-randomized s.t.’s and there are already2|Y|κ−1

|Y|-ary trees having leaves at either depthκ or
κ − 1).

In Sections IV and V we will see that, under certain conditions on {(Xi, Yi)}i≥1 and S, the running
time of the algorithm is onlypolynomialin κ.

A. A Lower Bound on the Reaction Delay

From Corollary 5, we may also deduce a lower bound ond(α). Sinced(α) is convex, we can lower
bound it as

d(α) ≥ d(0) + αd′(0+) (13)

whered′(0+) denotes the right derivative ofd at α = 0. By Corollary 5, ifλ1 < ∞ thend(0) is achieved
by the complete treeT 0, and if λ1 = ∞ then d(0) is achieved byT 1 which is a strict subtree ofT 0.
Hence (13) can be written as

d(α) ≥ d(0) −







αλ1 if λ1 < ∞,

αλ2 else.
(14)

Note that the above bound is tight forα ≤ α1 with α1 > 0 whenλ1 < ∞, and is tight forα ≤ α2 with
α2 > 0 whenλ1 = ∞. The following example illustrates this bound.

Example 7. Let {Xi}i≥1 be i.i.d. Bernoulli(1/2), and let theYi’s be the output of a binary symmetric
channel with crossover probabilityp ∈ (0, 1/2) for input Xi. Consider the s.t.S defined as

S ,







1 if X1 = 1,

κ else.

For κ = 2, the tree corresponding to this s.t. is depicted in Figure 3.
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Sincep ∈ (0, 1/2), it is clear that wheneverT is not the complete tree of depthκ, we haveP(T (T ) <
S) > 0, hence

d(0) = E(T (T 0) − S)+ =
1

2
(κ − 1).

An easy computation using Corollary 5 yields

λ1 =
1 − p

p
(κ − 1),

and, using (14), we get

d(α) ≥ (κ − 1)
(

1

2
− α

1 − p

p

)

. (15)

Let us comment on (15). Consider any two correlated sequences {Xi}i≥1 and{Yi}i≥1 and a s.t.S with
respect to theXi’s. Intuition tells us that there are two factors affectingd(α). The first is the correlation
between theXi’s andYi’s, in the above example parameterized byp. The lower the correlation, the higher
d(α) will be. The second factor is the “variability” ofS, and might be characterized by the difference
in terms of depth among the leaves having large probability to be reached. In the above example the
“variability” might be captured byκ−1, since with probability1/2 a leaf of depth1 is reached, and with
probability 1/2 a leaf of depthκ is attained. ♦

Example 8. We consider one-bit message feedback communication when the forward and the feedback
channels are binary erasure channels with erasure probabilities ε andp, respectively. We refer the reader to
Example 2 in Section I for the general problem setting. We usethe following transmission scheme (which
is optimal in the case of noiseless feedback). The decoder keeps sending0 over the feedback channel
until time S, the first time a non-erasure occurs orκ time units have elapsed. From that point on, the
decoder sends1. The encoder keeps sending the message bit it wants to deliver until time T (a stopping
time with respect to the output of the feedback channel). Ideally, we would like to chooseT = S. This
is possible if the feedback is noiseless, i.e.,p = 0. If p > 0, we want to track the decoding timeS as
closely as possible. The constantκ plays here the role of a “time-out.” In the following, we assume that
ε, p ∈ (0, 1).

Let us focus ond(α). One can show thatλ1 = ∞ and therefore the bound (14) becomesd(α) ≥
d(0)−αλ2, whereλ2 = maxy∈I(T 1) g

(

y, T 1
)

from Corollary 5. A somewhat involved computation yields

d(α) ≥

(

p

1 − p
− ε1−κα

)

(1 + o(1)) (16)

asκ → ∞.
The delayd(α) is interpreted as the time it takes the encoder to realize that the decoder has made a

decision. Equation (16) relates this delay to the channel parametersε andp, the probabilityα of stopping
retransmission too early, and the value of the “time-out”κ. For the communication scheme considered
here, there are two events leading to decoding errors. The event {Xκ = 0}, indicating that only erasures
were received by the decoder until timeκ, and the event{T < S}, indicating that the encoder stopped
retransmission before the decoder received a non erasure. In both cases the decoder will make an error
with probability 1/2. Hence the overall probability of errorP(E) can be bounded as

max{α, εκ} ≤ 2P(E) ≤ α + εκ.

It is then reasonable to chooseκ = log α

log ε
, i.e., to scaleκ with α so that both sources of errors have the

same weight. This results in a delay of

d(α) ≥

(

p

1 − p
− ε

)

(1 + o(1))

asα → 0.
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Now suppose that the communication rateR is computed with respect to the delay from the time
communication starts until the time the decoder has made a decision and the encoder has realized this, i.e.,
ES+E(T−S)+ = E(max{S, T}). We conclude that the “send until a non-erasure” strategy asymptotically
achieves a rate that is upper bounded as

R ≤
1

1
1−ε

+ p

1−p
− ε

.

Whenε < p/(1− p), our bound is strictly below the capacity of the binary erasure channel1− ε. Hence
1/(1 + ε) represents a critical value for the erasure probabilityp of the feedback channel above which
the “send until non-erasure” strategy is strictly suboptimal. Indeed there exist block coding strategies,
making no use of feedback, that (asymptotically) achieve rates up to1 − ε, the capacity of the forward
channel. ♦

IV. PERMUTATION INVARIANT STOPPING TIMES

We consider a special class of s.t.’s and processes{(Xi, Yi)}i≥1 for which the optimal tradeoff curve
d(α) and the associated optimal s.t.’s can be computed in polynomial time in κ.

A s.t. S with respect to{Xi}i≥1 is permutation invariantif

P(S ≤ n|Xn = xn) = P(S ≤ n|Xn = π(xn))

for all permutationsπ : X n → X n, all xn ∈ X n andn ∈ {1, . . . , κ}. Examples of permutation invariant
s.t.’s areinf{i : Xi > c} or inf{i :

∑i
k=1 Xk > c} for some constantc and assuming theXi’s are positive.

The notion of a permutation invariant s.t. is closely related to (and in fact slightly stronger than) that of
an exchangeable s.t. as defined in [20].

The following theorem establishes a key result, from which the running time of one iteration of the
algorithm can be deduced.

Theorem 6. Let {(Xi, Yi)}i≥1 be i.i.d. andS be a permutation invariant s.t. with respect to{Xi}i≥1. If
T (T ) is non-randomized and permutation invariant then

g(y, T ) = g(π(y), T )

for all y ∈ I(T ) and all permutationsπ.

We first establish two lemmas that will be used in the proof of Theorem 6.

Lemma 7. Let T be a non-randomized s.t. with respect to{Yi}i≥1 and T the corresponding tree. Then
T is permutation invariant if and only if for ally ∈ I(T ) and permutationsπ, π(y) ∈ I(T ).

Proof. AssumeT is permutation invariant and letyn ∈ I(T ). Then

0 = P(T ≤ n|Y n = yn) = P(T ≤ n|Y n = π(yn)),

and henceπ(yn) ∈ I(T ).
Conversely assume that, for ally ∈ I(T ) and permutationsπ, we haveπ(y) ∈ I(T ). Pick an arbitrary

yn. First, if P(T ≤ n|Y n = yn) = 0, then yn ∈ I(T ), and by assumption alsoπ(yn) ∈ I(T ). Thus
P(T ≤ n|Y n = π(yn)) = 0. Second, ifP(T ≤ n|Y n = yn) = 1, thenyn /∈ I(T ), and by assumption also
π(yn) /∈ I(T ). ThusP(T ≤ n|Y n = π(yn)) = 1.

Lemma 8. Let {(Xi, Yi)}i≥1 be i.i.d. andS be a permutation invariant s.t. with respect to{Xi}i≥1. Then
S is a permutation invariant s.t. with respect to{Yi}i≥1.
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Proof. Using that the{(Xi, Yi)}i≥1 are i.i.d., one can easily check thatS is a s.t. with respect to{Yi}i≥1.
It remains to show that it is permutation invariant. For any permutationπ : X n → X n

P(S ≤ n|Y n = yn)

=
∑

xn∈Xn

P(S ≤ n|Xn = xn)P(Xn = xn|Y n = yn)

=
∑

xn∈Xn

P(S ≤ n|Xn = π−1(xn))×

× P(Xn = π−1(xn)|Y n = yn)

=
∑

xn∈Xn

P(S ≤ n|Xn = xn)P(Xn = xn|Y n = π(yn))

= P(S ≤ n|Y n = π(yn)),

where the second last equality follows by the permutation invariance ofS and the fact that the(Xi, Yi)’s
are i.i.d.

Proof of Theorem 6.We show that

g(y, T ) =
b(Ty) − b(y)

a(y) − a(Ty)
= g(π(y), T ) (17)

for all y ∈ I(T ). We prove that the numerator and the denominator in (17) remain unchanged if we
replacey by π(y). Fix somey = yn ∈ I(T ), and, to simplify notation, setl = l(γ) until the end of this
proof. For the denominator, using Lemma 8 we obtain

a(y) − a(Ty)

, a(yn) −
∑

ynγ∈L(Tyn)

a(ynγ)

= P(Y n = yn)P(S > n|Y n = yn)
∑

ynγ∈L(Tyn)

P(Y n+l = ynγ)P(S > n + l)|Y n+l = ynγ)

= P(Y n = π(yn))P(S > n|Y n = π(yn))
∑

ynγ∈L(Tyn)

P(Y n+l = π(yn)γ)P(S > n + l)|Y n+l = π(yn)γ).

(18)

A consequence of Lemma 7 is that the set of allγ such thatynγ ∈ L(Tyn) is identical to the set of all
γ such thatπ(yn)γ ∈ L(Tπ(yn)). Hence by (18)

a(yn) − a(Tyn) = a(π(yn)) − a(Tπ(yn)).

For the numerator in (17), we have

b(Tyn) − b(yn)

=
∑

ynγ∈L(Tyn)

P(Y n+l = ynγ)
(

E

(

(n + l − S)+
∣

∣

∣Y n+l = ynγ
)

− E

(

(n − S)+
∣

∣

∣Y n+l = ynγ
)

)

. (19)

By Lemma 8

E

(

(n + l − S)+
∣

∣

∣Y n+l = ynγ
)

− E

(

(n − S)+
∣

∣

∣Y n+l = ynγ
)

=
n+l−1
∑

k=n

P(S ≤ k|Y n+l = ynγ)

=
n+l−1
∑

k=n

P(S ≤ k|Y n+l = π(yn)γ).
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Combining this with (19) and using Lemma 7 as before, we get

b(Tyn) − b(yn) = b(Tπ(yn)) − b(π(yn)),

concluding the proof.

We now show that one iteration of the algorithm has only polynomial running time inκ. Specifically,
we evaluate the running time to computeT m+1 from T m if S andT (T m) are permutation invariant and
if the (Xi, Yi)’s are i.i.d. To that aim, we assume the input of the algorithmto be in the form of a list of
the probabilitiesP(S ≤ n|Xn = xn) for all xn ∈ X n andn ∈ {1, . . . , κ} — specifyingS — and a list of
P(X = x, Y = y) for all x ∈ X andy ∈ Y — characterizing the distribution of the process{(Xi, Yi)}i≥1.
Note that asS is permutation invariant, we only have to specifyP(S ≤ n|Xn = xn) for each composition
(or type) ofxn. Since the number of compositions of length at mostκ is upper bounded by(κ + 1)1+|X |

— any elementx ∈ X appears at mostk times in a string of lengthk — the list of these probabilities has
only polynomial size inκ. Using a hash table, we assume that, givenxn, the elementP(S ≤ n|Xn = xn)
in the list can be accessed inO(κ) time. The proof of the following theorem is deferred to the appendix.

Theorem 9. Let {(Xi, Yi)}i≥1 be i.i.d., letS and T (T m) be permutation invariant s.t.’s with respect to
{Xi}i≥1 and {Yi}i≥1 respectively, and letαm = P(T (T m) < S) and dm = E(T (T m) − S)+ be given.
ThenT m+1, αm+1, anddm+1 can be computed in polynomial time inκ.

As a corollary of Theorem 9, we obtain the worst case running time for computing the set of break-points
{(αm, dm)}M

m=1 together with the associated optimal s.t.’s{T m}M
m=0.

Corollary 10. Let {(Xi, Yi)}i≥1 be i.i.d. andS be a permutation invariant s.t. with respect to{Xi}i≥1.
If all {T m}M

m=0 are permutation invariant, then the algorithm has a polynomial running time inκ.

Proof. By Theorem 9 we only have to bound the number of iterations of the algorithm. To this end note that
by Theorem 6 every composition ofy can be only once a maximizer ofg(y, T m) (as the corresponding
nodes will be leaves in the next iteration of the algorithm).Hence, there are at mostO((κ + 1)1+|Y|)
iterations.

Note that, in the cases where{T m}M
m=0 are not permutation invariant, one may still be able to derive

a lower bound ond(α) in polynomial time inκ, using (14). Indeed, the treeT 0 is permutation invariant
since it is complete and, by Theorem 9, if{(Xi, Yi)}i≥1 are i.i.d. andS is permutation invariant, then the
first subtreeT 1 can be computed in polynomial time inκ. Therefore the bound

d(α) ≥ d(0) − αλ1 (20)

can always be evaluated in polynomial time inκ when the(Xi, Yi)’s are i.i.d. andS is permutation
invariant. Note that this bound is in general weaker than theone derived in Section III-A. However, when
λ1 < ∞ the bound (20) is tight forα ∈ [0, α1] for someα1 > 0. It is easily checked that the condition
λ1 < ∞ is satisfied ifP(S = κ, Y κ−1 = yκ−1) > 0 for all yκ−1.

In the next section, we present two examples for which the conditions of Corollary 10 are satisfied, and
hence for which the algorithm has a polynomial running time in κ. First, we consider a TST problem that
indeed can be formulated as a Bayesian change-point problem. Second, we consider the case of a pure
TST problem, i.e., one that cannot be formulated as a Bayesian change-point problem. For both examples,
we provide an analytical solution of the Lagrange minimization problemminT≤κ Jλ(T ).

V. ONE-STEP LOOKAHEAD STOPPING TIMES

In this section, we show that under certain conditions the s.t. that minimizes the LagrangianJλ(T ) can
be found in closed form.

Define
An ,

{

yn ∈ Yn :
∑

γ∈Y

Jλ(y
nγ) ≥ Jλ(y

n)
}

,
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and let
T ∗

λ , min
{

κ, inf{n : Y n ∈ An}
}

. (21)

In words,T ∗
λ stops whenever the current cost

E((n − S)+|Y n = yn) + λP(S > n|Y n = yn)

is less than the expected cost at timen + 1, i.e.,

E((n + 1 − S)+|Y n = yn) + λP(S > n + 1|Y n = yn) .

Recall thatT 0 denotes the complete tree of depthκ. For (Xi, Yi)’s i.i.d., Theorem 11 provides a sufficient
condition onS for which T (T 0(λ)) = T ∗

λ . In words, the s.t.T ∗
λ minimizesJλ(T ) among all s.t.’s bounded

by κ. Furthermore, among all stopping times minimizingJλ(T ), the s.t.T ∗
λ admits the smallest tree

representation. The proof of Theorem 11 is deferred to the appendix.

Theorem 11. Let {(Xi, Yi)}i≥1 be i.i.d., and letS be a s.t. with respect to{Xi}i≥1 that satisfies

P(S = n|Y n−1) ≥ P(S = n + 1|Y n) (22)

for all n ∈ {2, . . . , κ}. Then
T (T 0(λ)) = T ∗

λ .

Note that, unlike the algorithm, Theorem 11 provides an analytical solution only to the inner mini-
mization problem in (5). To find the reaction delayd(α) one still needs to maximize over the Lagrange
multipliers λ.

Using Theorems 10 and 11, we now give two examples of process{(Xi, Yi)}i≥1 and s.t.S for which
the algorithm has only polynomial running time inκ.

Example 9. Let {(Xi, Yi)}i≥1 be i.i.d. with theXi’s taking values in{0, 1}. Consider the s.t.S , inf{i :
Xi = 1}. We have forn ≥ 2

P(S = n|Y n−1) = P(S ≥ n|Y n−1)P(Xn = 1)

≥ P(S ≥ n|Y n−1)P(Xn = 0|Yn)P(Xn+1 = 1)

= P(S = n + 1|Y n).

Hence, Theorem 11 yields that the one-step lookahead stopping timeT ∗
λ defined in (21) satisfies

T (T 0(λ)) = T ∗
λ .

We now show that the algorithm finds the set of break-points{(αm, dm)}M
m=0 and the corresponding

{Tm}
M
m=0 in polynomial running time inκ. To that aim, we first show thatT ∗

λ is permutation invariant.
By Lemma 7, we equivalently show that, for allyn and permutationsπ, if yn /∈ An then π(yn) /∈ An.
We have forn < κ

∑

γ∈Y

Jλ(y
nγ) − Jλ(y

n) = P(Y n = yn)
(

P(S ≤ n|Y n = yn) − λP(S = n + 1|Y n = yn)
)

= P(Y n = π(yn))
(

P(S ≤ n|Y n = π(yn)) − λP(S = n + 1|Y n = π(yn))
)

=
∑

γ∈Y

Jλ(π(yn)γ) − Jλ(π(yn)), (23)

where we have used Lemma 8 for the second equality. Thusyn /∈ An implies π(yn) /∈ An, and therefore
T ∗

λ is permutation invariant. SinceT (T 0(λ)) = T ∗
λ for all λ ≥ 0 by Theorem 11, all{T m}M

m=0 are
permutation invariant. Finally, becauseS is permutation invariant, applying Corollary 10 we conclude
that the algorithm has indeed polynomial running time inκ.
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The problem considered in this example is actually a Bayesian change-point problem, as defined in
Example 4 in Section I. Here the change-pointΘ , S has distributionP(Θ = n) = p(1 − p)n−1, where
p , P(X = 1). The conditional distribution ofYi given Θ is

P(Yi = yi|Θ = n) =















P(Yi = yi|Xi = 0) if i < n,

P(Yi = yi|Xi = 1) if i = n,

P(Yi = yi) if i > n.

Note that, unlike the case considered by Shiryaev (see Example 4 in Section I), the distribution of the
process at the change-point differs from the ones before andafter it. ♦

We now give an example that cannot be formulated as a change-point problem and for which the
one-step lookahead s.t.T ∗

λ minimizes the LagrangianJλ(T ).

Example 10. Let {(Xi, Yi)}i≥1 be i.i.d. where theXi’s andYi’s take values in{0, 1}, and letS , inf{i ≥
1 :
∑i

j=1 Xj = 2}. A similar computation as for Example 9 reveals that if

P(Xi = 1|Yi) ≥ P(Xi = 0|Yi)

then Theorem 11 applies, showing that the one-step lookahead stopping timeT ∗
λ defined in (21) satisfies

T (T 0(λ)) = T ∗
λ .

Furthermore, sinceS is permutation invariant, (23) shows thatT ∗
λ is permutation invariant. Applying

Corollary 10, one deduces that the algorithm has polynomialrunning time inκ in this case as well.
The problem considered here isnot a change-point problem since, fork > n

P(S = k|Y n = yn, S > n) 6= P(S = k|S > n),

and therefore (1) does not hold. ♦

VI. REMARKS

In our study, we exploited the finite tree structure of bounded stopping times defined over finite alphabet
processes, and derived an algorithm that outputs the minimum reaction delays for tracking a stopping time
through noisy observations, for any probability of false-alarm. This algorithm has a complexity that is
exponential in the bound of the stopping time we want to trackand, in certain cases, even polynomial.
In comparison, an exhaustive search has a complexity that isdoubly exponential.

The conditions under which the algorithm runs in polynomialtime are, unfortunately, not very explicit
and require more study (see Corollary10). Explicit conditions, however, are expected to be very restrictive
on both the stochastic process and the stopping time to be tracked.

For certain applications, it is suitable to consider stopping times defined over more general processes,
such as continuous time over continuous alphabets. In this case, how to solve the TST problem remains
a wide open question. As a first step, one might consider a timeand alphabet quantization and apply our
result in order to derive an approximation algorithm.
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APPENDIX I
PROOF OFTHEOREM 9

In the following we writeT for T m. From Theorem 6, to find they ∈ I(T ) maximizingg(y, T ), we
only have to computeg(y, T ) for all possible compositions ofy. The number of such compositions is
O((κ + 1)1+|Y|). We now show thatg(y, T ) can be computed in polynomial time inκ. From the proof
of Theorem 6, we have to show thatP(S ≤ n|Y n = yn) can be computed in polynomial time, and that
the sums in (18) and (19) can be computed in polynomial time.

We have
P(S ≤ n|Y n = yn) =

∑

xn∈Xn

P(S ≤ n|Xn = xn)P(Xn = xn|Y n = yn).

Each term in the summation on the right hand side depends onlyon the composition of(xn, yn), and
henceP(S ≤ n|Y n = yn) can be computed in polynomial time inκ.

Consider now the sum over allynγ ∈ L(Tyn) in (18)
∑

ynγ∈L(Tyn)

a(ynγ) =
∑

ynγ̃γ∈L(Tyn)

a(ynγ̃γ). (24)

By Lemma 7,ynγ̃γ ∈ L(Tyn) if and only if ynπ(γ̃)γ ∈ L(Tyn) for all permutationsπ. And asa(ynγ̃γ) =
a(ynπ(γ̃)γ), we can compute (24) in polynomial time inκ.

Consider next the sum over allynγ ∈ L(Tyn) in (19). Using Lemma 8

∑

ynγ∈L(Tyn)

n+l(γ)−1
∑

k=n

P(Y n+l(γ) = ynγ)P(S ≤ k|Y n+l(γ) = ynγ)

=
∑

ynγ∈I(Tyn)

P(Y n+l(γ) = ynγ)P(S ≤ n + l(γ)|Y n+l(γ) = ynγ).

Applying Lemma 7 as before, we conclude that the right-hand side can be computed in polynomial time
in κ.

It remains to prove thatαm+1 and dm+1 can be computed in polynomial time inκ from αm and
dm. This follows from the same argument, as it suffices to compute the differencesb(Ty∗) − b(y∗) and
a(y∗) − a(Ty∗) for all y∗ maximizingg(y, T ).

APPENDIX II
PROOF OFTHEOREM 11

Fix someλ ≥ 0. Let us writeJλ(T ) asE(c(Y T )) where

c(yn) , E((n − S)+|Y n = yn) + λP(S > n|Y n = yn).

We say that the{An} arenestedif, for any n ≥ 1 andγ ∈ Y , we have thatyn ∈ An impliesynγ ∈ An+1.
We show that (22) implies that the{An} are nested, and that this in turn implies that the one-step
lookahead stopping rule is optimal. The second part of the proof is well known in the theory of optimal
stopping and is referred as themonotone case(see, e.g., Chow et al. [19, Chapter 3]). Here we provide
an alternative proof that emphasizes the tree structure of stopping times.

Note thatyn ∈ An if and only if E(c(Y n+1)|Y n = yn) ≥ c(yn). We now show that

E(c(Y n+1)|Y n) ≥ c(Y n) ⇐⇒ P(S ≤ n|Y n) ≥ λP(S = n + 1|Y n). (25)
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Since{(Xi, Yi)}i≥1 are i.i.d.,S is also a (randomized) s.t. with respect to{Yi}i≥1 by Lemma 8. It follows
that

c(Y n+1) = E((n + 1 − S)+|Y n+1) + λP(S > n + 1|Y n+1)

=
n
∑

k=1

P(S ≤ k|Y n+1) + λP(S > n + 1|Y n+1)

=
n−1
∑

k=1

P(S ≤ k|Y n) + P(S ≤ n|Y n)

+ λP(S > n|Y n) − λP(S = n + 1|Y n+1)

= c(Y n) + P(S ≤ n|Y n) − λP(S = n + 1|Y n+1),

from which one deduces (25).
Next, we prove that the{An} are nested. By (25) this is equivalent to showing that, whenever for some

yn

P(S ≤ n|Y n = yn) ≥ λP(S = n + 1|Y n = yn), (26)

we also have
P(S ≤ n + 1|Y n+1 = ynγ) ≥ λP(S = n + 2|Y n+1 = ynγ) (27)

for any γ ∈ Y . Suppose that (26) holds for someyn. Using the fact thatS is a s.t. with respect to the
Yi’s (Lemma 8) together with the hypothesis of the theorem yields for anyγ

P(S ≤ n + 1|Y n+1 = ynγ) − λP(S = n + 2|Y n+1 = ynγ)

≥ P(S ≤ n|Y n = yn) − λ(S = n + 2|Y n+1 = ynγ)

≥ λ
(

P(S = n + 1|Y n = yn) − P(S = n + 2|Y n+1 = ynγ)
)

≥ 0,

and therefore (27) holds. Hence the{An} are nested.
Let T ∗ be the tree corresponding toT ∗

λ . The final step is to show that if the{An} are nested then
T 0(λ) = T ∗. To that aim we show thatI(T ∗) ⊂ I(T 0(λ)) and(I(T ∗))c ⊂ (I(T 0(λ)))c. Pick an arbitrary
y ∈ I(T 0). Using Lemma 2, we compareJλ(y) with

∑

γ Jλ(T
0

yγ(λ)). We distinguish two cases. First
suppose thaty ∈ I(T ∗), i.e., Jλ(y) >

∑

γ Jλ(yγ). Then

Jλ(y) >
∑

γ∈Y

Jλ(yγ) ≥
∑

γ∈Y

Jλ(T
0

yγ(λ)),

and hencey /∈ L(T 0(λ)). But since the{An} are nested, no prefix ofy can be an element ofL(T 0(λ))
and hencey ∈ I(T 0(λ)).

Second, assumey /∈ I(T ∗). If l(y) = κ, then clearlyy /∈ I(T 0(λ)). If l(y) < κ, then Jλ(y) ≤
∑

γ Jλ(yγ) and we now show by induction that this implies thatT 0
y

(λ) = {y}. Note first that as the{An}
are nested, we have for anỹy ∈ I(T 0

y
) (i.e., for anyỹ with prefix y)

Jλ(ỹ) ≤
∑

γ∈Y

Jλ(ỹγ). (28)

Assume first thatT 0
ỹ

has depth one. Then (28) implies by Lemma 2 thatT 0
ỹ

(λ) = {ỹ}. Suppose then that
this is true for allT 0

ỹ
of depth at mostk− 1. Let T 0

ỹ
have depthk. Then by the induction hypothesis and

(28)
∑

γ∈Y

Jλ(T
0

ỹγ(λ)) =
∑

γ∈Y

Jλ(ỹγ) ≥ Jλ(ỹ),

and thusT 0
ỹ

(λ) = {ỹ} by Lemma 2, concluding the induction step. This impliesy /∈ I(T 0(λ)).
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