Efficient estimation of the cardinality of large data sets

Philippe Chassaing and Lucas Gerin

22 september 2006

Abstract

F.Giroire has recently proposed an algorithm which returns the approximate number of distincts elements in a large sequence of words, under strong constraints coming from the analysis of large data bases. His estimation is based on statistical properties of uniform random variables in $[0,1]$. Here we propose an optimal estimation, using information and estimation theory ${ }^{11}$.

1 Introduction

The aim of this note is to improve a solution proposed by Giroire Gir05 to the following problem: consider a sequence $Y=\left(Y_{1}, \ldots, Y_{N}\right)$ of words (one may think to a sequence of file on a disk, a list of requests, a novel from Skakespeare, etc...); we don't make any assumption on the structure of Y, and we want to know the number (usually denoted F_{0} in the data base community) of distinct elements of this sequence. The motivation comes from analysis of large data sets, and especially analysis of internet traffic: certain attacks may be detected at router level, because they generate an unusual number of dictinct connections (see [Fla04]). Most of algorithms use a dictionnary to store every word, so that the memory needed is linear in F_{0}. Here the size of data sets is huge, making it impossible to store every word, so that the algorithm should satisfy the two following constraints: it should use constant memory and do only one pass over the data. These constraints are very strong, but on the other hand we allow the algorithm to give only an estimation of F_{0}.

The main idea used in Gir05, introduced by Flajolet and Martin FM85, is to transform this problem in a probabilistic one, using hash fuctions.

> A hash function is a function $h: \mathcal{C} \rightarrow[0,1]$, where \mathcal{C} is a finite set of words (say english language, $\{0,1\}^{8}$, etc...) such that the image of a typical sequence of words behaves as a sequence of i.i.d random variables, uniform in $[0,1]$.

This definition is of course somewhat informal, but we will assume, from now on, that, noting $X_{i}=h\left(Y_{i}\right)$, then $\mathbf{X}=\left\{X_{1}, \ldots, X_{N}\right\}$ is the realization of F_{0} i.i.d. r.v., uniform on $[0,1]$. Existence and construction of good hash functions is discussed in Knu73.

Set $\theta=F_{0}$ and denote as usually $X_{(1)}$ the smallest $X_{i}, X_{(2)}$ the second smallest, and so on. The key point is that the information on θ contained in $\left\{Y_{1}, \ldots, Y_{N}\right\}$ is equivalent to that contained in $\left(X_{(1)}, \ldots, X_{(\theta)}\right)$.

As a consequence, we are now dealing with a classical statistical problem: given a (small) sample of $\left(X_{1}, \ldots, X_{\theta}\right)$, i.i.d. r.v., uniform on $[0,1]$, we want to estimate the (large) parameter θ. Denote by M the memory available (how many real numbers that can be stored). One should determine:

1. A way of extracting a M-sample of \mathbf{X} (the M smallest, the M with the longest sequence of zeros in their binary representation, etc...).
2. A function $\hat{\xi}:[0,1]^{M} \rightarrow \mathbb{R}$ which approximates θ, when applied to this M-sample.

State of the Art. Flajolet and Martin FM85 have used these ideas to construct an algorithm based on research of patterns of 0's and 1's in the binary representation of the hashed values $X_{1}, \ldots, X_{\theta}$. It has been improved by Durand and Flajolet DF93]. Bar-Yossef et alii [BYJK ${ }^{+}$02], have proposed 3 performant algorithms, their ideas have been generalized by Giroire Gir05.

In a different way, Alon, Matias, and Szegedy consider estimation by moment method, making implementation proposed in [FM85] easier. For a nice survey about these ideas one may read [Fla04].

[^0]Giroire's algorithm. The starting idea in Gir05 is to use this simple property:

$$
\mathbb{E}\left[X_{(1)}\right]=\frac{1}{\theta+1}
$$

Consequently, a naive algorithm would hash every data, compare it to the smallest hashed value already seen, and finally return $1 / X_{(1)}$. Unfortunately, $\mathbb{E}\left[1 / X_{(1)}\right]=\infty$. However, $1 / X_{(2)}, 1 / X_{(3)} \ldots$ have finite expectation. This leads Giroire to propose an algorithm which return a function of $X_{(k)}$, for some k. In order to improve the precision of such an algorithm, one may wish to execute it m times with m different hashing functions, but this would cost too much time. Therefore Giroire uses stochastic averaging, introduced in [FM85]: the idea is to simulate m different experiments, by dividing [0,1$]$ in m intervals.

```
Algorithm 1.
let \(k, m\) be integers. initialize \(\left(X_{(1), i}, \ldots, X_{(k), i}, i=1, \ldots, m\right)\) with \(X_{(p), i}=\frac{i}{m}\) for all \(i, p\).
for \(j=1\) to \(N\)
    \(X_{j}=h\left(Y_{j}\right)\).
    let \(i\) the integer such that \(X_{j}\) lies in \(\left[\frac{i-1}{m}, \frac{i}{m}[\right.\).
    update the \(k\)-dimensional vector of \(k\) smallest values \(X_{(1), i}, \ldots, X_{(k), i}\) lying in \(\left[\frac{i-1}{m}, \frac{i}{m}[\right.\).
next \(j\).
for all \(p, i\), renormalize \(X_{(p), i}=m\left(X_{(p), i}-\frac{i-1}{m}\right)\).
return an estimator \(\hat{\xi}=\hat{\xi}\left(X_{(l), i} ; i=1, \ldots, m ; l=1, \ldots, k\right)\).
```

Thus we get m vectors in $\mathbb{R}^{k} . X_{(k), i}$ is the k-th smallest hashed value lying in $\left[\frac{i-1}{m}, \frac{i}{m}\right]$, renormalized to get a real in $[0,1]$. If less than l values have fell in the i-th interval, then $X_{(k), i}=1$. Obviously, Algorithm 1 makes only one pass over each data Y_{i}. Memory used by the algorithm is indeed M, if we have chosen $k \cdot m=M$. The estimation returned by the algorithm does not depend on any assumption on the repetitions in the sequence X_{1}, \ldots, X_{N}.

Giroire Gir05 proposes 3 estimators $\xi_{1}, \xi_{2}, \xi_{3}$, using inverse function, square root function and log respectively. For example,

$$
\xi_{3}:=\left(\frac{\Gamma(k-1 / m)}{\Gamma(k)}\right)^{-m} \cdot e^{-\frac{1}{m} \sum_{i=1}^{m} \log X_{(k), i}} .
$$

For each k, m these estimators are asymptotically unbiased, i.e. $\mathbb{E}\left[\xi_{i}\right] \sim \theta$ when θ goes to ∞. Their variances are all about $1 / \mathrm{km}$. Here we give a fourth estimator, which is also asymptotically unbiased:

$$
\hat{\xi}=\frac{k m-1}{\sum_{i=1}^{m} X_{(k), i}} .
$$

Plan Using information and estimation theories, we first show that the estimator $\hat{\xi}$ is optimal under a simplified model, that we call the independent model. Then we discuss its actual optimality.

2 The best estimation under the independant model

In this section, \Rightarrow denotes the convergence in law. Recall that a real-valued random variable is said to follow the Gamma law with parameters (k, θ) if

$$
\mathbb{P}\left(X \in \left[t, t+d t[)=\frac{t^{k-1}}{\Gamma(k)} \theta^{k} e^{-\theta k} \mathbf{1}_{t \geq 0} d t\right.\right.
$$

The asymptotic behavior of the minimum $X_{(1)}$ of θ random uniform variables in $[0,1]$ is well-known (see for example [Fel70]): $X_{(1)} \Rightarrow \gamma_{1}$, where γ_{1} follows the $\operatorname{Gamma}(1, \theta)$ law. More generally, one can prove here the following convergence

$$
\begin{equation*}
\left(\theta X_{(k), 1}, \ldots, \theta X_{(k), m}\right) \Rightarrow[\theta \rightarrow \infty] \mathcal{L}\left(\gamma_{1}, \ldots, \gamma_{m}\right) \tag{1}
\end{equation*}
$$

where the γ_{i} are i.i.d. r.v. of law $\operatorname{Gamma}(k, 1)$. Consequently, we assume in this section that the $X_{(k), i}$ are i.i.d. r.v. of law $\operatorname{Gamma}(k, \theta)$, this is the so-called independent model. We set

$$
\hat{\xi}=\frac{k m-1}{\sum_{i=1}^{m} X_{(k), i}} .
$$

Remark 1. This estimator depends only on the m values $\left(X_{(k), i}, i=1, \ldots, m\right)$, not on the $k m-m$ other hashed values stored by the algorithm. This follows from the fact that the knowledge of these values does not provide any information about θ. For a given i, conditionnally on $X_{(k), i}$, the r.v. $\left(X_{(1), i}, \ldots, X_{(k-1), i}\right)$ are distributed uniformally on $\left[0, X_{(k), i}\right]$.

A simple calculation shows that under the independent model,

$$
\begin{aligned}
\mathbb{E}[\hat{\theta}] & =\theta, \\
\operatorname{Var}(\hat{\theta}) & =\frac{\theta^{2}}{k m-2} .
\end{aligned}
$$

This is indeed better than the 3 estimators proposed in Gir05.
Recall a few definitions in Statistics (see for example Leh83): given a m-sample of i.i.d. random variables X_{1}, \ldots, X_{m} of some law P_{θ}, any random variable $S=S\left(X_{1}, \ldots, X_{m}\right)$ is called a statistic. Here we consider the statistic $S=\sum_{i=1}^{m} X_{(k), i}$.

Definition 1. A statistic S is sufficient for the parameter θ if and only if, conditionnally to S, the law of $\left(X_{1}, \ldots, X_{m}\right)$ does not depend on θ.

More informally, S is sufficient if, given S, the knowledge of $\left(X_{1}, \ldots, X_{m}\right)$ does not give any information on $\theta . \hat{S}$ is sufficient.

Definition 2. A statistic S is complete if whenever $h(S)$ is a function of S for which $\mathbb{E}[h(T)]=0$ for all θ, then $h \equiv 0, P_{\theta}$ almost everywhere.

Here, the statistic $S=\sum_{i=1}^{m} X_{(k), i}$ is complete and sufficient. Some simple criterions to check sufficientness and completeness are given in Leh83. Complete sufficient statistics share the following useful property:

Theorem 1 (Lehmann-Scheffé). Let S be a sufficient and complete statistic. Let ξ^{*} be another unbiased (i.e. $\mathbb{E}[\tilde{\xi}]=\theta$) estimator of θ. Among all the unbiased estimators of $\theta, \mathbb{E}\left[\xi^{*} \mid S\right]$ has a minimal variance. Such an estimator is said to be efficient.

Corollary 1. Let $\tilde{\xi}$ another unbiased estimator of θ. Under the independent model,

$$
\mathbb{E}\left[(\tilde{\xi}-\theta)^{2}\right] \geq \mathbb{E}\left[(\hat{\xi}-\theta)^{2}\right]
$$

Remark 2. Note that $\operatorname{Var}(\hat{\xi})$ is about θ^{2}. This optimal bound does not depend on the algorithm, see PD03].

3 Optimality in the real model

From now one places oneself in the exact model: $X_{(p), i}$ is the p-th smallest realization of θ i.i.d. r.v. uniform on $[0,1]$, among the values lying in $\left[\frac{i-1}{m}, \frac{i}{m}\right]$. When $i \neq j$, there is now dependancy between $X_{(k), i}$ and $X_{(k), j}$. Set \mathbf{P} and $\mathbf{P}_{\text {ind }}$ the laws corresponding respectively to the exact and independant models, \mathbb{E} and $\mathbb{E}_{\text {ind }}$ the corresponding expectations.

Lemma 1. Let A be the event

$$
A=A_{k, m, \theta}: \quad \text { for all } i=1, \ldots, m, X_{(k), i}<\frac{1}{m} " .
$$

(i.e. at least k hashed values have falled in each of the m intervals). From a classical inequality (see [Bol85]) we get

$$
\mathbf{P}(A) \geq 1-2 m e^{-\frac{\theta}{2 m^{2}}} .
$$

Here is the main result:
Theorem 2 (Optimality in the exact model). Let $\tilde{\xi}(\mathbf{X})$, with $\mathbf{X}=\left(X_{1}, \cdots, X_{m}\right)$ another estimator of θ. Let $b(\theta)$ be the bias $\mathbb{E}_{\theta}[\tilde{\theta}-\theta]$. We assume

1. $b(\theta)=\mathrm{O}(\sqrt{\theta})$.
2. There exists a constant C such that $|\tilde{\xi}(\mathbf{x})| \leq \frac{C}{\|\mathbf{x}\|}$, for every \mathbf{x} in $\mathbb{R}^{m},\|\mathbf{x}\|$ large enough.

Then

$$
\mathbb{E}_{\theta}\left[(\tilde{\theta}-\theta)^{2}\right] \geq \mathbb{E}_{\theta}\left[(\hat{\theta}-\theta)^{2}\right]+O(\theta)
$$

Proof. First write

$$
\begin{aligned}
\mathbb{E}\left[(\tilde{\theta}-\theta)^{2}\right] & =\mathbb{E}\left[(\tilde{\theta}-\theta)^{2} \mathbf{1}_{A}\right]+\mathbb{E}\left[(\tilde{\theta}-\theta)^{2}\left(1-\mathbf{1}_{A}\right)\right] \\
& =\mathbb{E}\left[(\tilde{\theta}-\theta)^{2} \mathbf{1}_{A}\right]+o(\theta)
\end{aligned}
$$

using Lemma 1 We now bring back ourselves to the independant model:

$$
\begin{equation*}
\mathbb{E}\left[(\tilde{\theta}-\theta)^{2}\right]=\mathbb{E}_{\text {indé }}\left[(\tilde{\theta}-\theta)^{2}\right]+\left(\mathbb{E}\left[(\tilde{\theta}-\theta)^{2} \mathbf{1}_{A}\right]-\mathbb{E}_{\text {indé }}\left[(\tilde{\theta}-\theta)^{2}\right]\right)+o(A), \tag{2}
\end{equation*}
$$

The key point is the fact that conditioned to the event A, the r.v. $\left(X_{(k), 1}, \ldots, X_{(k), m}\right)$ admit a density toward the Lebesgue measure on \mathbb{R}_{+}.

$$
\begin{aligned}
& \mathbb{E}\left[(\tilde{\theta}-\theta)^{2}\right]-\mathbb{E}_{\text {indé }}\left[(\tilde{\theta}-\theta)^{2}\right]= \\
& \int_{\left[0, \frac{1}{m}\right]^{m}}\left(\begin{array}{c}
\theta \\
(k-1) \ldots(k-1) \\
\\
\\
\quad-\int_{\mathbb{R}_{+}^{m}} \frac{x_{1}{ }^{k-1}}{\Gamma(k)} \ldots \frac{x_{m}^{k-1}}{\Gamma(k)} \theta^{k m} e^{-\theta\left(x_{1}+\ldots+x_{m}\right)} d x_{1} \ldots d x_{m}
\end{array}\right.
\end{aligned}
$$

We omit the proof of the following lemma:

Lemma 2.

$$
\left|\frac{\theta(\theta-1) \ldots(\theta-2 k+1)}{\theta^{2 k}}\left(1-x_{1}-\ldots-x_{m}\right)^{\theta-2 k}-e^{-\theta\left(x_{1}+\ldots+x_{m}\right)}\right| \leq c^{s t e} \theta\left(x_{1}+\ldots+x_{m}\right)^{2} e^{-\theta\left(x_{1}+\ldots+x_{m}\right)}
$$

where the constant depends neither on θ nor on the x_{i} 's.
Hence

$$
\begin{aligned}
& \left|\mathbb{E}\left[(\tilde{\theta}-\theta)^{2}\right]-\mathbb{E}_{\text {indée }}\left[(\tilde{\theta}-\theta)^{2}\right]\right| \leq \\
& \int_{\left[0, \frac{1}{m}\right]^{m}}\left|\tilde{\theta}\left(x_{1}, \ldots, x_{m}\right)-\theta\right|^{2} \frac{x_{1}^{k-1}}{\Gamma(k)} \ldots \frac{x_{m}^{k-1}}{\Gamma(k)} \theta^{k m}\left\{c^{\text {ste }} \theta\left(x_{1}+\ldots+x_{m}\right)^{2} e^{-\theta\left(x_{1}+\ldots+x_{m}\right)}\right\} d x_{1} \ldots d x_{m}+\mathrm{O}(\theta)
\end{aligned}
$$

Set $y_{i}=\theta x_{i}, i=1 \ldots m$ in the integrand:

$$
\leq \int_{\left[0, \frac{\theta}{m}\right]^{m}}\left|\tilde{\theta}\left(\frac{y_{1}}{\theta}, \ldots, \frac{y_{m}}{\theta}\right)-\theta\right|^{2} \frac{x_{1}^{k-1}}{\Gamma(k)} \ldots \frac{x_{m}^{k-1}}{\Gamma(k)} \theta^{-1}\left\{c^{\text {ste }} \theta\left(y_{1}+\ldots+y_{m}\right)^{2} e^{-\theta\left(y_{1}+\ldots+y_{m}\right)}\right\} d y_{1} \ldots d y_{m}+\mathrm{O}(\theta)
$$

Here we use the hypothesis made on the estimator: $\theta(\mathbf{x}) \leq \frac{1}{\|\mathbf{x}\|}$. We also need the following arithmeticogeometric inequality:

$$
\left(a_{1} \ldots a_{m}\right)^{\alpha} \leq \lambda\left(a_{1}^{2}+\ldots+a_{m}^{2}\right)^{m \alpha / 2}
$$

Set $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$, one gets

$$
\begin{aligned}
& \leq c^{\text {ste }} \int_{\left[0, \frac{\theta}{m}\right]^{m}} \frac{\theta^{2}}{\|\mathbf{y}\|^{2}}(\|\mathbf{y}\|)^{m(k-1)} \theta^{-1}\left(y_{1}+\ldots+y_{m}\right)^{2} e^{-y_{1}-\ldots-y_{m}} d y_{1} \ldots d y_{m}+\mathrm{O}(\theta) \\
& \leq c^{\text {ste }} \int_{\left[0, \frac{\theta}{m}\right]^{m}} \frac{\theta^{2}}{\|\mathbf{y}\|^{2}}(\|\mathbf{y}\|)^{m(k-1)} \theta^{-1}(\|\mathbf{y}\|)^{2} e^{-\|\mathbf{y}\|} d y_{1} \ldots d y_{m}+\mathrm{O}(\theta)
\end{aligned}
$$

Here we make a "polar-like" change of variables in \mathbb{R}^{m}. We get this inequality:

$$
\begin{aligned}
\left|\mathbb{E}\left[(\tilde{\theta}-\theta)^{2}\right]-\mathbb{E}_{\text {indé }}\left[(\tilde{\theta}-\theta)^{2}\right]\right| & \leq c^{\text {ste }} \theta \int_{0}^{\sqrt{m} \frac{\theta}{m}} r^{\alpha} e^{-r} d r+\mathrm{O}(\theta), \quad \alpha>0 \\
& =\mathrm{O}(\theta)
\end{aligned}
$$

(2) has become

$$
\begin{aligned}
\mathbb{E}\left[(\tilde{\theta}-\theta)^{2}\right] & =\mathbb{E}_{\text {indé }}\left[(\tilde{\theta}-\theta)^{2}\right]+\mathrm{O}(\theta) \\
& =\mathbb{E}_{\text {indé }}\left[(\hat{\theta}-b(\theta)-\theta)^{2}\right]+b^{2}(\theta)+\mathrm{O}(\theta) \\
& \geq \mathbb{E}_{\text {indé }}\left[(\hat{\theta}-\theta)^{2}\right]+\mathrm{O}(\theta),
\end{aligned}
$$

References

[Bol85] B. Bollobás. Random graphs. Academic Press, 1985.
[BYJK ${ }^{+} 02$] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct elements in a data stream, 2002.
[DF93] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. 11th Annual European Symposium on Algorithms (ESA03), 1993.
[Fel70] William Feller. An Introduction to Probability Theory and its Applications, Vol. I. John Wiley \& sons, 1970.
[Fla04] Philippe Flajolet. Counting by coin tossings. ASIAN'04, pages 1-12, 2004.
[FM85] Philippe Flajolet and Nigel Martin. Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, vol 31(2), pages 182-209, 1985.
[Gir05] Frédéric Giroire. Order statistics and estimating cardinalities of massive data sets. DMTCS proceedings, International Conference on Analysis of Algorithms:157-166, 2005.
[Knu73] Donald Knuth. The Art of Computer Programming, vol. 3 : Sorting and Searching. AddisonWesley, 1973.
[Leh83] E.L. Lehmann. Theory of Point Estimation. John Wiley \& sons, 1983.
[PD03] P.Indyk and D.Woodruff. Tight lower bounds for the distinct elements problem. Proceedings of the 44 th IEEE Symposium on Foundations of Computer Science, Boston, pages 283-290, 2003.

Institut Élie Cartan Nancy (IECN)
Université Henri Poincaré Nancy I
BP 239-54506 Vandoeuvre-Les-Nancy Cedex - France
\{chassain,gerin\}@iecn.u-nancy.fr.

[^0]: ${ }^{1}$ Version of February 2, 2008.

