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Cure-rate estimation under Case-1 interval censoring
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ABSTRACT. We consider nonparametric estimation of cure-rate based on mix-

ture model under Case-1 interval censoring. We show that the nonparametric

maximum-likelihood estimator (NPMLE) of cure-rate is non-unique as well as in-

consistent, and propose two estimators based on the NPMLE of the distribution

function under this censoring model. We present a cross-validation method for

choosing a ‘cut-off’ point needed for the estimators. The limiting distributions

of the latter are obtained using extreme-value theory. Graphical illustration of

the procedures based on simulated data are provided.

Key-words: Case-1 interval censoring, cross-validation, cure-rate, extreme-value theory, non-

homogeneous Poisson process, nonparametric maximum-likelihood estimator, strong approx-

imation, variance-bias trade-off.

1. Introduction

Consider a sample of individuals on each of whom some sort of time-to-event data is

being collected, for instance, onset time of a disease following exposure to infection, time to

death under a terminal disease, time (for criminals) to re-offend after at least one offence etc.

In most such cases, there may be a possibility that the individual may be immune (e.g., not

catch a disease) or get cured (e.g., cured of a disease or not re-offend). This is all the more

relevant when the data is subject to some kind of ‘open-ended’ censoring such as random

censoring, double censoring or interval censoring, where an individual being censored (i.e.,

event not occurred), especially after a large amount of time, points to the possibility of cure.
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In the literature, the term long-term survival has also been used for cure.

Cure is usually quantified by the probability of cure, or the cure-rate: p = P{X = ∞},
where X is the time-to-event of interest. Most of the statistical literature on cure is based on

one of the two following models for the ‘improper’ random variable X: the mixture model, in

which P{X > t} = p + (1 − p)S0(t), S0(·) being a proper survival function representing the

finite part of X (Berkson and Gage, 1952); and the bounded cumulative hazard (BCH) model,

in which P{X > t} = exp(−
∫ t

0
h(s)ds), with θ :=

∫ ∞

0
h(s)ds < ∞, so that p = exp(−θ)

(see Tsodikov et al (2003) for an excellent review). Inference, with or without (random)

censoring, has been based mostly on either the Bayesian approach (see Yin and Ibrahim

(2005) and the references therein) or a semi-parametric approach (see Zhao and Zhou (2006)

and the references therein).

From the non-parametric point of view, it is clear that the two models above are equiv-

alent. Notable among the nonparametric approaches are: Laska and Meisner (1992), who

consider the NPMLE of p under random censoring when a number m ≥ 1 of cures are known;

Maller and Zhou (1996), who consider the value of the Kaplan-Meier distribution function at

the largest datum as an estimator of (1− p) (as is well-known, the value is less than unity if

the largest datum is censored — an indication of cure). See Section 2 for more comments on

these two works. Another interesting paper is Betensky and Schoenfeld (2001), who consider

a time-to-cure, rather than just possibility of cure, competing with time-to-event/censoring.

In this paper we study estimation of cure-rate under Case-1 interval censoring, or current-

status data, using the mixture model. We have been able to trace only one paper so far under

this set-up, namely Lam and Xue (2005), who work with a semi-parametric model, allowing

the cure-rate to depend on covariates via a logit function. We consider only the parameters

(F, p), the time-to-event distribution function and the cure-rate, respectively. Of course, this

is a semi-parametric model too, but one without covariates. We show that the Maller-Zhou

idea does not work here and propose two estimators of p based on the usual (i.e., when

p = 0) NPMLE of F , as given by Groeneboom and Wellner (1992). The asymptotics of the

estimators are obtained using extreme-value theory.

In Section 2, we describe the Case-1 interval censoring model with cure-rate and show

that the NPMLE of p is non-unique and inconsistent. We then propose the two estimators

that depend on a ‘cut-off’ point. Section 3 shows how to make an optimal choice of this cut-
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off point, because it involves a variance-bias trade-off as in extremal index estimation (see,

for instance, Embrechts et al. (1997)). In Section 4, limiting distributions of the estimators

are derived. Use of the latter to construct confidence intervals for p is straightforward.

2. Model, preliminary results and estimators

Consider a variable of interest X, say X = time to development of cancer following

exposure to radiation and an observation time Y, say Y = time of check-up. Under Case-1

interval censoring model, one observes the so-called ‘current status’ data

(δi, Yi), i = 1, 2, . . . , n, where δi = I(Xi ≤ Yi),

and Y1, . . . , Yn are iid with distribution G, independent of X1, . . . , Xn which are iid with dis-

tribution F. Suppose we want to estimate F (x) = P{X ≤ x}. The nonparametric maximum

likelihood estimator (NPMLE) is obtained by solving:

max
F

L(F1, . . . , Fn)

subject to 0 ≤ F1 ≤ . . . ≤ Fn ≤ 1, (1)

where

L(F1, . . . , Fn) =
n∑

i=1

(δ[i] log(Fi) + (1 − δ[i]) log(1 − Fi)),

and Fi = F (Y(i)), Y(i) : order-statistics for (Y1, . . . , Yn), δ[i] = concomitant of Y(i), 1 ≤ i ≤ n.

Solution is given by the ‘max-min’ formula of Groeneboom and Wellner (1992), namely,

F̂i = max
h≤i

min
k≥i

∑k
j=h δ[j]

k − h + 1
. (2)

Cure-rate. Consider again X = time to cancer, this time with possibility of no cancer ≡
cure. Then X can be modelled as an ‘extended’ real-valued random variable with a defective

distribution, i.e.,

P (X = ∞) = p = cure-rate > 0

so that P (X ≤ t) = Fp(t) = (1 − p)F (t) and P (X > t) = Sp(t) = p + (1 − p)(1 −
F (t)) = p + (1 − p)S(t). In this case the likelihood function in Eq.(1) has to be modified as
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max Lc(p, F1, . . . , Fn) where

Lc(p, F1, . . . , Fn)

=

n∑

i=1

[δ[i] log((1 − p)Fi) + (1 − δ[i]) log(p + (1 − p)(1 − Fi))]

subject to 0 ≤ p ≤ 1, 0 ≤ F1 ≤ . . . ≤ Fn ≤ 1

=

n∑

i=1

[δ[i] log(Fi) + (1 − δ[i]) log(1 − Fi)]

subject to 0 ≤ p ≤ 1, 0 ≤ F1 ≤ . . . ≤ Fn ≤ (1 − p), (3)

writing Fi for (1 − p)Fi in the last equality.

Failure of NPMLE. We state the following theorem whose proof is omitted because it is

long and technical:

Theorem 1. Let Lc(p) = max0≤F1≤...≤Fn≤(1−p) Lc(p, F1, . . . , Fn). Then

Lc(p) = L(F̂1 ∧ (1 − p), . . . , F̂n ∧ (1 − p)),

where ∧ denotes ‘minimum’ and F̂i, 1 ≤ i ≤ n, are as in Eq.(2).

This leads to the following two observations about the NPMLE of p:

Remark 1: Non-uniqueness of NPMLE. Obviously, Lc(p) is non-increasing in 0 ≤ p ≤
1, and

sup
0≤p≤1

Lc(p) = L(F̂1, . . . , F̂n) = Lc(p̂),

for any 0 ≤ p̂ ≤ (1 − F̂n). Hence p̂ is unique if and only if (1 − F̂n) = 0 = p̂. This was

also observed, in the case of random censoring, by Laska and Meisner (1992), who showed

that NPMLE was unique and positive if, however, some number m ≥ 1 of cases of cure were

known. We shall explore this situation in a future paper.

Remark 2: Non-consistency of NPMLE. Note that by Eq.(2),

F̂n = max
i≤n

∑n
j=i δ[j]

n − i + 1
,

so that F̂n = 1 if and only if δ[n] = 1. Thus for 0 < p < 1 and any 0 < ε < p,

P{|F̂n − (1 − p)| > ε} ≥ P{F̂n = 1} = P{δ[n] = 1} = (1 − p)E(F (Y(n))) → (1 − p)F (τG),
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where τG = sup{y|G(y) = 1}. Hence F̂n is not a consistent estimator of (1 − p). This is in

stark contrast to the case of random censoring where the former was shown to be in fact
√

n-consistent (asymptotically normal) by Maller and Zhou (1996).

The proposed estimators. Let us look at

F̂n = max
i≤n

∑n
j=i δ[j]

n − i + 1
= max

x≤Y(n)

∑n
j=1 δjI(Yj ≥ x)∑n
j=1 I(Yj ≥ x)

.

Thus F̂n is the maximum of the tail-averages of the concomitants, δ[i], 1 ≤ i ≤ n. Hence

consider the ratio empirical process

p1n(x) :=

∑n
j=1 δjI(Yj ≥ x)∑n
j=1 I(Yj ≥ x)

→ p1(x) := (1 − p)

∫ ∞

x
FdG∫ ∞

x
dG

almost surely for each x ≥ 0 as n → ∞. Moreover, note that

p1(x) ↑ (1 − p) as x ↑ ∞

and

p2n(x) := max
y≤x

p1n(y) → (1 − p) max
y≤x

∫ ∞

y
FdG

∫ ∞

y
dG

↑ (1 − p) as x ↑ ∞

These observations lead us to the following:

Estimator-1. Define

p̂1n = p1n(xn) =

∑n
j=1 δjI(Yj ≥ xn)∑n
j=1 I(Yj ≥ xn)

,

i.e., tail-average at a suitable sequence xn ↑ ∞ of ‘cut-off’ points.

Figure 1 gives a sample-plot of p1n(i) ≡ p1n(Y(i)) =
∑n

j=i δ[j]/(n−i+1) against 1 ≤ i ≤ n,

for p = 0.3, n = 100. It is seen that for i ≈ 55, p1n(i) ≈ 0.7 = (1 − p). For comparison, a

sample-plot for another sample with p = 0 (i.e., no cure) is also given.

Estimator-2. Define

p̂2n = p2n(xn) = max
y≤xn

p1n(y),

i.e., partial maximum of the tail-averages (rather than the global maximum F̂n which is

inconsistent).

Figure 2 gives a sample-plot of p2n(i) = maxk≤i

∑n
j=k δ[j]/(n − i + 1) against 1 ≤ i ≤ n,

for the same sample as in Figure 1. p2n(·) looks more stable than p1n(·), as is to be expected.

The choice of xn for a given sample of size n is discussed in the next section.
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Figure 1: sample plot of p1n(i) vs. i: F = Exp (2), G = Exp (1), n = 100, and p = 0.3 (solid

line), p = 0 (broken line).
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Figure 2: sample plot of p2n(i) vs. i: F = Exp (2), G = Exp (1), n = 100, and p = 0.3 (solid

line), p = 0 (broken line).
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3. Choice of cut-off point

Consider

p̂1n − (1 − p)

= (p̂1n − p1(xn)) + (p1(xn) − (1 − p))

=

∑n
j=1[δjI(Yj ≥ xn) − (1 − p)(

∫ ∞

xn

FdG/Ḡ(xn))I(Yj ≥ xn)]

nḠ(xn)

Ḡ(xn)

n−1
∑n

j=1 I(Yj ≥ xn)

−(1 − p)

∫ ∞

xn

(1 − F )dG/Ḡ(xn)

= An(xn)Cn(xn) − Bn(xn), say, (4)

where Ḡ(x) =
∫ ∞

x
dG = 1 − G(x). Now

nḠ(xn)(var An(xn)) = (1−p)

∫ ∞

xn

FdG/Ḡ(xn)− [(1−p)(

∫ ∞

xn

FdG/Ḡ(xn))]2 → p(1−p) (5)

as xn → ∞.

Further, Cn(xn) = OP (1) (see Shorack and Wellner (1986), p.415) and Bn(xn) = o(1) as

xn → ∞. Hence from Eq.(4),

p̂1n − (1 − p) = (p̂1n − p1(xn)) + (p1(xn) − (1 − p)) = OP ((nḠ(xn))−1/2) + o(1),

as xn → ∞.

Variance-bias trade-off. Thus we have the following trade-off : as n → ∞, we must have

xn ↑ ∞ (so that the bias −Bn(xn) → 0 and also Ḡ(xn) → 0), but slowly enough so that

nḠ(xn) → ∞ (i.e., var (An(xn)) → 0). A similar phenomenon occurs in the case of the Hill

estimator of extremal index in extreme value theory (see Embrechts et al, 1997, p.341).

In view of Eq.(4)–(5), optimal order of xn ↑ ∞ could be determined by minimizing, with

respect to x, the function

Mn(x) = (p(1 − p)/nḠ(x)) + (1 − p)2(

∫ ∞

x

(1 − F )dG/Ḡ(x))2.

Example 1. Let F, G be Exponential (λ) and Exponential (µ) distributions, respectively,

i.e., F̄ (x) = 1 − F (x) = exp(−λx), Ḡ(x) = 1 − G(x) = exp(−µx). Then we have

Mn(x)

= (p(1 − p)/nḠ(x)) + (1 − p)2(

∫ ∞

x

(1 − F )dG/Ḡ(x))2

= n−1p(1 − p) exp(µx) + ((1 − p)µ/(λ + µ))2 exp(−2λx),
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and (d/dx)(Mn(x)) = 0 gives

n−1p(1 − p)µ exp(µx) = ((1 − p)µ/(λ + µ))22λ exp(−2λx),

or

xn = (µ + 2λ)−1 log
(
((1 − p)µ/2pλ(λ + µ)2)n

)
.

Thus nḠ(xn) = c(p, λ, µ)n2λ/(µ+2λ), which shows that the optimal rate of convergence,

(nḠ(xn))1/2 = O(nλ/(µ+2λ)), is much slower than
√

n.

Cross-validation. Eq.(4)–(5) also suggest that we could make a data-driven choice of xn,

say x̂n, as the minimizer of

M̂n(x) := v̂ar (An(x)) + B̂2
n(x)

with respect to x, where v̂ar (An(x)) and B̂n(x) denote suitable estimators of var (An(x))

and Bn(x), respectively.

Now an obvious choice of v̂ar (An(x)) is

v̂ar (An(x)) =
p2n(x)(1 − p2n(x))∑n

j=1 I(Yj ≥ x)
, (6)

where we have used p2n(·) in view of its stability, as is evident from Figure-2. The choice

of B̂n(x), however, is not clear in general. Let us therefore consider the special case of the

Koziol–Green model of censoring:

Assumption A.1. 1 − F (x) = (1 − G(x))α for some α > 0.

Under A.1, we have

Bn(x) = −(1 − p)(1 − G(x))α/(α + 1) (7)

E(1 − δ) = p + (1 − p)/(α + 1)

whence (1 − p)/(α + 1) = E(1 − δ) − p (8)

and α = E(δ)/[E(1 − δ) − p]. (9)

We then replace E(δ) by δ̄n := n−1
∑n

i=1 δi and (1 − p) by

p̄2n := n−1

n∑

i=1

p2n(Yi) =

∫
p2n(x)dGn(x), (10)
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where Gn(·) is the empirical distribution function of Y1, . . . , Yn. This is motivated as follows:

for y ≥ 0,

∫ ∞

y
p2n(x)dGn(x)

Ḡn(y)
≈ (1 − p)

∫ ∞

y
(
∫ ∞

x
FdG/Ḡ(x))dG(x)

Ḡ(y)
= (1 − p)[1 − (α + 1)−2(1 − G(y))α],

which has bias of a smaller order than p2n(y); to a first approximation, we let y = 0 to get

p̄2n.

Thus by Eq.(6)–(10), we arrive at the following cross-validation function:

M̂1
n(x) =

p1n(x)(1 − p1n(x))∑n
j=1 I(Yj ≥ x)

+ (p̄2n − δ̄n)2

[
n−1

n∑

j=1

I(Yj ≥ x)

]2α̂

, (11)

where α̂ = δ̄n/(p̄2n − δ̄n), which could be minimized with respect to x to obtain x̂n.

In general, motivated by Eq.(10) we could estimate the bias, Bn(x) = (1−p)
∫ ∞

x
FdG/Ḡ(x)−

(1 − p), by B̂n(x) := p2n(x) − p̄2n. This leads to another cross-validation function

M̂2
n(x) =

p1n(x)(1 − p1n(x))∑n
j=1 I(Yj ≥ x)

+ (p2n(x) − p̄2n)2 (12)

Figure 3 gives sample-plots of M̂ l
n(i) ≡ M̂ l

n(Y(i)), l = 1, 2. Both the curves exhibit clear

convex shapes with unique minima. However, M̂1
n(·) shows a spurious minimum at the

upper extreme, which must be discarded. Further, the respective minimizers are seen to

underestimate (1 − p), so there appears to be scope for improvement here.
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Figure 3: sample-plot of M̂n(i) vs. i: p = 0.3, F = Exp (2), G = Exp (1), n = 100,

M̂1
n(·) (solid line: minimizer i1 = 58, ignoring i = 100, p2n(58) = 0.651), M̂2

n(·) (broken line:

minimizer i2 = 47, p2n(47) = 0.611)

4. Limiting distributions.

Eq.(5) suggests that p̂1n would require a random norming, namely (
∑n

j=1 I(Yj ≥ xn))1/2,

for asymptotic normality. We establish this, as well as the limiting distribution of p̂2n, using

the asymptotic theory of sample extremes. To this end, assume
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Assumption A.2. G(·) belongs to the maximum domain of attraction of an extreme-value

distribution Ge(·), i.e., there exist sequences of constants an > 0, bn, n ≥ 1, such that

Gn(anx + bn) → Ge(x), or equivalently nḠ(anx + bn) → − log(Ge(x)), as n → ∞, for each

x ∈ IR.

It is well-known that, under A.2,
∑n

j=1 I(Yj ≥ anx + bn) converges weakly to a non-

homogeneous Poisson process with mean-function Λ(x) = − log Ge(x). It turns out that
∑n

j=1 δjI(Yj ≥ anx + bn) converges to an (independently) thinned version of this process.

Lemma 1. With
d→ denoting weak convergence in the space D(IR) of right-continuous

functions on IR with left-limits, we have, as n → ∞,

(a) Nn(x) :=
∑n

j=1 I(Yj ≥ anx + bn)
d→ N(x) ≡ N([x,∞)), a Poisson process with mean

Λ(x) = − log Ge(x);

(b) (N1n(x), N0n(x))
d→ (N1(x), N0(x)), where N1n(x) :=

∑n
j=1 δjI(Yj ≥ anx+bn), N0n(x) :=

∑n
j=1(1−δj)I(Yj ≥ anx+bn), and N1(x), N0(x) are independent Poisson processes with

mean-functions µ1(x) := (1 − p)Λ(x), µ0(x) := pΛ(x) respectively.

(c) Further, N1(x)
d
=

∑N(x)
j=1 ηj , and N0(x)

d
=

∑N(x)
j=1 (1−ηj),where (η1, η2, . . .) are iid Bernoulli (1−

p), independent of N(·), and N(·) is the Poisson process defined in Part (a) above.

Proof:

(a) This is a classical result. For a proof see, for instance, Embrechts et al. (1997).

(b) First, consider weak convergence of N1n(x) alone. It is enough to verify convergence of

the finite-dimensional distributions (N1n(x1), . . . , N1n(xk)), k ≥ 1 (see, for instance, Karr

(1991), Theorem 1.21, p.14). For the sake of convenience let us consider just two points,

12



(x1, x2) with x1 < x2. Then with i =
√
−1 and any real numbers t1, t2,

E[exp(it1N1n(x1) + it2N1n(x2))]

= (E[exp(δ1{it1I(Y1 ≥ anx1 + bn) + it2I(Y1 ≥ anx2 + bn)})])n

=

[
(p + (1 − p)

∫ ∞

0

(1 − F )dG + (1 − p)

∫ anx1+bn

0

FdG) + eit1(1 − p)

∫ anx2+bn

anx1+bn

FdG

+eit1+it2(1 − p)

∫ ∞

anx2+bn

FdG

]n

=

[
1 + n−1nḠ(anx2 + bn)

{
(1 − p)(eit1 − 1)

∫ anx2+bn

anx1+bn

FdG/Ḡ(anx2 + bn)

+(1 − p)(eit1+it2 − 1)

∫ ∞

anx2+bn

FdG/Ḡ(anx2 + bn)

}]n

→ exp
(
(1 − p)Λ(x2)

{
(eit1 − 1)(Λ(x1)Λ

−1(x2) − 1) + (eit1+it2 − 1)
})

,

whence the result. Note that here we have used the fact that as n → ∞, (anx + bn) → τG,

so that
∫ ∞

anx+bn

FdG/Ḡ(anx + bn) → 1. The joint weak convergence of (N1n(x), N0n(x)), as

well as their asymptotic independence, follow by exactly similar arguments.

(c) The representations of (N1(x), N0(x)) are obvious.

Next note that

p1n(xn) =

n∑

j=1

δjI(Yj ≥ xn)/

n∑

j=1

I(Yj ≥ xn) = N1n(x′
n)/Nn(x′

n), (13)

where x′
n = (xn − bn)/an. Therefore, in addition to the weak convergence in Lemma 1, we

need strong approximation by a Poisson process. This follows in a straightforward way from

Einmahl (1997) and is stated below:

Theorem 2. Under A.2, on some probability space one can construct the random variables

(δi, Yi), i = 1, 2, . . . , and a sequence of Poisson processes N ′
n = (N ′

1n, N ′
0n) on IR× IR, where

for each n ≥ 1, N ′
1n, N ′

0n are independent with mean-functions µ1(x), µ0(x), respectively,

such that as n → ∞,

supx:0<Ge(x)<1 |N1n(x) − N ′
1n(x)| P→ 0,

supx:0<Ge(x)<1 |N0n(x) − N ′
0n(x)| P→ 0.

Proof: Follows by arguments similar to the proof of Corollary 2.6, p.37, of Einmahl (1997).

We are now ready to state the limiting distributions of our estimators. In Theorem 3

below, by ‘lim’ we mean limit in distribution.
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Theorem 3. Under A.2, if nḠ(xn) → ∞ as n → ∞, then

(a) Λ(x′
n) → ∞, where x′

n = (xn − bn)/an;

(b) let

Z1n =
(
∑n

j=1 I(Yj ≥ xn))1/2(p1n(xn) − (1 − p))
√

p(1 − p)
;

then

lim
n→∞

Z1n

= lim
n→∞

√
N(x′

n)

[∑N(x′

n
)

j=1 ηj

N(x′
n)

− (1 − p)

]
/
√

p(1 − p) = Normal (0, 1),

where (η1, η2, . . .) are iid Bernoulli (1 − p) as in Lemma 1, Part (c);

(c) let

Z2n =
(
∑n

j=1 I(Yj ≥ xn))1/2(p2n(xn) − (1 − p))
√

p(1 − p)
;

then

lim
n→∞

Z2n

= lim
n→∞

√
N(x′

n) sup
x≤x′

n

[∑N(x)
j=1 ηj

N(x)
− (1 − p)

]
/
√

p(1 − p) = half-Normal (0, 1),

where ‘half-Normal’ (0, 1) is the distribution of | Normal (0, 1)|.

Proof:

(a) Since extreme-value distributions are all continuous, the convergence |Gn(anx + bn) −
G0(x)| → 0 is uniform in x. Now nḠ(xn) → ∞ ⇒ Gn(xn) = Gn(anx

′
n + bn) → 0, hence

G0(x
′
n) → 0. The result follows because Λ(x′

n) = − log G0(x
′
n).

(b) Note that

lim
n→∞

(
∑n

j=1 I(Yj ≥ xn))1/2(p1n(xn) − (1 − p))
√

p(1 − p)

= lim
n→∞

(N1n(x′
n) + N0n(x′

n))1/2

[
N1n(x′

n)

N1n(x′
n) + N0n(x′

n)
− (1 − p)

]
/
√

p(1 − p)

= lim
n→∞

(N ′
1n(x′

n) + N ′
0n(x′

n))1/2

[
N ′

1n(x′
n)

N ′
1n(x′

n) + N ′
0n(x′

n)
− (1 − p)

]
/
√

p(1 − p),
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by Theorem 2. The result now follows using the representation in Lemma 1, Part (c), and

the random central limit theorem, since (η1, η2, . . .) are iid Bernoulli (1 − p), independent of

N(·), and further, by Part (a) above, Λ(x′
n) → ∞, N(x′

n)/Λ(x′
n)

P→ 1, as n → ∞.

(c) This result too follows as in Part (b) above, by noting that

lim
n→∞

√
N(x′

n) sup
x≤x′

n

[∑N(x)
j=1 ηj

N(x)
− (1 − p)

]
/
√

p(1 − p) = lim
n→∞

√
n sup

m≥n

[∑m
j=1 ηj

m
− (1 − p)

]
/
√

p(1 − p).

Weak convergence of the sequence on right-hand-side to the half-Normal distribution is estab-

lished in Robbins et al (1968) (see also Stute (1983) for a generalization to M-estimators).

Remark 1. Figures 4 and 5 give histograms of Z1n and Z2n, respectively, based on 5000

samples each. Either of Z1n and Z2n may easily be used to construct confidence intervals for

(1 − p). However, note that limiting variance of Z1n = 1 > 1 − 2π−1 = limiting variance of

Z2n. Hence the latter may be a better choice. On the other hand, Figure-5 shows that the

convergence of Z2n to the half-Normal distribution is not very good.
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Figure 4: histogram of studentized Z1n: p = 0.3, F = Exp (2), G = Exp (1), n = 100, based

on 5000 samples
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Figure 5: histogram of studentized Z2n: p = 0.3, F = Exp (2), G = Exp (1), n = 100, based

on 5000 samples
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Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997). Modelling extremal events. For

insurance and finance. Springer-Verlag, Berlin.

Groeneboom, P. & Wellner, J.A. (1992). Information bounds and nonparametric maximum

likelihood estimation. Birkhäuser Verlag, Basel.
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