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We study Markov bases of decomposable graphical models consisting of primitive moves (i.e.,
square-free moves of degree two) by determining the structure of fibers of sample size two.
We show that the number of elements of fibers of sample size two are powers of two and
we characterize primitive moves in Markov bases in terms of connected components of induced
subgraphs of the independence graph of a hierarchical model. This allows us to derive a complete
description of minimal Markov bases and minimal invariant Markov bases for decomposable
models.
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1. Introduction

Since Sturmfels (1996) and Diaconis and Sturmfels (1998) introduced the Markov chain
Monte Carlo approach based on a Markov basis for testing the goodness of fit of statis-
tical models of multiway contingency tables, many researchers have showed the useful-
ness of the approach and studied Markov bases for various kinds of statistical models
in computational algebraic statistics (e.g., Hoşten and Sullivant (2002); Dobra (2003);
Dobra and Sullivant (2004); Geiger et al. (2006)). Hierarchical models are of basic im-
portance for statistical analysis of multiway contingency tables (e.g., Lauritzen (1996);
Agresti (2002)). As illustrated in Aoki and Takemura (2003), however, the structure of
Markov bases for hierarchical models is very complicated in general. Decomposable mod-
els defined in terms of chordal graphs are particularly useful submodels of hierarchical
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models. They are known to possess Markov bases consisting of primitive moves, that is,
square-free moves of degree two (Dobra (2003); Hoşten and Sullivant (2002); Geiger et al.
(2006)). Dobra (2003) provided an algorithm to generate moves in such Markov bases
based on a clique tree of the chordal graph defining the model.
The main purpose of this paper is to clarify structures of Markov bases consisting

of primitive moves for decomposable models. As shown in Takemura and Aoki (2004),
Markov bases for general models can be constructed by combining moves of increas-
ing degrees. This fact indicates the importance of studying the structure of primitive
moves in order to clarify the structure of Markov bases for more general hierarchical
models. Some practical models such as subtable sum models (Hara et al. (2009)) and
quasi-independence models for incomplete contingency tables that contain some struc-
tural zeros (Aoki and Takemura (2005); Rapallo (2006)) are obtained by imposing some
constraints on a decomposable model. Rasch models (e.g., Chen and Small (2005)) and
many-facet Rasch models (e.g., Zhu et al. (1998); Basturk (2008)) that are commonly
used in psychometrics and behaviormetrics are considered as decomposable models re-
stricted to contingency tables in which cell frequencies are zeros or ones. From a practical
viewpoint, detailed properties of Markov bases for decomposable models may also give
insights into Markov bases for such models.
The present authors have been studying Markov bases from the viewpoint of

minimality (Aoki and Takemura (2003); Takemura and Aoki (2004)) and invariance
(Aoki and Takemura (2008a, 2008b)) for some specific hierarchical models. The notions
of minimality and invariance of Markov bases are important because they give concise
expressions of the Markov basis. In this paper we extend the results to decomposable
models.
The set of contingency tables sharing the same marginal frequencies corresponding

to the generating set of the model is called a fiber. The structure of primitive moves is
equivalent to that of fibers of sample size two. We study the structure of fibers of sample
size two in detail and give a complete description of minimal Markov bases and minimal
invariant Markov bases for decomposable models. We also show that construction of a
minimal invariant Markov basis is directly related to a basis of a vector space over the
finite field GF(2). We describe under what conditions Dobra’s Markov basis is minimal
or minimal invariant. We also give a necessary and sufficient condition for the uniqueness
of the minimal Markov basis for decomposable models.
The organization of the paper is as follows. In Section 2 we set up notation for this

paper and summarize preliminary results. In Section 3 we clarify structures of fibers of
sample size two. Using this characterization, in Section 4 we give a complete description
of minimal Markov bases and minimal invariant Markov bases for decomposable models.
In Section 5 we briefly discuss reduced Gröbner bases for decomposable models and we
end the paper with some concluding remarks in Section 6.

2. Preliminaries

We mostly follow the notation in Lauritzen (1996); Hoşten and Sullivant (2002); Dobra
(2003) for multiway contingency tables. Let ∆= {1, . . . ,m} denote the set of variables of



210 H. Hara, S. Aoki and A. Takemura

an m-way contingency table. Let Iδ , δ ∈∆, denote the number of levels of the variable
δ. For convenience we take the set of levels of the variable δ as Iδ = {0,1, . . . , Iδ − 1}
starting from 0 as in Hoşten and Sullivant (2002). The cells of the contingency table are
indexed by

i= (i1, . . . , im) ∈ I =
∏

δ∈∆

Iδ.

n(i) denotes the frequency of the cell i and n= {n(i)}i∈I denotes an m-way contingency
table. The set of positive cells supp(n) = {i ∈ I | n(i)> 0} is the support of n.
For a subset D ⊂ ∆ of the variables, the D-marginal nD of n is the contin-

gency table with marginal cells iD ∈ ID =
∏

δ∈D Iδ and entries given by nD(iD) =
∑

i
DC ∈I

DC
n(iD, iDC). Here we are denoting i = (iD, iDC ) by appropriately reordering

indices. In this paper for notational simplicity, appropriate reordering of indices is per-
formed as needed.
Now we consider the existence of a table n with the marginal tables nD1 , . . . ,nDr

.
Dobra (2003) defined that the marginal tables nD1 , . . . ,nDr

are consistent if, for any r1,
r2, the (Dr1 ∩Dr2)-marginal of nDr1

is equal to the (Dr1 ∩Dr2)-marginal of nDr2
. The

consistency of the marginal tables is obviously a necessary condition for the existence of
n. However we note that it does not necessarily guarantee the existence of n in general
(e.g., Irving and Jerrum (1994); Vlach (1986)).
Let D = {D1, . . . ,Dr} be the set of facets of a simplicial complex such that ∆ =

⋃r

j=1Dj . Then D is called a generating class. Let p(i) denote the cell probability for
i. Then the hierarchical model for a generating class D is written as

logp(i) =
∑

D∈D

µD(i),

where µD depends only on iD.
Let GD be a graph with the vertex set ∆ and an edge between δ, δ′ ∈ ∆ if and

only if there exists D ∈ D such that δ, δ′ ∈ D. GD is called an independence graph
of D (Dobra and Sullivant (2004)). A hierarchical model for D is called graphical if
D = {D1, . . . ,Dr} is the set of (maximal) cliques of GD . By a clique we mean the set of
vertices of a maximal complete induced subgraph. A graphical model is called decom-
posable if GD is chordal, that is, every cycle of GD with length greater than three has a
chord. A clique tree (or a junction tree) T of a chordal graph GD is a tree, such that the
vertices of T are cliques of GD and it satisfies the following property:

Ds ∩Dt ⊂Du for all Du on the path between Ds and Dt in T .

An intersection S of neighboring cliques in a clique tree is called a minimal vertex sepa-
rator. In the following S denotes the set of minimal vertex separators of a chordal graph.
When GD is not connected, we regard the empty set ∅ as a minimal vertex separator of
GD.
For a clique D ∈ D of a decomposable model, let Simp(D) denote the set of sim-

plicial vertices in D and let Sep(D) denote the set of non-simplicial vertices in D
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(Hara and Takemura (2006)). If Simp(D) 6= ∅, D is called a simplicial clique. A sim-
plicial clique D is called a boundary clique if there exists another clique D′ ∈D such that
Sep(D) =D∩D′ (Shibata (1988)). Simplicial vertices in boundary cliques are called sim-
ply separated vertices (Hara and Takemura (2006)). Hara and Takemura (2006) showed
that a clique D is a boundary clique if and only if there exists a clique tree such that D
is its endpoint. Hence there exist at least two boundary cliques in any chordal graph.
Finally we summarize some relevant facts on fibers andMarkov bases (Takemura and Aoki

(2004, 2005)). Given the generating class D = {D1, . . . ,Dr} of a hierarchical model, we
denote the set of marginal frequencies as

b= {nDj
(iDj

), iDj
∈ IDj

, j = 1, . . . , r}.

We consider b as a column vector with dimension d=
∑r

j=1

∏

δ∈Dj
Iδ , where the elements

are ordered according to an appropriate lexicographical order. We also order the elements
of n appropriately and consider n as a column vector. Then the relation between the
joint frequencies n and the marginal frequencies b is written simply as

b=An,

where A is a d× |I| matrix consisting of 0’s and 1’s. A is the “incidence matrix” of cells
and marginals with 1 indicating that the corresponding cell (column) is included in the
corresponding marginal (row).
Given b, the set

Fb = {n≥ 0 | b=An}

of contingency tables sharing the same marginal frequencies, b, is called a fiber or b-fiber,
where n≥ 0 denotes n(i)≥ 0 for all i∈ I. All contingency tables n in the same fiber Fb

have the same total frequency n=
∑

i∈I n(i). We call this common total frequency the
sample size or the degree of b and denote it by degb. We call Fb with degb= 2 a “degree
two fiber” in the following.
An integer array z = {z(i)}i∈I of the same dimension as n is called a move if Az =

0, that is, zD(iD) :=
∑

i
DC ∈I

DC
z(iD, iDC ) = 0 for all D ∈ D. A move z is written as

the difference of its positive part and negative part as z= z+ − z−. Then Az+ = Az−.
Therefore z+ and z− belong to the same fiber. In this case we simply say that a move
z belongs to the fiber FAz+ . We call degAz+ the degree of a move z. Clearly degAz+ ≥
2. Especially when z is a primitive move, that is, a square-free move of degree two,
degAz+ = 2 and z+ and z− belong to the same degree two fiber. Therefore the structure
of primitive move is equivalent to the structure of corresponding degree two fiber. If we
add a move or subtract a move z to n ∈Fb, we can move to another state n+z (or n−z)
in the same fiber Fb as long as there is no negative element in n+ z (or n− z). A finite
set M of moves is called a Markov basis if for every fiber the states become mutually
accessible by the moves fromM. By using the Metropolis–Hastings procedure to control
transition probabilities by moves of a Markov basis, we can construct a Markov chain on
every fiber (Diaconis and Sturmfels (1998)).
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A Markov basis M is minimal if every proper subset of M is no longer a Markov
basis. Minimal Markov bases may not be unique in general. However, in view of the
definition of the minimum fiber Markov basis (the set of moves that cannot be replaced
by a sequence of moves of lower degree, see Section 2.2 of Takemura and Aoki (2005)),
the fibers of the moves of all minimal Markov bases are common. We refer to the set of
fibers common to all minimal Markov bases as the fibers of the minimum fiber Markov
basis.
Suppose that a degree two fiber Fb contains more than one element, that is, |Fb| ≥ 2.

Then no two elements n,n′ of the fiber share a support:

degb= 2, n 6= n′ ∈Fb =⇒ supp(n) ∩ supp(n′) =∅.

It follows that each element of a degree two fiber with more than one element is an
indispensable monomial (Aoki et al. (2008)), that is, each contingency table of sample
size two is isolated and has to be connected to some other table in the same fiber by
a degree two move of a Markov basis. Hence each degree two fiber with more than one
element has to be a fiber of the minimum fiber Markov basis. This fact holds for any
hierarchical model. Note however that for some hierarchical models, such as no three-
factor interaction models (Aoki and Takemura (2003)), every degree two fiber has only
one element.
On the other hand, for decomposable models, Dobra (2003) has shown that there exists

a Markov basis consisting of primitive moves. It implies that for decomposable models it
suffices to study degree two fibers. In particular the fibers of the minimum fiber Markov
bases are exactly the degree two fibers with more than one element. Furthermore, by
the characterization of the uniqueness of minimal Markov bases in Takemura and Aoki
(2004), it follows that the minimal Markov basis for a decomposable model is unique if
and only if all degree two fibers contain at most two elements. Based on this result we
will give a necessary and sufficient condition for the uniqueness of minimal Markov bases
for decomposable models (Theorem 2 below) in terms of the properties of their chordal
graphs.

3. Structure of degree two fibers

In this section we study the structure of degree two fibers to clarify the structure of
primitive moves. Let D = {D1, . . . ,Dr} be the generating class of a hierarchical model.
Let b be a set of marginal frequencies of a contingency table with sample size two.
We are interested in the structure of a degree two fiber Fb. Because the sample size is
two, for each D ∈ D, there exist at most two marginal cells iD with positive marginal
frequency nD(iD)> 0. The same reasoning holds for each variable δ ∈∆; namely in the
one-dimensional marginal table {n{δ}(iδ), iδ ∈ {0,1, . . . , Iδ − 1}}, there exist at most two
levels iδ such that n{δ}(iδ)> 0. For a given b we say that the variable δ is degenerate if
there exists a unique level iδ such that n{δ}(iδ) = 2. Otherwise, if there exist two levels
iδ 6= i′δ such that n{δ}(iδ) = n{δ}(i

′
δ) = 1, then we say that the variable δ is non-degenerate.
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If a variable δ is degenerate for a given marginal b, then the level of the variable δ
is uniquely determined from b and it is common for all contingency tables n ∈ Fb. In
particular, if all the variables δ ∈∆ are degenerate, then Fb = {n} is a one-element fiber
with frequency n(i) = 2 at a particular cell i. Since this case is trivial, below we consider
the case wherein at least one variable is non-degenerate. For convenience we denote

n= (i)(j)

when n(i) = n(j) = 1, i 6= j. From the fact that there exist at most two levels with
positive one-dimensional marginals for each variable, it follows that we only need to
consider 2× · · · × 2 tables for studying degree two fibers. Therefore, for our purposes in
this section, we let I1 = · · ·= Im = 2, I = {0,1}m without loss of generality.
For a given b of degree two let ∆̄b denote the set of non-degenerate variables.

As noted above we assume that ∆̄b 6= ∅. Each n ∈ Fb is of the form n = (i)(i′) =
(i1, . . . , im)(i′1, . . . , i

′
m), i 6= i′. Furthermore, for non-degenerate δ ∈ ∆̄b the levels of the

variable δ in i and i′ are different:

{iδ, i
′
δ}= {0,1} ∀δ ∈ ∆̄b,

or equivalently i′δ = 1 − iδ, ∀δ ∈ ∆̄b. In the following we use the notation i∗δ = 1 − iδ.
More generally for a subset D = {δ1, . . . , δk} of the variables and a marginal cell iD =
(iδ1 , . . . , iδk) we write

i∗D ≡ (i∗δ1 , . . . , i
∗
δk
) = (1− iδ1 , . . . ,1− iδk).

Let us identify n ∈ Fb with the set {i, i′} of its two cells of frequency one. Then we see
that the number of elements |Fb| of the fiber is at most 2|∆̄b|−1. However some choice of
{i, i′} with

iδ, i
∗
δ ∈ {0,1} ∀δ ∈ ∆̄b,

may not be in the fiber Fb. This is because if δ and δ′ belong to a common D ∈D, then
the values of iδ and iδ′ are tied together. For example, let D = {1,2} ∈ D and consider
the {1,2}-marginal specified as

n{1,2}(0,0) = n{1,2}(1,1) = 1, n{1,2}(0,1) = n{1,2}(1,0) = 0.

Then if we choose i1 = 0, we have to choose i2 = 0. In Takemura and Hara (2007) we
considered a very similar problem in the framework of swapping observations among
two records in a microdata set for the purpose of statistical disclosure control. As in
Takemura and Hara (2007) we make the following definition.
Let G(∆̄b) be a graph with the set of vertices ∆̄b and an edge between δ ∈ ∆̄b and

δ′ ∈ ∆̄b if and only if there exists some D ∈ D such that δ, δ′ ∈D. Namely there exists
an edge between two non-degenerate variables if and only if these two variables appear
together in some marginal tables of D. Note that G(∆̄b) is the induced subgraph of GD

with the vertices restricted to ∆̄b. As discussed above in this case the values of iδ and iδ′
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are tied together and once the value of iδ is chosen, for example, iδ = 0, then the value
of iδ′ becomes fixed depending on the specifications of the marginals nD.
We summarize the above argument in the following lemma.

Lemma 1. Suppose that b is a set of consistent marginal frequencies of a contingency
table with sample size two. Let Γ be any subset of a connected component in G(∆̄b). Then
the marginal table nΓ = {nΓ(iΓ) | iΓ ∈ IΓ} is uniquely determined.

Proof. Let r(Γ) be the number of generating sets D ∈D satisfying Γ∩D 6=∅. We prove
this lemma by induction on r(Γ). When r(Γ) = 1, the lemma obviously holds. Suppose
that the lemma holds for all r(Γ)< r′ and we now assume that r(Γ) = r′. Let Γ1 ⊂ Γ and
Γ2 ⊂ Γ satisfy

Γ1 ∪ Γ2 = Γ, Γ1 ∩ Γ2 6=∅, r(Γ1)< r′, r(Γ2)< r′.

Since r(Γ1)< r′ and r(Γ2)< r′ both nΓ1 and nΓ2 are uniquely determined. Suppose that

nΓ1(iΓ1\Γ2
, iΓ1∩Γ2) = 1, nΓ1(i

∗
Γ1\Γ2

, i∗Γ1∩Γ2
) = 1. (3.1)

Then from the consistency of b there uniquely exists iΓ2\Γ1
∈ IΓ2\Γ1

such that

nΓ2(iΓ2\Γ1
, iΓ1∩Γ2) = 1, nΓ2(i

∗
Γ2\Γ1

, i∗Γ1∩Γ2
) = 1. (3.2)

Hence the table nΓ = {n(jΓ) | jΓ ∈ IΓ} such that

n(jΓ) =

{
1, if jΓ = (iΓ1\Γ2

, iΓ1∩Γ2 , iΓ2\Γ1
) or jΓ = (i∗Γ1\Γ2

, i∗Γ1∩Γ2
, i∗Γ2\Γ1

),
0, otherwise

is consistent with the marginal b.
Suppose that there exists another marginal table n′

Γ that is consistent with b such
that nΓ(jΓ) = nΓ(j

∗
Γ) = 1 and jΓ 6= (iΓ1\Γ2

, iΓ1∩Γ2 , iΓ2\Γ1
). Then we have at least

nΓ1(iΓ1) = 0 or nΓ2(iΓ2) = 0.

This contradicts (3.1) and (3.2). �

By using the result of Lemma 1, we obtain the following theorem on the number of
elements in degree two fibers.

Theorem 1. Let Fb be a degree two fiber such that ∆̄b 6=∅ and let c(b) be the number
of connected components of G(∆̄b). Then

|Fb|= 2c(b)−1.
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Proof. Denote by Γ1, . . . ,Γc, c= c(b), the connected components of G(∆̄b). Define Γc+1

by Γc+1 =∆ \ ∆̄b. Then there exists iΓc+1 such that

iΓc+1 = {iδ | δ ∈ Γc+1, n{δ}(iδ) = 2}.

From Lemma 1 the marginal cells iΓk
such that nΓk

(iΓk
) = nΓk

(i∗Γk
) = 1 uniquely exist

for k = 1, . . . , c. Now define Ib by

Ib = {iΓ1 , i
∗
Γ1
}× {iΓ2 , i

∗
Γ2
}× · · · × {iΓc

, i∗Γc
} × {iΓc+1},

where × denotes the direct product of sets. Suppose that j ∈ Ib. Define nj = {nj(i) | i ∈
I} by

nj(i) =

{
1, if i= j or i= j∗,
0, otherwise.

Then we have F(Ib) = {nj | j ∈ Ib} ⊂ Fb and |F(Ib)|= 2c−1.
If there exists n′ = {n′(i) | i ∈ I} such that n′ ∈ Fb and n′ /∈ F(Ib), then there exists

a cell j ∈ I and 1≤ k ≤ c+ 1 such that n(j) = 1 and jΓk
6= iΓk

. This implies that there

exists Dl ∈D such that n′(iDl
) 6= n(iDl

). Hence we have |Fb|= 2c(b)−1. �

As mentioned in Section 2, for a consistent b such that degb > 2, it is known that
Fb may be empty (e.g., Irving and Jerrum (1994); Vlach (1986)) in general. However
Theorem 1 shows that, in the case degb= 2, if a consistent b such that ∆̄b 6=∅ is given,
then Fb 6=∅ for any hierarchical model.
It is helpful to consider permuting the levels 0↔ 1 for each variable and under-

stand Theorem 1 in a canonical form. This amounts to considering invariance of hi-
erarchical models with respect to permutation of levels of each variable as studied in
Aoki and Takemura (2008a). Although we have reduced our consideration to 2m tables
in treating degree two fibers, we are really considering general hierarchical models of
I1 × · · · × Im tables. Note that hierarchical models possess the symmetry with respect
to relabeling the levels of each variable, that is, it is invariant under the action of the
direct product of symmetric groups SI1 × · · · ×SIm acting on the set of cells. If we again
restrict our consideration to degree two fibers, we only need to consider the action of
Sm
2 = S2× · · ·×S2. It is clear that structures of degree two fibers are invariant under the

action of Sm
2 .

In particular as a “representative fiber”, we can consider b such that the levels of
all degenerate variables are determined as 0. Also for such a b, let Γ ⊂ ∆̄b be the set
of vertices of a connected component of G(∆̄b). Then we can without loss of generality
assume that two Γ-marginal cells of frequency 1 are specified as

1 = nΓ(0,0, . . . ,0) = nΓ(1,1, . . . ,1). (3.3)

This can be achieved by interchanging the levels of each variable in ∆̄b. Under this stan-
dardization the proof of Theorem 1 is easier to understand, because for each connected
component of G(∆̄b) we either choose all 0’s or all 1’s for the component.
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This standardization is also useful in determining the setwise stabilizer of Fb in Sm
2

(Section 3.1 of Aoki and Takemura (2008b)). If we standardize the levels as (3.3), then
the setwise stabilizer of Fb is isomorphic to c(b)-fold direct product of S2’s:

S
c(b)
2 = S2 × · · · × S2.

In other words the structure of Fb is equivalent to the structure of the fiber Fb′ with
∆= ∆̄b′ = {1, . . . , c(b′)} and totally disconnected G(∆̄b′). In the next section we use this
fact in determining the minimal invariant Markov bases for decomposable models.
Finally we prove the following theorem on a sufficient condition for non-uniqueness of

minimal Markov bases.

Theorem 2. Let D = {D1, . . . ,Dr} be the generating class of a hierarchical model. Sup-
pose that m ≥ 3 and there exist three variables δ1, δ2, δ3 that are not connected to each
other in GD. Then minimal Markov bases for the hierarchical model with the generating
class D are not unique.

Proof. It suffices to find a degree two fiber with more than two elements. Consider b such
that ∆̄b = {δ1, δ2, δ3}. From the condition of the theorem G(∆̄b) has an induced subgraph
with three connected components. Therefore |Fb|= 4. This completes the proof. �

4. Markov bases for decomposable models

4.1. Minimal and unique minimal Markov bases

In this section we discuss Markov bases of decomposable models in detail from the view-
point of minimality based on the results obtained in the previous section. Since there
exists a Markov basis consisting of primitive moves for decomposable models, the set of
fibers of the minimum fiber Markov basis coincides with the set of degree two fibers with
more than one element. Theorem 1 of the previous section enables a complete description
of minimal Markov bases of decomposable models.
Let degb= 2. Let Tb be any tree whose nodes are elements of Fb. Denote the set of

edges in Tb byMTb
. We note that we can identify each edge (n,n′) ∈MTb

with a move
z= n−n′. So we identityMTb

with a set of moves for Fb. In considering Markov bases,
we ignore the sign of z and identify z= n− n′ with −z= n′ − n and consider the edges
in Tb as undirected. In contrast when we consider Gröbner bases, we distinguish z from
−z and correspondingly consider directed edges.
Let Bnd be

Bnd = {b | degb= 2, |Fb| ≥ 2}. (4.1)

Then we defineM0 as follows,

M0 =
⋃

b∈Bnd

MTb
. (4.2)
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By following Dobra (2003) and Takemura and Aoki (2004), we easily obtain the fol-
lowing theorem.

Theorem 3. M0 is a minimal Markov basis and (4.2) is a disjoint union. Conversely
every minimal Markov basis can be written as in (4.2).

Example 1 (The complete independence model of three-way contingency ta-
bles). Consider the model D = {{1},{2},{3}} for the 2× 2× 2 contingency tables. Bnd
for the model has seven elements. Denote them by b1, . . . ,b7. Figure 1 shows an example
ofMTbt

for t= 1, . . . ,7. b1, . . . ,b7 satisfy

∆̄b1 = {1,2,3}, ∆̄b2 = ∆̄b3 = {1,2},
(4.3)

∆̄b4 = ∆̄b5 = {2,3}, ∆̄b6 = ∆̄b7 = {1,3}.

The union of all these moves is a minimal Markov basis for the model. Since Fb1 is a
four elements fiber, Tb1 is not uniquely determined. Hence minimal Markov bases are
not unique for this model.

As seen from this example, minimal Markov bases are not necessarily uniquely deter-
mined. Based on Theorems 1 and 3, we can derive a necessary and sufficient condition
on decomposable models to have the unique minimal Markov basis.

Corollary 1. There exists the unique minimal Markov basis for a decomposable model
if and only if the number of connected components in any induced subgraphs of GD is less
than three.

Proof. Suppose that G(∆̄b) has more than two connected components. Then since
|Fb| ≥ 4 from Theorem 1, Tb is not uniquely determined. For a different tree T ′

b
,

MTb
6=MT ′

b
. Hence minimal Markov bases are not unique either.

Conversely, assume that the number of connected components of G(∆̄b) for all b ∈ Bnd
is two. Then Tb for all b ∈ Bnd is uniquely determined. Hence the minimal Markov basis
is unique. �

For decomposable models GD is chordal. From the graph theoretical viewpoint the
above corollary can be rewritten as follows.

Corollary 2. For a decomposable model, there exists the unique minimal Markov basis
if and only if GD has only two boundary cliques D and D′ such that D′′ ⊂D∪D′ for all
D′′ ∈D.

Proof. Suppose that GD has two boundary cliques D and D′ such that D′′ ⊂D ∪D′

for all D′′ ∈D. Then any vertex in D′′ is adjacent to D or D′. Hence the number of
connected components for any induced subgraph of GD is at most two.
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Figure 1. MTbt
in the complete independence model of three-way contingency tables.

Figure 2. Examples of the graphs satisfying the condition of Theorem 2.

Conversely suppose that there exists D′′ ∈ D such that D′′ 6⊂D ∪D′. Then the sub-
graph induced by the union of D′′ \ (D∪D′), Simp(D) and Simp(D′) has three connected
components. �

The graphs with r = 2 always satisfy the conditions of the theorem. For r ≥ 3 the
graph with

D= {{1, . . . , r− 1},{2, . . . , r}, . . . ,{r, . . . ,2r− 2}} (4.4)

satisfies the conditions of the theorem. Figure 2 represents the graphs satisfying (4.4) for
r = 3,4. We can easily see that any induced subgraph of the graphs in the figure has at
most two connected components.
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Let T = (D,E) be a clique tree for GD . Denote by Te = (De,Ee) and T
′
e = (D′

e,E
′
e) the

two induced subtrees of T obtained by removing an edge e ∈ E . Define Ve and V ′
e by

Ve =
⋃

D∈De

D, V ′
e =

⋃

D∈D′

e

D.

LetMT (Ve, V
′
e ) be the set of all primitive moves for the decomposable model determined

by the chordal graph whose set of cliques is {Ve, V
′
e}. Dobra (2003) showed that

MT =
⋃

e∈E

MT (Ve, V
′
e ) (4.5)

is a Markov basis. We callMT a Dobra’s Markov basis. From the viewpoint of minimality
of Markov bases, we have the following theorem.

Theorem 4. A decomposable model has a clique tree T such that MT is a minimal
Markov basis if and only if the model has the unique minimal Markov basis.

Proof. When a decomposable model has unique minimal Markov basis, MT coincides
with the minimal Markov basis.
Suppose that there exist three vertices in GD that are not adjacent to each other.

Let 1,2 and 3 be such three vertices and assume that l ∈ Dl, Dl ∈ D, for l = 1,2,3.
Define {1,2,3}c =∆ \ {1,2,3}. Consider a degree two fiber Fb such that ∆̄b = {1,2,3}
and n{1,2,3}c(i{1,2,3}c) = 2 for some i{1,2,3}c . Then |Fb|= 4 from Theorem 1 and we can
denote these four elements by

n1 = (000i{1,2,3}c)(111i{1,2,3}c),

n2 = (001i{1,2,3}c)(110i{1,2,3}c), (4.6)

n3 = (010i{1,2,3}c)(101i{1,2,3}c),

n4 = (011i{1,2,3}c)(100i{1,2,3}c).

A minimal Markov basis connects these four elements by three moves. Let T = (D,E) be
any clique tree for GD and T ′ = (D′,E ′) be the smallest subtree of T satisfying Dl ∈D

′

for l = 1,2 and 3. Then we can assume that T ′ satisfies either of the following two
conditions,

(i) D2 is an interior point and D1 and D3 are endpoints on the path;
(ii) all of D1, D2 and D3 are endpoints of T ′.

In both cases there exists e ∈ E such that D1,D2 ⊂ Ve and D3 ⊂ V ′
e . Then M

T (Ve, V
′
e)

includes the following two moves,

z1 = n1 − n2, z2 = n3 −n4.



220 H. Hara, S. Aoki and A. Takemura

Figure 3. T in Example 2.

On the other hand, there also exists e′ ∈ E such that D1 ⊂ Ve′ and D2,D3 ⊂ Ve′ . In
this caseMT (Ve′ , V

′
e′) includes the following two moves,

z3 = n1 − n4, z4 = n2 −n3.

Thus MT includes at least four moves for the fiber Fb, which implies that MT is not
minimal for the model that does not have the unique minimal Markov basis. �

Example 2 (The complete independence model of four-way contingency ta-
bles). Consider the 2× 2× 2× 2 complete independence model D = {{1},{2},{3},{4}}.
Let Fb be the fiber with ∆̄b = {1,2,3,4}, that is, c(b) = 4 and |Fb|= 8. ConsiderMT

for T in Figure 3. Denote the set of moves for Fb belonging to MT by MT
b
. Figure 4

showsMT
b
. As seen from Figure 4,MT

b
includes 12 moves. Since |Fb|= 8, 7 moves are

sufficient to connect Fb.

4.2. Minimal invariant Markov bases

In this section we consider Markov bases from the viewpoint of invariance under the
action of the product of symmetric groups G=GI1,...,Im = SI1 × · · · × SIm on the levels
of the variables. The organization of this section is as follows. We first express a minimal
invariant Markov basis as a union of orbits of GI1,...,Im , which minimally connects repre-
sentative fibers (see (4.7) below). Then we show that the minimal set of orbits connecting
a non-degenerate fiber is in one-to-one correspondence to a basis of a vector space over
the finite field GF(2) (Lemma 2 and Theorem 5 below). Then the structure of minimal
invariant Markov bases is given in Theorem 6.
According to Aoki and Takemura (2008a), a set of movesM is called G-invariant if

g ∈G, z ∈M ⇒ g(z) ∈M or −g(z) ∈M.

M is called a G-invariant Markov basis for D if it is a Markov basis and also G-invariant.
A G-invariant Markov basis M is minimal if no proper G-invariant subset of M is a
Markov basis.
As discussed at the end of Section 3, by appropriate reordering of the indices we can

consider a representative fiber

F0
b
∋ nb

0 ≡ (0 · · ·0)(1 · · ·1

|∆\∆̄b|
︷ ︸︸ ︷

0 · · ·0 ).
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Figure 4. MT
b for b such that ∆̄b = {1,2,3,4}.

Then any n ∈ F0
b
is expressed as follows,

n = (

|Γ1|
︷ ︸︸ ︷

0 · · ·0 iΓ2 · · · iΓc(b)

|∆\∆̄b|
︷ ︸︸ ︷

0 · · ·0 )(

|Γ1|
︷ ︸︸ ︷

1 · · ·1 i∗Γ2
· · · i∗Γc(b)

|∆\∆̄b|
︷ ︸︸ ︷

0 · · ·0 ),

iΓl
=

|Γl|
︷ ︸︸ ︷

0 · · ·0 or iΓl
=

|Γl|
︷ ︸︸ ︷

1 · · ·1, l= 2, . . . , c(b),

where Γl are the connected components of G(∆̄b). Let G
Γl , l= 2, . . . , c(b), be the diagonal

subgroup of S
|Γl|
2 defined by

GΓl = {ḡ = (g, . . . , g) | g ∈ S2} ⊂ S
|Γl|
2 .

Define

Gb =GΓ2 × · · · ×GΓc(b)

and let g ∈Gb act on n ∈ F0
b
by

g(n) = (

|Γ1|
︷ ︸︸ ︷

0 · · ·0 ḡ2(iΓ2) · · · ḡc(b)(iΓc(b)
)

|∆\∆̄b|
︷ ︸︸ ︷

0 · · ·0 )(

|Γ1|
︷ ︸︸ ︷

1 · · ·1 ḡ2(i
∗
Γ2
) · · · ḡc(b)(i

∗
Γc(b)

)

|∆\∆̄b|
︷ ︸︸ ︷

0 · · ·0 ).

Clearly g(n) ∈ F0
b
for n ∈ F0

b
and furthermore for any n ∈ F0

b
there exists g ∈Gb such

that n = g(nb
0 ). This shows that Gb ⊂ GI1,...,Im is the setwise stabilizer of F0

b
acting

transitively on F0
b
.

LetMGb
be a minimal Gb-invariant set of moves that connects F0

b
. Let κ(b) be the

number of Gb-orbits included inMGb
. As representative moves of Gb-orbits inMGb

we
can consider

zbk = nb

0 −nb

k ∈Mb, nb

k ∈F
0
b
, k = 1, . . . , κ(b).
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This is because we can always send n in z = n − n′ to nb

0 by the transitivity of Gb.
DenoteM0

Gb
= {zb1 , . . . ,z

b

κ(b)}. Define the set of representative fibers by

B0
nd = {b | n

b

0 ∈F
0
b} ⊂ Bnd.

From Aoki and Takemura (2008a) a minimal GI1,...,Im -invariant Markov basis can be
expressed by

MG =
⋃

b∈B0
nd

κ(b)
⋃

k=1

GI1,...,Im(zbk ), (4.7)

where GI1,...,Im(zbk ) denotes the GI1,...,Im -orbit through zbk . Hence in order to clarify the
structure ofMG, it suffices to consider 2× · · · × 2 tables and investigate κ(b) andM0

Gb

for each F0
b
.

As mentioned in Section 3, the structure of F0
b
is equivalent to the structure of the

fiber with ∆̄b =∆= {1, . . . , c(b)} and G(∆̄b) is totally disconnected. We first consider
the structure of such a fiber. F0

b
satisfies

F0
b
= {(0i2 · · · ic(b))(1i

∗
2 · · · i

∗
c(b)) | (i2 · · · ic(b)) = i∆\{1} ∈ I∆\{1}} (4.8)

and (0 · · ·0)(1 · · ·1) ∈ F0
b
. Then we note that we can identify Gb with S

c(b)−1
2 . For g ∈

S
c(b)−1
2 , we write g = (g2, . . . , gc(b)), where gl ∈ S2 for l = 2, . . . , c(b). A representative

move of S
c(b)−1
2 -orbit is expressed by

zb = (0 · · ·0)(1 · · ·1)− (0i∆\{1})(1i
∗
∆\{1})

for some i∆\{1} ∈ I∆\{1}. We first derive κ(b) and MGb
. Let Vc(b)−1 = {0,1}c(b)−1

denote the (c(b) − 1)-dimensional vector space over the finite field GF(2), where the
addition of two vectors is defined as the “exclusive or” (XOR) of the elements. Let ⊕

denote the XOR operation. Let ◦ denote the group operation of S
c(b)−1
2 . Then we obtain

the following lemma.

Lemma 2. S
c(b)−1
2 is isomorphic to Vc(b)−1.

Proof. Consider the map φ :S
c(b)−1
2 → Vc(b)−1 such that φ(g) = v = (v2, . . . , vc(b)) ∈

Vc(b)−1, where

vl =

{
0, if gl(il) = il,
1, if gl(il) = i∗l

for l= 2, . . . , c(b) and {il, i
∗
l }= {0,1}. For g

′ = (g′2, . . . , g
′
c(b)) ∈ S

c(b)−1
2 , g′l ∈ S2, and v′ ∈

Vc(b)−1, define φ(g′) = v′ = (v′2, . . . , v
′
c(b)). Then we have φ(g ◦ g′) = ṽ = (ṽ2, . . . , ṽc(b)),
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ṽ ∈ Vc(b)−1, where

ṽl =

{
0, if gl ◦ g

′
l(il) = il,

1, if gl ◦ g
′
l(il) = i∗l

for l= 2, . . . , c(b). Hence we have

ṽl = vl ⊕ v′l, l= 2, . . . , c(b).

Therefore φ is a homomorphism. It is obvious that φ is a bijection. Therefore S
c(b)−1
2 is

isomorphic to Vc(b)−1. �

Based on this lemma, we can show the equivalence between S
c(b)−1
2 -orbits in a minimal

S
c(b)−1
2 -invariant set of moves that connects F0

b
and a (vector space) basis of Vc(b)−1.

Theorem 5. Let V0 = {vk = (vk2, . . . , vkc(b)), k = 2, . . . , c(b)} be any basis of Vc(b)−1.

Define nb
0 , n

b
vk
∈ F0

b
by

nb

0 = (00 · · ·0)(11 · · ·1), nb

vk
= (0vk2 · · ·vkc(b))(1v

∗
k2 · · ·v

∗
kc(b)),

where v∗kl = 1⊕vkl. LetMGb
be an S

c(b)−1
2 -invariant set of moves in F0

b
. ThenMGb

is a

minimal S
c(b)−1
2 -invariant set of moves that connects F0

b
if and only if the representative

moves of the S
c(b)−1
2 -orbits in MGb

are expressed by zb
vk

= nb

0 − nb

vk
, k = 2, . . . , c(b).

Hence κ(b) = c(b)− 1.

Proof. Suppose that MGb
is a minimal S

c(b)−1
2 -invariant set of moves that connects

Fb and thatMGb
includes κ(b) orbits as S

c(b)−1
2 (zb1 ), . . . , S

c(b)−1
2 (zb

κ(b)), where

zbk = nb

0 − nb

k , nb

k = (0ik2 · · · ikc(b))(1i
∗
k2 · · · i

∗
kc(b))

for ikl ∈ Il, k = 1, . . . , κ(b), l = 2, . . . , c(b). Let gk ∈ S
c(b)−1
2 satisfy gk(nb

0 ) = nb

k for
k = 1, . . . , κ(b). We write gk = (gk2, . . . , gkc(b)), gkl ∈ S2 for l = 2, . . . , c(b). Let Hb =

{g1, . . . , gκ(b)} ⊂ S
c(b)−1
2 be a subset of S

c(b)−1
2 . As mentioned above, F0

b
can be ex-

pressed as in (4.8). Hence for any n ∈ F0
b
there exists g ∈ S

c(b)−1
2 satisfying n= g(nb

0 ).
MGb

connects F0
b
if and only if there exists p≤ κ(b) such that

n= nb

0 − zbk1
− gk1(zbk2

)− · · · − gkp−1 ◦ · · · ◦ gk1(zbkp
)

and g = gkp ◦ · · · ◦ gk1 . Hence MGb
is a minimal S

c(b)−1
2 -invariant set of moves that

connects Fb if and only if Hb satisfies

∀g ∈ S
c(b)−1
2 ,∃p≤ κ(b),∃gk1 ∈Hb, . . . ,∃g

kp ∈Hb s.t. g = gkp ◦ · · · ◦ gk1 (4.9)

and no proper subset of Hb satisfies (4.9).
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Denote V0 = φ(Hb)⊂ V
c(b)−1. Then from Lemma 2, (4.9) is equivalent to

∀v ∈ V ,∃v2 ∈ V
0, . . . ,∃vp+1 ∈ V

0 s.t. v= v2 ⊕ · · · ⊕ vp+1. (4.10)

From the minimality of MGb
no proper subset of V0 satisfies (4.10). This implies that

V0 is a basis of Vc(b)−1 and hence κ(b) = c(b) − 1. If we define gk = φ−1(vk+1) for
k = 1, . . . , c(b) − 1, we have gkl(0) = vk+1,l and hence gk(nb

0 ) = nb

k = nb

vk+1
. Therefore

zbvk
, k = 2, . . . , c(b), are the representative moves of the S

c(b)−1
2 -orbits inMGb

.

Conversely suppose that the representative moves of MGb
are zbvk

, k = 2, . . . , c(b).

V0 satisfies (4.10) and no proper subset of V0 satisfies (4.10). Hence if we define gk =
φ−1(vk+1) and Hb = {g1, . . . , gc(b)−1}, Hb satisfies (4.9) and no proper subset of Hb

satisfies (4.9). Hence MGb
is a minimal S

c(b)−1
2 -invariant set of moves that connects

Fb. �

For example, we can set V0 = {v2, . . . ,vc(b)} as

v2 = (11 · · ·11), v3 = (01 · · ·11), . . . ,

vc(b)−1 = (00 · · ·011), vc(b) = (00 · · ·01),

and then the representative moves in a minimal G-invariant Markov basis are

z02 = (00 · · ·0)(11 · · ·1)− (011 · · ·11)(100 · · ·00),

z03 = (00 · · ·0)(11 · · ·1)− (001 · · ·11)(110 · · ·00),
(4.11)

...
...

...

z0c(b) = (00 · · ·0)(11 · · ·1)− (000 · · ·01)(111 · · ·10).

So far we have focused on Fb such that ∆̄b =∆= {1, . . . , c(b)} and G(∆̄b) is totally
disconnected. Now we consider a fiber for a general b of a general decomposable model.
Define ḡkl ∈G

Γl by

ḡkl(

|Γl|
︷ ︸︸ ︷

0 · · ·0) =

{
0 · · ·0, if vk+1 = 0,
1 · · ·1, if vk+1 = 1

(4.12)

for k = 1, . . . , c(b)− 1 and l= 2, . . . , c(b) and define gk ∈Gb by

gk(n) = (

|Γ1|
︷ ︸︸ ︷

0 · · ·0 ḡk2(iΓ2) · · · ḡkc(b)(iΓc(b)
)

|∆\∆̄b|
︷ ︸︸ ︷

0 · · ·0 )
(4.13)

× (

|Γ1|
︷ ︸︸ ︷

1 · · ·1 ḡk2(i
∗
Γ2
) · · · ḡkc(b)(i

∗
Γc(b)

)

|∆\∆̄b|
︷ ︸︸ ︷

0 · · ·0 ).

Denote nb

vk+1
= gk(nb

0 ) and zb
vk+1

= nb

0 − nb

vk+1
. Based on (4.7) and Theorem 5, we can

easily obtain the following result.
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Figure 5. The structure of minimal G2,2,2-invariant Markov bases for the complete indepen-
dence model of three-way contingency tables.

Theorem 6. MGb
is a minimal S

c(b)−1
2 -invariant set of moves that connects F0

b
if

and only if the representative moves of the S
c(b)−1
2 -orbits in MGb

are expressed as zbvk
,

k = 2, . . . , c(b). Hence κ(b) = c(b)− 1. Then

MG =
⋃

b∈B0
nd

c(b)
⋃

k=2

GI1,...,Im(zbk )

is a minimal GI1,...,Im -invariant Markov basis. Conversely, every minimal GI1,...,Im -
invariant Markov basis can be written in this form.

Example 3 (The complete independence model of three-way contingency ta-
bles). Define bt as in Figure 1 of Example 1. Then B0

nd = {b1,b2,b4,b6}. Figure 5
shows a structure ofMG for the complete independence model of 2× 2× 2 contingency
tables. The left half of the figure shows the structure ofMGbt

, bt ∈ B
0
nd.

c(b1) = 3 and hence κ(b1) = 2. If we set vb

1 = (10) and vb

2 = (01), we have

zb1
1 = (000)(111)− (010)(101), zb1

2 = (000)(111)− (001)(110).
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Figure 6. The clique tree with two endpoints.

The orbits S2
2(z

b1
1 ) and S2

2(z
b1
2 ) are expressed in dotted lines and solid lines, respectively,

in the figure.
c(bt) = 2 and κ(bt) = 1 for t = 2,4,6. There exists one orbit in MGbt

for t = 2,4,6.
Then from Theorem 6 a minimal G2,2,2-invariant Markov basis is expressed by

MG =G(zb1
1 ) ∪G(zb1

2 ) ∪G(zb2
1 )∪G(zb4

1 )∪G(zb6
1 ).

Next we consider a Dobra’s Markov basisMT from the viewpoint of invariance. Since
MT does not depend on the levels of the variables,MT is GI1,...,Im -invariant. Based on
the result of Theorem 5, we can show thatMT is not always a minimal invariant Markov
basis.

Theorem 7. MT is minimal invariant if and only if T has only two endpoints.

Proof. It suffices to show that the theorem holds for 2× · · · × 2 tables. Suppose that
T = (D,E) has more than two endpoints. Let D1, D2 and D3 be three of them. Then
they are boundary cliques. Suppose 1,2,3∈∆ are simply separated vertices in D1, D2

and D3, respectively. In the same way as the argument in the proof of Theorem 4, there
exist e, e′, e′′ ∈ E such that

D1,D2 ∈ Ve, D3 ∈ V ′
e ,

D2,D3 ∈ Ve′ , D1 ∈ V ′
e′ ,

D3,D1 ∈ Ve′′ , D2 ∈ V
′
e′′ .

Consider the moves for the fiber F0
b
for b such that ∆̄b = {1,2,3}. Define z5 and z6 by

z5 = n1 − n3, z6 = n2 −n4,

where n1, . . . ,n4 are defined in (4.6). Then we have

z1,z2 ∈M
T (Ve, V

′
e ), z3,z4 ∈M

T (Ve′ , V
′
e′), z5,z6 ∈M

T (Ve′′ , V
′
e′′ ).

We note that {z1,z2}, {z3,z4} and {z5,z6} are S2
2 -orbits in MT

b
. Since κ(b) = 2, MT

is not minimal invariant.
Suppose that T has only two endpoints. Then T is expressed as in Figure 6. Let

Γ1(b), . . . ,Γc(b)(b) be the c(b) connected components of G(∆̄b). Suppose that δl ∈ Γl(b).
The structure of F0

b
is equivalent to the structure of F0

b′ such that ∆̄b′ = {δ1, . . . , δc(b)−1}
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and G(∆̄b′) is totally disconnected. So we restrict our consideration to such a fiber.
Denote by F0

b′ the representative fiber for b′. Let

Mb′ = {n− n′ | n,n′ ∈ F0
b′ ,n 6= n′}

denote the set of all moves in F0
b′ . Without loss of generality we can assume that δl ∈

Dπ(l), where π(1)< · · ·< π(c(b′)). Define el = (Dl−1,Dl) ∈ E , Sl =Dl−1∩Dl, Vl = Vel \Sl

and V ′
l = V ′

el
\ Sl for l= 2, . . . , c(b′). Then the moves inMT (Vl, V

′
l ) are expressed by

z= (iVl
, iV ′

l
, iSl

)(jVl
, jV ′

l
, iSl

)− (iVl
, jV ′

l
, iSl

)(jVl
, iV ′

l
, iSl

),

iVl
, jVl
∈ IVl

, iV ′

l
, jV ′

l
∈ IV ′

l
, iSl
∈ ISl

.

If Vel ∩∆̄b′ =∅ or V ′
el
∩∆̄b′ =∅, then we haveMT (Vel , V

′
el
)∩Mb′ =∅. If Vel ∩∆̄b′ 6=∅

and V ′
el
∩ ∆̄b′ 6=∅, then there exists 2≤ k(el)≤ c(b′) satisfying δk ∈ Vl for all k < k(el)

and δk ∈ V ′
l for all k ≥ k(el). Then

MT (Vel , V
′
el
)∩Mb′ = S

c(b)−1
2 (z0k(el)),

where z0
k(el)

is defined as in (4.11). Hence we have

MT
b′ =

⋃

el∈E

MT (Vel , V
′
el
)∩Mb′ =

c(b′)
⋃

k=2

S
c(b)−1
2 (z0k),

which includes c(b′) − 1 orbits for all b′ ∈ B0
nd. Hence MT is minimal GI1,...,Im -

invariant. �

Example 4 (The complete independence model of four-way contingency ta-
bles). As an example we consider the 2 × 2 × 2 × 2 complete independence model
D = {Dl = {l}, l = 1, . . . ,4}. Both T 1 and T 2 in Figure 7 are clique trees for D. From

Theorem 7, MT 1

is a minimal S3
2 -invariant Markov basis. Consider the representa-

tive fiber F0
b

such that ∆̄b = {1,2,3}. For j = 1,2, denote the two induced subtrees

of T j obtained by removing the edge el by T j
el

and T j
el

′
. Figure 8 shows T 1

el
, T 1

el

′
and

MT 1

(Vel , V
′
el
) ∩Mb. If we remove e3 from T 1, 1, 2 and 3 are still connected and hence

MT 1

(Ve3 , V
′
e3
)∩Mb =∅. ThereforeMT 1

b
includes κ(b) = 2 orbits.

On the other hand, since T 2 has three endpoints,MT 2

is not a minimal S3
2 -invariant

Markov basis. Figure 9 shows T 2
el
, T 2

el

′
andMT 2

(Vel , V
′
el
)∩Mb. We can see thatMT 2

b
in-

cludes three orbits. As seen from this example, in general the minimality ofMT depends
on clique trees T .

Example 5. We consider the model defined by the chordal graph in Figure 10. The
clique tree of this graph is uniquely determined by T 2 in Figure 7. As seen from this
example, there exist decomposable models such thatMT for every clique tree T is not
minimal GI1,...,Im -invariant.
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Figure 7. Clique trees for the 4-way complete independence model.

4.3. The relation between minimal and minimal invariant

Markov bases

From a practical point of view a GI1,...,Im -invariant Markov basis is useful because its
representative moves give the most concise expression of a Markov basis. On the other
hand, a minimal Markov basis is also important because the number of moves contained
in it is minimum among Markov bases. Here we consider the relation between a minimal
and a minimal GI1,...,Im -invariantMarkov basis and give an algorithm to obtain a minimal
Markov basis from representative moves of a minimal GI1,...,Im -invariant Markov basis.
As mentioned in the previous section, the set of Gb-orbits in a minimal Gb-

invariant set, MGb
, of moves that connects F0

b
has one-to-one correspondence to

Figure 8. The structure of MT
1

b .
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Figure 9. The structure of MT
2

b .

Figure 10. A chordal graph whose clique tree is uniquely determined.
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a basis V0 of Vc(b)−1. Define ḡkl ∈ GΓl
and gk ∈ Gb as in (4.12) and (4.13). Let

Hb = {g1, . . . , gc(b)−1} ⊂ Gb. Now we generate a set of moves M∗
b

in Fb by the fol-
lowing algorithm.

Algorithm 1.
Input: Fb, Hb = {g1, . . . , gc(b)−1}
Output:M∗

b

begin
M∗

b
←∅;

Choose any element n1 in Fb;
for k = 2 to c(b) do
begin

for l= 1 to 2k−2 do
begin

nl+2k−2 := gk−1(nl);
zl+2k−2 := nl − nl+2k−2 ;
M∗

b
←M∗

b
∪ {zl+2k−2};

end
end
returnM∗

b
;

end.

Theorem 8. M∗
b
generated by Algorithm 1 is a minimal set of moves that connects Fb.

Proof. Since |M∗
b
|= 20+21+ · · ·+2c(b)−1 = 2c(b)−1−1, it suffices to show that nl 6= nl′

for l 6= l′. Suppose that there exist l and l′, l 6= l′, such that nl = nl′ and nl, nl′ are
expressed by

nl = gkp ◦ · · · ◦ gk1(n1), nl′ = gk
′

p′ ◦ · · · ◦ gk
′

1(n1),

where k1 < k2 < · · ·< kp ≤ c(b)− 1 and k′1 < k′2 < · · ·< k′p′ ≤ c(b)− 1. Without loss of
generality we can assume p < p′. Then we have

gkp ◦ · · · ◦ gk1 = gk
′

p′ ◦ · · · ◦ gk
′

1 (4.14)

and there exists l≤ p such that kl 6= k′l. From Lemma 2 (4.14) is equivalent to

vk1 ⊕ · · · ⊕ vkp
= vk′

1
⊕ · · · ⊕ vk′

p′
,

which contradicts that V0 is a basis of Vc(b)−1. Hence we have nl 6= nl′ for l 6= l′. �

From (4.2) we obtain the following result.

Corollary 3. M∗ =
⋃

b∈Bnd
M∗

b
is a minimal Markov basis.
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Figure 11. MGb
and M∗

b generated by Algorithm 1.

Example 6 (The complete independence model of a four-way contingency ta-
ble). We consider the same fiber as in Example 2. Define V0 = {v2,v3,v4} by v2 = (100),
v3 = (010) and v4 = (001). Figure 11 shows MGb

and M∗
b
generated by Algorithm 1

with n1 = (0000)(1111).

5. Gröbner bases for decomposable models

So far we have been discussing Markov bases. In this section we briefly discuss Gröbner
bases. For decomposable models, Theorem 4.17 of Hoşten and Sullivant (2002) gives a
recursive method for determining the term order and the corresponding Gröbner basis
consisting of primitive moves only. It gives a Gröbner basis version of Dobra’s Markov
basis in (4.5). In Theorem 4 we saw that Dobra’s construction gives a minimal Markov
basis only in a special case. The same phenomenon can be observed with respect to
the reducedness of the Gröbner basis if we simply apply Theorem 4.17 of Hoşten and
Sullivant recursively, that is, the operation of Theorem 4.17 of Hoşten and Sullivant does
not preserve reducedness in general. Here we are interested in an explicit description
of appropriate term order and the reduced Gröbner basis for decomposable models. We
prove that for decomposable models, there exists a term order such that the reduced
Gröbner basis is explicitly described and, furthermore, it is minimal as a Markov basis.
In obtaining a nice Gröbner basis, the term order has to be carefully chosen. For

example, consider the simple case of 3 × 3 two-way contingency tables with fixed row
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sums and column sums. Proposition 5.4 of Sturmfels (1996) shows that the set of nine
primitive moves of the form

±
+1 −1
−1 +1

constitute a reduced Gröbner basis when the cells are lexicographically ordered and the
term order is chosen to be the reverse lexicographic term order. However, if we order the
nine cells as

1 8 6

4 2 9

7 5 3

and use the lexicographic order, then the reduced Gröbner contains the following degree
three move

0 −1 +1

+1 0 −1

−1 +1 0

in addition to the nine primitive moves. This example shows that the existence of a
reduced Gröbner basis consisting of primitive moves depends on the choice of a term
order.
We need several steps in constructing a nice term order for a decomposable model of

an m-way contingency table. First, we order m variables. Choose a boundary clique of
the chordal graph corresponding to the decomposable model and order the variables in
the boundary cliques as the lowest variables. Then remove the boundary clique from the
chordal graph, choose a boundary clique from the smaller graph and order the variables
from the boundary clique as the next lowest variables. By recursively removing boundary
cliques we obtain an ordering of variables. The resulting order is a perfect elimination
scheme but has a stronger property. Second, given the order of the variables, we order
the cells of an m-way contingency table lexicographically. Finally, as the term order ≻
we use the reverse lexicographic term order.
Let Bnd as in (4.1). In each fiber Fb, b ∈ Bnd, there exists the lowest element n∗

b
with

respect to the above term order ≻. Define

MGB =
⋃

b∈Bnd

⋃

n∈Fb

n 6=n∗

b

{n− n∗
b
}.

Then we have the following theorem.

Theorem 9. MGB is the reduced Gröbner basis and it is minimal as a Markov basis.



Minimal Markov bases of decomposable models 233

We omit the details of the proof. By generalizing the proof of Proposition 5.4 of
Sturmfels (1996) we can show that MGB is indeed a Gröbner basis. Reducedness is
obvious. Minimality is also obvious from Theorem 3.

6. Concluding remarks

In this paper we investigated the structure of degree two fibers of a decomposable model
and clarified the structure of minimal Markov bases and minimal invariant Markov bases.
We have also shown that decomposable models possess a Gröbner basis that is at the
same time a minimal Markov basis.
For future research it is important to investigate structures of degree three fibers, degree

four fibers, etc. In Takemura and Aoki (2004) we gave a characterization of minimal
Markov bases. It shows that minimal Markov bases can be constructed “from below”,
that is, combining moves from fibers of degree 1,2,3, . . . . Although at the moment the
construction cannot be implemented as an algorithm, it is important to study fibers of low
degrees. We see that the study of degree two fibers in this paper led to some interesting
results. As another example, in Aoki and Takemura (2009) we found some interesting
degree three fibers in connection to experimental design with three-level factors.
As mentioned in the Introduction, the results obtained in this paper will provide in-

sights to some practical models such as subtable sum models (Hara et al. (2009)), models
for contingency tables with structural zeros (Aoki and Takemura (2005); Rapallo (2006))
and Rasch models (e.g., Chen and Small (2005); Zhu et al. (1998); Basturk (2008)) ob-
tained by imposing some constraints on decomposable models. We will present results
along this line in a forthcoming manuscript (Hara and Takemura (2009)).
It is of interest to study effects of structural zeros and observational zeros to Markov

bases. In this respect in Hara et al. (2009) we have shown that a Markov basis for two-
way contingency tables with structural zeros can be obtained as a subset of a Markov
basis for subtable sum models, where the subtable sum happens to be an observational
zero.
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