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THE PENALIZED PROFILE SAMPLER
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The penalized profile sampler for semiparametric inference is an

extension of the profile sampler method [8] obtained by profiling a

penalized log-likelihood. The idea is to base inference on the pos-

terior distribution obtained by multiplying a profiled penalized log-

likelihood by a prior for the parametric component, where the pro-

filing and penalization are applied to the nuisance parameter. Be-

cause the prior is not applied to the full likelihood, the method is not

strictly Bayesian. A benefit of this approximately Bayesian method

is that it circumvents the need to put a prior on the possibly infinite-

dimensional nuisance components of the model. We investigate the

first and second order frequentist performance of the penalized pro-

file sampler, and demonstrate that the accuracy of the procedure can

be adjusted by the size of the assigned smoothing parameter. The

theoretical validity of the procedure is illustrated for two examples:

a partly linear model with normal error for current status data and

a semiparametric logistic regression model. As far as we are aware,

there are no other methods of inference in this context known to have

second order frequentist validity.
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2 G. CHENG AND M. R. KOSOROK

1. Introduction. Semiparametric models are statistical models indexed

by both a finite dimensional parameter of interest θ and an infinite dimen-

sional nuisance parameter η. The profile likelihood is typically defined as

pln(θ) = sup
η∈H

likn(θ, η),

where likn(θ, η) is the likelihood of the semiparametric model given n ob-

servations and H is the parameter space for η. We also define

η̂θ = argmaxη∈Hlikn(θ, η).

The convergence rate of the nuisance parameter η is the order of d(η̂θ̃n
, η0),

where d(·, ·) is some metric on η, θ̃n is any sequence satisfying θ̃n = θ0+oP (1),

and η0 is the true value of η. Typically,

d(η̂θ̃n
, η0) = OP (‖θ̃n − θ0‖ + n−r),(1)

where ‖ · ‖ is the Euclidean norm and r > 1/4. Of course, a smaller value of

r leads to a slower convergence rate of the nuisance parameter. For instance,

the nuisance parameter in the Cox proportional hazards model with right

censored data, the cumulative hazard function, has the parametric rate, i.e.,

r = 1/2. If current status data is applied to the Cox model instead, then the

convergence rate will be slower, with r = 1/3, due to the loss of information

provided by this kind of data.

The profile sampler is the procedure of sampling from the posterior of the

profile likelihood in order to estimate and draw inference on the parametric

component θ in a semiparametric model, where the profiling is done over the

possibly infinite-dimensional nuisance parameter η. [8] show that the profile

sampler gives a first order correct approximation to the maximum likelihood
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THE PENALIZED PROFILE SAMPLER 3

estimator θ̂n and consistent estimation of the efficient Fisher information for

θ even when the nuisance parameter is not estimable at the
√

n rate. Another

Bayesian procedure employed to do semiparametric estimation is considered

in [16] who study the marginal semiparametric posterior distribution for a

parameter of interest. In particular, [16] show that marginal semiparametric

posterior distributions are asymptotically normal and centered at the corre-

sponding maximum likelihood estimates or posterior means, with covariance

matrix equal to the inverse of the Fisher information. Unfortunately, this

fully Bayesian method requires specification of a prior on η, which is quite

challenging since for some models there is no direct extension of the concept

of a Lebesgue dominating measure for the infinite-dimensional parameter set

involved [7]. The advantages of the profile sampler for estimating θ compared

to other methods is discussed extensively in [2], [3] and [8].

In many semiparametric models involving a smooth nuisance parameter,

it is often convenient and beneficial to perform estimation using penaliza-

tion. One motivation for this is that, in the absence of any restrictions on

the form of the function η, maximum likelihood estimation for some semi-

parametric models leads to over-fitting. Seminal applications of penalized

maximum likelihood estimation include estimation of a probability density

function in [17] and nonparametric linear regression in [18]. Note that penal-

ized likelihood is a special case of penalized quasi-likelihood studied in [12].

Under certain reasonable regularity conditions, penalized semiparametric

log-likelihood estimation can yield fully efficient estimates for θ (see, for ex-

ample, [12]). As far as we are aware, the only general procedure for inference

for θ in this context known to be theoretically valid is a weighted bootstrap
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4 G. CHENG AND M. R. KOSOROK

with bounded random weights (see [10]). It is even unclear whether the

usual nonparametric bootstrap will work in this context when the nuisance

parameter has a convergence rate r < 1/2.

In contrast, [2] and [3] have shown that the profile sampler procedure with-

out penalization can essentially yield second order frequentist valid inference

for θ in semiparametric models, where the estimation accuracy is dependent

on the convergence rate of the nuisance parameter. In other words, a faster

convergence rate of the nuisance parameters can yield more precise frequen-

tist inference for θ. These second order results are verified in [2] and [3]

for several examples, including the Cox model for both right censored and

current status data, the proportional odds model, case-control studies with

missing covariates, and the partly linear normal model. The convergence

rates for these models range from the parametric to the cubic. The work in

[3] has shown clearly that the accuracy of the inference for θ based on the

profile sampler method is intrinsically determined by the semiparametric

model specifications through its entropy number.

The purpose of this paper is to ask the somewhat natural question: does

sampling from a profiled penalized log-likelihood (which process we refer

hereafter to as the penalized profile sampler) yield first and even second

order accurate frequentist inference? The conclusion of this paper is that

the answer is yes and, moreover, the accuracy of the inference depends in a

fairly simple way on the size of the smoothing parameter.

The unknown parameters in the semiparametric models we study in this

paper includes θ, which we assume belongs to some compact set Θ ⊂ R
d,

and η, which we assume to be a function in the Sobolev class of functions
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THE PENALIZED PROFILE SAMPLER 5

supported on some compact set on the real line, whose k-th derivative exists

and is absolutely continuous with J(η) < ∞, where

J2(η) =

∫

Z
(η(k)(z))2dz.

Here k is a fixed, positive integer and η(j) is the j-th derivative of η with

respect to z. Obviously J2(η) is some measurement of complexity of η. We

denote Hk as the Sobolev function class with degree k. The penalized log-

likelihood in this context is:

log likλn(θ, η) = log lik(θ, η) − λ2
nJ2(η),(2)

where log lik(θ, η) ≡ Pnℓθ,η(X), ℓθ,η(X) is the log-likelihood of the single ob-

servation X, and λn is a smoothing parameter, possibly dependent on data.

In practice, λn can be obtained by cross-validation [22] or by inspecting the

various curves for different values of λn. The penalized maximum likelihood

estimators θ̂n and η̂n depend on the choice of the smoothing parameter λn.

Consequently we use the notation θ̂λn and η̂λn for the remainder of this pa-

per to denote the estimators obtained from maximizing (2). In particular, a

larger smoothing parameter usually leads to a less rough penalized estimator

of η0.

For the purpose of establishing first order accuracy of inference for θ

based on the penalized profile sampler, we assume that the bounds for the

smoothing parameter are in the form below:

λn = oP (n−1/4) and λ−1
n = OP (nk/(2k+1)).(3)

The condition (3) is assumed to hold throughout this paper. One way to

ensure (3) in practice is simply to set λn = n−k/(2k+1). Or we can just choose
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6 G. CHENG AND M. R. KOSOROK

λn = n−1/3 which is independent of k. It turns out that the upper bound

guarantees that θ̂λn is
√

n-consistent, while the lower bound controls the

penalized nuisance parameter estimator convergence rate. Another approach

to controlling estimators is to use sieve estimates with assumptions on the

derivatives (see [5]). We will not pursue this further here.

The log-profile penalized likelihood is defined as follows:

log plλn(θ) = log lik(θ, η̂θ,λn) − λ2
nJ2(η̂θ,λn),(4)

where η̂θ,λn is argmaxη∈Hk
log likλn(θ, η) for fixed θ and λn. The penalized

profile sampler is just the procedure of sampling from the posterior distri-

bution of plλn(θ) by assigning a prior on θ. By analyzing the corresponding

MCMC chain from the frequentist’s point of view, our paper obtains the

following conclusions:

1 Distribution Approximation: The posterior distribution with respect to

plλn(θ) can be approximated by the normal distribution with mean the

maximum penalized likelihood estimator of θ and variance the inverse

of the efficient information matrix, with error OP (n1/2λ2
n);

2 Moment Approximation: The maximum penalized likelihood estimator

of θ can be approximated by the mean of the MCMC chain with error

OP (λ2
n). The efficient information matrix can be approximated by the

inverse of the variance of the MCMC chain with error OP (n1/2λ2
n);

3 Confidence Interval Approximation: An exact frequentist confidence

interval of Wald’s type for θ can be estimated by the credible set

obtained from the MCMC chain with error OP (λ2
n).

Obviously, given any smoothing parameter satisfying the upper bound

imsart-aos ver. 2006/01/04 file: penalized.tex date: February 2, 2008



THE PENALIZED PROFILE SAMPLER 7

in (3), the penalized profile sampler can yield first order frequentist valid

inference for θ, similar as to what was shown for the profile sampler in

[8]. Moreover, the above conclusions are actually second order frequentist

valid results, whose approximation accuracy is directly controlled by the

smoothing parameter. Note that the corresponding results for the usual

(non-penalized) profile sampler with nuisance parameter convergence rate r

in [3] are obtained by replacing in the above OP (n1/2λ2
n) with OP (n−1/2 ∨

n−r+1/2) and OP (λ2
n) with OP (n−1 ∨ n−r), for all respective occur where r

is as defined in (1).

Our results are the first higher order frequentist inference results for pe-

nalized semiparametric estimation. The layout of the article is as follows.

The next section, section 2, introduces the two main examples we will be

using for illustration: partly linear regression for current status data and

semiparametric logistic regression. Some background is given in section 3,

including the concept of a least favorable submodel as well as some nota-

tions and the main model assumptions. In section 4, some preliminary results

are developed, including three rather different theorems concerning the con-

vergence rates of the penalized nuisance parameters and the order of the

estimated penalty term under different conditions. The corresponding rates

for the two featured examples are also calculated in this section. The main

results and implications are discussed in section 5, and all remaining model

assumptions are verified for the examples in section 6. A brief discussion of

future work is given in section 7. We postpone all technical tools and proofs

to the last section, section 8.

2. Examples.
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8 G. CHENG AND M. R. KOSOROK

2.1. Partly Linear Normal Model with Current Status Data. In this ex-

ample, we study the partly linear regression model with normal residue error.

The continuous outcome Y , conditional on the covariates (U, V ) ∈ R
d × R,

is modeled as

Y = θT U + f(V ) + ǫ,(5)

where f is an unknown smooth function, and ǫ ∼ N(0, σ2) with finite vari-

ance σ2. For simplicity, we assume for the rest of the paper that σ = 1. The

theory we propose also works when σ is unknown, but the added complexity

would detract from the main issues. We also assume that only the current

status of response Y is observed at a random censoring time C ∈ R. In

other words, we observe X = (C,∆, U, V ), where indicator ∆ = 1{Y ≤ C}.

Current status data may occur due to study design or measurement limita-

tions. Examples of such data arise in several fields, including demography,

epidemiology and econometrics. For simplicity of exposition, θ is assumed

to be one dimensional.

Under the model (5) and given that the joint distribution for (C,U, V )

does not involve parameters (θ, f), the log-likelihood for a single observation

at X = x ≡ (c, δ, u, v) is

loglikθ,f (x) = δ log {Φ (c − θu − f(v))}

+(1 − δ) log {1 − Φ (c − θu − f(v))} ,(6)

where Φ is the standard normal distribution. The parameter of interest, θ,

is assumed to belong to some compact set in R
1. The nuisance parameter

is the function f , which belongs to the Sobolev function class of degree k.

We further make the following assumptions on this model. We assume that
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THE PENALIZED PROFILE SAMPLER 9

(Y,C) is independent given (U, V ). The covariates (U, V ) are assumed to

belong to some compact set, and the support for random censoring time C

is an interval [lc, uc], where −∞ < lc < uc < ∞. In addition, EV ar(U |V )

is strictly positive and Ef(V ) = 0. The first order asymptotic behaviors of

the penalized log-likelihood estimates of a slightly more general version of

this model have been extensively studied in [9].

2.2. Semiparametric Logistic Regression. Let X1 = (Y1,W1, Z1), X2 =

(Y2,W2, Z2), . . . be independent copies of X = (Y,W,Z), where Y is a di-

chotomous variable with conditional expectation E(Y |W,Z) = F (θT W +

η(Z)). F (u) is the logistic distribution defined as eu/(eu +1). Obviously the

likelihood for a single observation is of the following form:

pθ,η(x) = F (θT w + η(z))y(1 − F (θTw + η(z)))1−yf (W,Z)(w, z).(7)

This example is a special case of quasi-likelihood in partly linear models

when the conditional variance of response Y is taken to have some quadratic

form of the conditional mean of Y . In the absence of any restrictions on the

form of the function η, the maximum likelihood of this simple model often

leads to over-fitting. Hence [4] propose maximizing instead the penalized

likelihood of the form log lik(θ, η) − λ2
nJ2(η); and [12] studied the asymp-

totic properties of the maximum penalized likelihood estimators for θ and

η. For simplicity, we will restrict ourselves to the case where Θ ⊂ R
1 and

(W,Z) have bounded support, say [0, 1]2. To ensure the identifiability of the

parameters, we assume that EV ar(W |Z) is positive and that the support

of Z contains at least k distinct points in [0, 1].

Remark 1. Another interesting potential example we may apply the
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10 G. CHENG AND M. R. KOSOROK

penalized profile sampler method to is the classic proportional hazards model

with current status data by penalizing the cumulative hazard function with its

Sobolev norm. There are two motivations for us to penalize the cumulative

hazard function in the Cox model. One is that the estimated step functions

from the unpenalized estimation cannot be used easily for other estimation

or inference purposes. Another issue with the unpenalized approach is that

without making stronger continuity assumptions, we cannot achieve uniform

consistency even on a compact set [9]. The asymptotic properties of the

corresponding penalized M-estimators have been studied in [11].

3. Preliminaries. In this section, we present some necessary prelimi-

nary material concerning least favorable submodels, general notational con-

ventions for the paper, and an enumeration of the main assumptions.

3.1. Least favorable submodels. In this subsection, we briefly review the

concept of a least favorable submodel. A submodel t 7→ pt,ηt is defined to be

least favorable at (θ, η) if ℓ̃θ,η = ∂/∂t log pt,ηt , given t = θ, where ℓ̃θ,η is the

efficient score function for θ. The efficient score function for θ can be viewed

as the projection of the score function for θ onto the tangent space of η.

The inverse of its variance is exactly the efficient information matrix Ĩθ,η.

We abbreviate hereafter ℓ̃θ0,η0 and Ĩθ0,η0 with ℓ̃0 and Ĩ0, respectively. The

“direction” along which ηt approaches η in the least favorable submodel is

called the least favorable direction. An insightful review about least favorable

submodels and efficient score functions can be found in Chapter 3 of [6]. By

the above construction of the least favorable submodel, log plλn(θ) can be
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THE PENALIZED PROFILE SAMPLER 11

rewritten in the following form:

log plλn(θ) = ℓ(θ, θ, η̂θ,λn) − λ2
nJ2(ηθ(θ, η̂θ,λn)),(8)

where ℓ(t, θ, η)(x) = log lik(t, ηt(θ, η))(x), t 7→ ηt(θ, η) is a general map from

the neighborhood of θ into the parameter set for η, with ηθ(θ, η) = η. The

concrete forms of (8) will depend on the situation.

3.2. Notation. We present in this subsection some notation that will be

used throughout the paper. The derivatives of the function ℓ(t, θ, η) are with

respect to its first argument, t. For the derivatives relative to the other two

arguments θ and η, we use the following shortened notation: ℓθ(t, θ, η) indi-

cates the first derivative of ℓ(t, θ, η) with respect to θ. Similarly, ℓt,θ(t, θ, η)

denotes the derivative of ℓ̇(t, θ, η) with respect to θ. Also, ℓt,t(θ) and ℓt,θ(η)

indicate the maps θ 7→ ℓ̈(t, θ, η) and η 7→ ℓt,θ(t, θ, η), respectively. For brevity,

we denote ℓ̇0 = ℓ̇(θ0, θ0, η0), ℓ̈0 = ℓ̈(θ0, θ0, η0) and ℓ
(3)
0 = ℓ(3)(θ0, θ0, η0), where

θ0, η0 are the true values of θ and η. Of course, we can write ℓ̃(X) as ℓ̇0(X).

‖ · ‖ and ‖ · ‖2 indicate the Euclidean norm and L2 norm, respectively. The

notations >∼ and <∼ mean greater than, or smaller than, up to a universal

constant. The symbols Pn and Gn ≡ √
n(Pn −P ) are used for the empirical

distribution and the empirical processes of the observations, respectively.

3.3. Main Assumptions. We now make the following three classes of as-

sumptions: Rate assumptions (R1) for the penalized nuisance parameter and

the estimated penalty term; Smoothness assumptions (S1-S2) and Empirical

processes assumptions (E1) for ℓ(t, θ, η) and its related derivatives.
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12 G. CHENG AND M. R. KOSOROK

R1 : Assume:

d(η̂θ̃n,λn
, η0) = OP (λn + ‖θ̃n − θ0‖)(9)

and

λnJ(η̂θ̃n,λn
) = OP (λn + ‖θ̃n − θ0‖).(10)

S1 : The maps

(t, θ, η) 7→ ∂l+m

∂tl∂θm
ℓ(t, θ, η)(11)

have integrable envelope functions in L1(P ) in some neighborhood of

(θ0, θ0, η0), for (l,m) = (0, 0), (1, 0), (2, 0), (3, 0), (1, 1), (1, 2), (2, 1).

S2 : Assume:

P ℓ̈(θ0, θ0, η) − P ℓ̈(θ0, θ0, η0) = O(d(η, η0)),(12)

Pℓt,θ(θ0, θ0, η) − Pℓt,θ(θ0, θ0, η0) = O(d(η, η0)),(13)

P ℓ̇(θ0, θ0, η) = O(d2(η, η0)),(14)

for all η in some neighborhood of η0.

E1 : For all random sequences θ̃n = θ̂n + oP (1) and θ̄n = θ0 + oP (1), we

have

Gn(ℓ̇(θ0, θ0, η̂θ̃n,λn
) − ℓ̇0) = OP (n

1
4k+2 (λn + ‖θ̃n − θ0‖)),(15)

Gn(ℓ̈(θ0, θ̃n, η̂θ̃n,λn
)) = OP (1),(16)

Gn(ℓt,θ(θ0, θ̄n, η̂θ̃n,λn
)) = OP (1),(17)

(Pn − P )ℓ(3)(θ̄n, θ̃n, η̂θ̃n,λn
) = oP (1).(18)

Assumption R1 implicitly assumes that we have a metric or topology de-

fined on the set of possible values of the nuisance parameter η. The form of
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THE PENALIZED PROFILE SAMPLER 13

d(η, η0) may vary for different situations and does not need to be specified in

this subsection beyond the given conditions. (9) implies that η̂θ̃n,λn
is consis-

tent for η0 as θ̃n → θ0 in probability. Additionally, from (10) we know that

the smoothing parameter λn plays a role in determining the complexity de-

gree of the estimated nuisance parameter. (10) implies that J(η̂λn) = OP (1)

if the θ̂λn is asymptotically normal, which has been shown in (37). Note that

J(η̂θ̃n,0) ≥ J(η̂θ̃n,λn
), where η̂θ,0 = η̂θ ≡ argmaxη∈H log lik(θ, η) for a fixed

θ, based on the inequality that log likλn(θ̃n, η̂θ̃n,0) ≤ log likλn(θ̃n, η̂θ̃n,λn
).

Clearly, the assumptions S1 and S2 are separately the smoothness condi-

tions for the Euclidean parameters (t, θ) and the infinite dimensional nui-

sance parameter η. The boundedness of the Fréchet derivatives of the maps

η 7→ ℓ̈(θ0, θ0, η) and η 7→ ℓt,θ(θ0, θ0, η) ensures the validity of conditions

(12) and (13). Based on the discussions in section 2 of [3], under the given

regularity conditions, it suffices to show (14) if the map η 7→ ℓ̇(θ0, θ0, η) is

Fréchet differentiable and the map η 7→ lik(θ0, η) is second order Fréchet

differentiable.

Condition (15) is concerned with the asymptotic equicontinuity of the

empirical process measure of ℓ̇(θ0, θ0, η) with η ranging around the neigh-

borhood of η0. It suffices to show (16) and (17) if Gn(ℓ̈(θ0, θ̃n, η̂θ̃n,λn
)− ℓ̈0) =

oP (1) and Gn(ℓt,θ(θ0, θ̄n, η̂θ̃n,λn
) − ℓt,θ(θ0, θ0, η0)) = oP (1), provided ℓ̈0 and

ℓt,θ(θ0, θ0, η0) are square integrable. Thus we will be able to use technical

tools T2 and T6 given in the appendix to show (15)–(17). For the verifica-

tion of (18), we need to make use of a Glivenko-Cantelli theorem for classes

of functions that change with n which is a modification of theorem 2.4.3 in

[21] and is explained in the appendix.
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14 G. CHENG AND M. R. KOSOROK

In principle, assumptions S1, S2 and E1 on the functions of the least

favorable submodel directly imply the following empirical no-bias conditions:

Pnℓ̇(θ0, θ̃n, η̂θ̃n,λn
) = Pnℓ̃0 + OP (λn + ‖θ̃n − θ0‖)2,(19)

Pnℓ̈(θ0, θ̃n, η̂θ̃n,λn
) = P ℓ̈0 + OP (λn + ‖θ̃n − θ0‖).(20)

The derivations of (19) and (20) are simply based on the regular Taylor

expansions around the true values. The detailed arguments can be found in

the proof of lemmas 1 and 2 in [3]. The two empirical no-bias conditions en-

sure that the penalized profile likelihood behaves like a penalized likelihood

in the parametric model asymptotically and therefore yields a second order

asymptotic expansion of the penalized profile log-likelihood.

4. The Penalized Convergence Rate. In the previous section, we

have imposed two assumptions about the convergence rates of the esti-

mated nuisance parameter and the order of the estimated penalty term, i.e.

(9) and (10). To compute the convergence rates, we present three different

theorems below which require different sets of conditions. These theorems

can be viewed as extension of general results on M-estimators to penalized

M-estimators, and are therefore of independent interest. We first state the

classical definitions for the covering number (entropy number) and bracket-

ing number (bracketing entropy number) for a class of functions.

Definition: Let A be a subset of a (pseudo-) metric space (L, d) of real-

valued functions. The δ-covering number N(δ,A, d) of A is the smallest N

for which there exist functions a1, . . . , aN in L, such that for each a ∈ A,

d(a, aj) ≤ δ for some j ∈ {1, . . . , N}. The δ-bracketing number NB(δ,A, d)

is the smallest N for which there exist pairs of functions {[aL
j , aU

j ]}N
j=1 ⊂ L,
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THE PENALIZED PROFILE SAMPLER 15

with d(aL
j , aU

j ) ≤ δ, j = 1, . . . , N , such that for each a ∈ A there is a

j ∈ {1, . . . , N} such that aL
j ≤ a ≤ aU

j . The δ-entropy number (δ-bracketing

entropy number) is defined as H(δ,A, d) = log N(δ,A, d) (HB(δ,A, d) =

log NB(δ,A, d)).

Before we present the first theorem, define

K =

{

ℓθ,η(X) − ℓ0(X)

1 + J(η)
: ‖θ − θ0‖ ≤ C1, ‖η − η0‖∞ ≤ C1, J(η) < ∞

}

,

for a known constant C1 < ∞:

Theorem 1. Assume conditions (21), (22), (23) and (24) below hold

for every θ ∈ Θn and η ∈ Vn:

HB(ǫ,K, L2(P )) <∼ ǫ−1/k,(21)

pθ,η/pθ,η0 is bounded away from zero and infinity,(22)

‖ℓθ,η − ℓ0‖2
<∼ ‖θ − θ0‖ + dθ(η, η0),(23)

P (ℓθ,η − ℓθ,η0)
<∼ − d2

θ(η, η0) + ‖θ − θ0‖2.(24)

Then we have

dθ̃n
(η̂θ̃n,λn

, η0) = OP (λn + ‖θ̃n − θ0‖),

λnJ(η̂θ̃n,λn
) = OP (λn + ‖θ̃n − θ0‖),

for (θ̃n, η̂θ̃n,λn
) satisfying P (θ̃n ∈ Θn, η̂θ̃n,λn

∈ Vn) → 1.

Condition (21) determines the order of the increments of the empirical

processes indexed by ℓθ,η. A detailed discussion about how to compute the

increments of the empirical processes can be found in chapter 5 of [19].

Condition (22) is equivalent to the condition that pθ,η is bounded away
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16 G. CHENG AND M. R. KOSOROK

from zero uniformly in x for (θ, η) ranging over Θn × Vn. Given that the

distance function dθ(η, η0) in (23) is just ‖pθ,η − p0‖2, (23) trivially holds

provided that condition (22) holds. For the verification of (24), we can do an

analysis as follows. The natural Taylor expansions of the criterion function

(θ, η) 7→ Pℓθ,η around the maximum point (θ0, η0) implies that P (ℓθ,η0 −

ℓθ0,η0)
>∼ − ‖θ − θ0‖2, and (46) implies that P (ℓθ,η − ℓ0) ≤ −

∫

(
√

pθ,η −
√

p0)
2dµ ≤ −‖pθ,η − p0‖2

2 given condition (22).

We now apply theorem 1 to derive the related convergence rates in the

partly linear model in corollary 1. However, we need to strengthen our pre-

vious assumptions to require the existence of a known M < ∞ such that

η ∈ HM
k , where HM

k = Hk ∩ {‖η‖∞ ≤ M} and that the density for the joint

distribution (U, V,C) is strictly positive and finite. The additional assump-

tions here guarantee condition (22). The following theorem 2 and theorem 3

can also be employed to derive the convergence rate of the non-penalized

estimated nuisance parameter by setting λn to zero. However, we would

need to assume that f ∈ {g : ‖g‖∞ + J(g) ≤ M̃} for some known M̃ when

applying these theorems. Thus we can argue that the the penalized method

enables a relaxation of the assumptions needed for the nuisance parameter.

Corollary 1. Under the above set-up for the partly linear normal

model with current status data, we have, for θ̃n = θ0 + oP (1),

‖f̂θ̃n,λn
− f0‖2 = OP (λn + ‖θ̃n − θ0‖),(25)

λnJ(f̂θ̃n,λn
) = OP (λn + ‖θ̃n − θ0‖).(26)

Moreover, if we also assume that f ∈ {g : ‖g‖∞ + J(g) ≤ M̃} for some
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THE PENALIZED PROFILE SAMPLER 17

known M̃ , then

‖f̂θ̃n
− f0‖2 = OP (n−k/(2k+1) + ‖θ̃n − θ0‖),(27)

provided condition (3) holds.

Remark 2. Corollary 1 implies that the convergence rate of the es-

timated nuisance parameter is slower than that of the the regular nuisance

parameter by comparing (25) and (27). This result is not surprising since

the slower rate is the trade off for the smoother nuisance parameter esti-

mator. However the advantage of the penalized profile sampler is that we

can control the convergence rate by assigning the smoothing parameter with

different rates. Corollary 1 also indicates that ‖f̂λn − f0‖2 = OP (λn) and

‖f̂n−f0‖2 = OP (n−k/(k+2)). Note that the convergence rate of the maximum

penalized likelihood estimator, OP (λn), is deemed as the optimal rate in [22].

Similar remarks also hold for corollary 2 below.

The boundedness condition (22) appears hard to achieve in some exam-

ples. Hence we propose theorem 2 below to relax this condition by choosing

the criterion function mθ,η = log[(pθ,η + pθ,η0)/2pθ,η0 ]. Obviously, mθ,η is

trivially bounded away from zero. It is also bounded above for (θ, η) around

the their true values if pθ,η0(x) is bounded away from zero uniformly in x and

pθ,η is bounded above. The first condition is satisfied if the map θ 7→ pθ,η0(x)

is continuous around θ0 and p0(x) is uniformly bounded away from zero. The

second condition is trivially satisfied in the semiparametric logistic regres-

sion model by the given form of the density. The boundedness of mθ,η thus

permits the application of lemma 1 below which is used to verify condition

(29) in the following theorem:
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18 G. CHENG AND M. R. KOSOROK

Theorem 2. Assume for any given θ ∈ Θn, η̂θ satisfies Pnmθ,η̂θ
≥

Pnmθ,η0 for given measurable functions x 7→ mθ,η(x). Assume conditions

(28) and (29) below hold for every θ ∈ Θn, every η ∈ Vn and every ǫ > 0:

P (mθ,η − mθ,η0)
<∼ − d2

θ(η, η0) + ‖θ − θ0‖2,(28)

E∗ sup
θ∈Θn,η∈Vn,‖θ−θ0‖<ǫ,dθ(η,η0)<ǫ

|Gn(mθ,η − mθ,η0)| <∼ φn(ǫ).(29)

Suppose that (29) is valid for functions φn such that δ 7→ φn(δ)/δα is de-

creasing for some α < 2 and sets Θn×Vn such that P (θ̃ ∈ Θn, η̂θ̃ ∈ Vn) → 1.

Then dθ̃(η̂θ̃, η0) ≤ O∗
P (δn + ‖θ̃ − θ0‖) for any sequence of positive numbers

δn such that φn(δn) ≤ √
nδ2

n for every n.

Lemma 1 below is presented to verify the modulus condition for the con-

tinuity of the empirical process in (29). Let Sδ = {x 7→ mθ,η(x)−mθ,η0(x) :

dθ(η, η0) < δ, ‖θ − θ0‖ < δ} and write

K(δ,Sδ , L2(P )) =

∫ δ

0

√

1 + HB(ǫ,Sδ, L2(P ))dǫ :(30)

Lemma 1. Suppose the functions (x, θ, η) 7→ mθ,η(x) are uniformly

bounded for (θ, η) ranging over a neighborhood of (θ0, η0) and that

P (mθ,η − mθ0,η0)
2 <∼ d2

θ(η, η0) + ‖θ − θ0‖2.

Then condition (29) is satisfied for any functions φn such that

φn(δ) ≥ K(δ,Sδ , L2(P ))

(

1 +
K(δ,Sδ , L2(P ))

δ2
√

n

)

Consequently, in the conclusion of the above theorem we may use K(δ,Sδ , L2(P ))

rather than φn(δ).
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Remark 3. Theorem 2 and lemma 1 are theorem 3.2 and lemma 3.3

in [14], respectively. We can apply theorem 2 to the penalized semiparametric

logistic regression model by including λ in θ, i.e. mθ,λ,η = mθ,η− 1
2λ2(J2(η)−

J2(η0)). This is accomplished in the following corollary. Note that we assume

that the uniform norm and Sobolev norm of η are bounded above with known

upper bounds when deriving (33) of the corollary, but this assumption is not

needed for (31) and (32).

Corollary 2. Under the above set-up for the semiparametric logistic

regression model, we have for λn satisfying condition (3) and any θ̃n
p→ θ0

that

‖η̂θ̃n,λn
− η0‖2 = OP (λn + ‖θ̃n − θ0‖),(31)

λnJ(η̂θ̃n,λn
) = OP (λn + ‖θ̃n − θ0‖).(32)

If we also assume that η ∈ {g : ‖g‖∞ +J(g) ≤ M̃} for some known M̃ , then

‖η̂θ̃n
− η0‖2 = OP (n−k/(2k+1) + ‖θ̃n − θ0‖).(33)

Remark 4. Corollary 1 and 2 imply that J(η̂λn) = OP (1) and J(f̂λn) =

OP (1), respectively. Thus the maximum likelihood estimators of the nuisance

parameters in the two examples of this paper are consistent in the uniform

norm, i.e. ‖η̂λn − η0‖∞ = oP (1) and ‖f̂λn − f0‖∞ = oP (1), since the se-

quences η̂n and f̂n consist of smooth functions defined on a compact set with

asymptotically bounded first-order derivatives.

The preceding two theorems imply that the convergence rate of the penal-

ized estimated nuisance parameter is affected by the assigned smoothness
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parameter. However, the next theorem shows that, under different condi-

tions, the above phenomena may not hold. Let

lλn
θ,η,h =

∂

∂t
|t=0 log likλn(θ, ηt) = Aθ,ηh − 2λ2

n

∫

h(k)η(k)dz,

V (θ, η)h = PAθ,ηh,

Vn(θ, η)h = PnAθ,ηh,

where ηt = η + th for h ∈ Hk and Aθ,η is the appropriate score op-

erator for the model. Note that ηt ∈ Hk for sufficiently small t. Obvi-

ously Pnlλn

θ̃n,η̂θ̃n,λn
,h

= 0 and V (θ0, η0)h = 0. We assume that the maps

h 7→ V (θ, η)h and h 7→ Vn(θ, η)h are uniformly bounded such that Vn

and V can be viewed as maps from the parameters set Θ×Hk into ℓ∞(Hk).

Further we require the following regularity conditions: For some C2 > 0,

{Aθ,ηh : ‖θ − θ0‖ < C2, dθ(η, η0) < C2, h ∈ Hk} is P -Donsker,(34)

sup
h∈Hk

P (Aθ,ηh − Aθ0,η0h)2 → 0, as θ → θ0 and η → η0.(35)

Theorem 3. Suppose that V (·, ·) : Θ × Hk 7→ ℓ∞(Hk) is Fréchet

differentiable at (θ0, η0) with derivative V̇ (·, ·) : R
d × linHk 7→ ℓ∞(Hk) such

that the map V̇ (0, ·) : linHk 7→ ℓ∞(Hk) is invertible with an inverse that is

continuous on its range. Furthermore, we assume that (34) and (35) hold.

Then

dθ̃n
(η̂θ̃n,λn

, η0) = OP (n−1/2 + ‖θ̃n − θ0‖ + λ2
nJ2(η̂θ̃n,λn

)),(36)

for θ̃n → θ0 and η̂θ̃n,λn
→ η0 in probability.

Remark 5. The preceding theorem is a variation of theorems used

in [13] and [20], among others, to prove the asymptotic normality of the
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maximum likelihood estimator (θ̂n, η̂n). If we can show that λnJ(η̂θ̃n,λn
) =

OP (λn+‖θ̃n−θ0‖) by some other means, then (36) implies that dθ̃n
(η̂θ̃n,λn

, η0) =

OP (n−1/2 + ‖θ̃n − θ0‖). This indicates that the smoothing effect of the pe-

nalized method does not occur, which may be due to some very smooth non-

penalized estimated nuisance parameter. The high degree of the smoothness

of the non-penalized estimated nuisance parameter can be deduced from its

fast convergence rate which equals the parametric rate in this instance.

5. Main Results and Implications. In this section we first present

second order asymptotic expansion of the log-profile penalized likelihood

which prepare us for deriving the main results about the higher order struc-

ture of the penalized profile sampler. The assumptions in section 3 and

condition (3) are assumed throughout.

Theorem 4. Given θ̃n = θ̂λn + oP (1), we have

√
n(θ̂λn − θ0) =

1√
n

n
∑

i=1

Ĩ−1
0 ℓ̃0(Xi) + OP (n1/2λ2

n),(37)

log plλn(θ̃n) = log plλn(θ̂λn) − n

2
(θ̃n − θ̂λn)T Ĩ0(θ̃n − θ̂λn)(38)

+ OP (gλn(‖θ̃n − θ̂λn‖)),

where gλn(w) = nw3 + nw2λn + nwλ2
n + n1/2λ2

n, provided the efficient infor-

mation Ĩ0 is positive definite.

Remark 6. The results in theorem 4 are useful in there own right

for inference about θ. (37) is a second higher order frequentist result in

penalized semiparametric estimation regarding the asymptotic linearity of

the maximum penalized likelihood estimator of θ.
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We now state the main results on the penalized posterior profile distri-

bution. A preliminary result, theorem 5 with corollary 3 below, shows that

the penalized posterior profile distribution is asymptotically close enough to

the distribution of a normal random variable with mean θ̂λn and variance

(nĨ0)
−1 with second order accuracy, which is controlled by the smoothing pa-

rameter. Similar conclusions also hold for the penalized posterior moments.

Another main result, theorem 6, shows that the penalized posterior pro-

file log-likelihood can be used to achieve second order accurate frequentist

inference for θ.

Let P̃ λn

θ|X̃ be the penalized posterior profile distribution of θ with respect

to the prior ρ(θ). Define

∆λn(θ) ≡ n−1{log plλn(θ) − log plλn(θ̂λn)}

= n−1(ℓn(θ, η̂θ,λn) − ℓn(θ̂λn , η̂λn)) − n−1λ2
n(J2(η̂θ,λn) − J2(η̂λn)).

Theorem 5. Assume that

∆λn(θ̃n) = oP (1) implies θ̃n = θ0 + oP (1),(39)

for every random
{

θ̃n

}

∈ Θ. If ρ(θ0) > 0 and ρ(·) has continuous and finite

first order derivative in some neighborhood of θ0, then we have, for any

−∞ < ξ < ∞,

sup
ξ∈Rd

∣

∣

∣P̃ λn

θ|X̃(
√

nĨ
1/2
0 (θ − θ̂λn) ≤ ξ) − Φd(ξ)

∣

∣

∣ = OP (n1/2λ2
n),(40)

where Φd(·) is the distribution of the d-dimensional standard normal random

variable.
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Corollary 3. Under the assumptions of theorem 5, we have that if

θ has finite second absolute moment, then

θ̂λn = Eλn

θ|X̃(θ) + OP (λ2
n),(41)

Ĩ0 = n−1(V arλn

θ|X̃(θ))−1 + OP (n1/2λ2
n),(42)

where Eλn

θ|X̃(θ) and V arλn

θ|X̃(θ) are the penalized posterior profile mean and

penalized posterior profile covariance matrix, respectively.

We now present another second order asymptotic frequentist property of

the penalized profile sampler in terms of quantiles. The α-th quantile of

the penalized posterior profile distribution, τnα, is defined as τnα = inf{ξ :

P̃ λn

θ|X̃(θ ≤ ξ) ≥ α}. Without loss of generality, P̃ λn

θ|X̃(θ ≤ τnα) = α. We can

also define κnα ≡ √
n(τnα − θ̂λn), i.e., P̃ λn

θ|X̃(
√

n(θ − θ̂λn) ≤ κnα) = α.

Theorem 6. Under the assumptions of theorem 5 and assuming that

ℓ̃0(X) has finite third moment with a nondegenerate distribution, then there

exists a κ̂nα based on the data such that P (
√

n(θ̂λn − θ0) ≤ κ̂nα) = α and

κ̂nα − κnα = OP (n1/2λ2
n) for each choice of κnα.

Remark 7. Theorem 6 ensures that there exists a unique α-th quan-

tile for θ up to OP (λ2
n) in the frequentist set-up for each fixed τnα. Note that

τnα is not unique if the dimension of θ is larger than one.

Remark 8. Theorem 5, corollary 3 and theorem 6 above show that

the penalized profile sampler generates second order asymptotic frequentist

valid results in terms of distributions, moments and quantiles. Moreover,

the second order accuracy of this procedure is controlled by the smoothing

parameter.
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Remark 9. Another interpretation for the role of λn in the penalized

profile sampler is that we can view λn as the prior on J(η), or on η to some

extent. To see this, we can write likλn(θ, η) in the following form:

likλn(θ, η) = likn(θ, η) × exp



− J2(η)

2( 1
2λ2

n
)





This idea can be traced back to [22]. In other words, the prior on J(η) is a

normal distribution with mean zero and variance (2λ2
n)−1. Hence it is natural

to expect λn has some effect on the convergence rate of η. Other possible

priors on the functional parameter include Dirichlet and Gaussian processes

which are more commonly used in nonparametric Bayesian methodology.

6. Examples (Continued). We now illustrate verification of the as-

sumptions in section 3.3 with the two example that were introduced in sec-

tion 2. Thus this section is a continuation of the earlier examples.

6.1. Partly Linear Normal Model with Current Status Data. We will con-

centrate on the estimation of the regression coefficient θ, considering the

infinite dimensional parameter f ∈ HM
k as a nuisance parameter. The score

function of θ, ℓ̇θ,f , is given as follows:

ℓ̇θ,f (x) = uQ(x; θ, f),

where

Q(X; θ, f) = (1 − ∆)
φ(qθ,f (X))

1 − Φ(qθ,f(X))
− ∆

φ(qθ,f (X))

Φ(qθ,f(X))
,

qθ,f (x) = c − θu − f(v), and φ is the density of a standard normal random

variable. The least favorable direction at the true parameter value is:

h0(v) =
E0(UQ2(X; θ, f)|V = v)

E0(Q2(X; θ, f)|V = v)
,
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where E0 is the expectation relative to the true parameters. The derivation

of ℓ̇θ,f and h0(·) is given in [3]. Thus, the least favorable submodel can be

constructed as follows:

ℓ(t, θ, f) = log lik(t, ft(θ, f)),(43)

where ft(θ, f) = f + (θ − t)h0. By differentiating (43) with respect to

t or θ, we can obtain the maps assessed in assumption S1, (t, θ, f) 7→

(∂l+m/∂tl∂θm)ℓ(t, θ, f). The concrete forms of these maps are given in [3]

which considers a more rigid model with a known upper bound on the L2

norm of the kth derivative. The rate assumptions (9) and (10) have been

verified previously in corollary 1. The remaining assumptions are verified in

the following two lemmas:

Lemma 2. Under the above set-up for the partly linear normal model

with current status data, assumptions S1, S2 and E1 are satisfied.

Lemma 3. Under the above set-up for the partly linear normal model

with current status data, condition (39) is satisfied.

6.2. Semiparametric Logistic Regression. In the semiparametric logistic

regression model, we can obtain the score function for θ and η by similar

analysis performed in the first example, i.e. ℓ̇θ,η(x) = (y − F (θw + η(z)))w

and Aθ,ηhθ,η(x) = (y − F (θw + η(z)))hθ,η(z) for J(h) < ∞. And the least

favorable direction at the true parameter is given in [14]:

h0(z) =
P0[WḞ (θ0W + η0(Z))|Z = z]

P0[Ḟ (θ0W + η0(Z))|Z = z]
,

where Ḟ (u) = F (u)(1−F (u)). The above assumptions plus the requirement

that J(h0) < ∞ ensures the identifiability of the parameters. Thus the least

imsart-aos ver. 2006/01/04 file: penalized.tex date: February 2, 2008



26 G. CHENG AND M. R. KOSOROK

favorable submodel can be written as:

ℓ(t, θ, η) = log lik(t, ηt(θ, η)),

where ηt(θ, η) = η + (θ − t)h0. By differentiating ℓ(t, θ, η) with respect to t

or θ, we obtain,

ℓ̇(t, θ, η) = (y − F (tw + η(z) + (θ − t)h0(z)))(w − h0(z)),

ℓ̈(t, θ, η) = −Ḟ (tw + η(z) + (θ − t)h0(z))(w − h0(z))2,

ℓt,θ(t, θ, η) = −Ḟ (tw + η(z) + (θ − t)h0(z))(w − h0(z))h0(z),

ℓ(3)(t, θ, η) = −F̈ (tw + η(z) + (θ − t)h0(z))(w − h0(z))3,

ℓt,t,θ(t, θ, η) = −F̈ (tw + η(z) + (θ − t)h0(z))(w − h0(z))2h0(z),

ℓt,θ,θ(t, θ, η) = −F̈ (tw + η(z) + (θ − t)h0(z))(w − h0(z))h2
0(z),

where F̈ (·) is the second derivative of the function F (·). The rate assump-

tions have been shown in corollary 2. The remaining assumptions are verified

in the following two lemmas:

Lemma 4. Under the above set-up for the semiparametric logistic re-

gression model, assumptions S1, S2 and E1 are satisfied.

Lemma 5. Under the above set-up for the semiparametric logistic re-

gression model, condition (39) is satisfied.

7. Future Work. Our paper evaluates the penalized profile sampler

method from the frequentist view and discusses the effect of the smoothing

parameter on estimation accuracy. One potential problem of interest is how

to select a proper smoothing parameter in applications. A formal study
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about the higher order comparisons between the profile sampler procedure

and fully Bayesian procedure [16], which assign priors to both the finite

dimensional parameter and the infinite dimensional nuisance parameter, is

also interesting. We expect that the involvement of a suitable prior on the

infinite dimensional parameter would at least not decrease the estimation

accuracy of the parameter of interest.

Another worthwhile avenue of research is to develop analogs of the profile

sampler and penalized profile sampler to likelihood estimation under model

misspecification and to general M-estimation. Some first order results for

this setting in the case where the nuisance parameter may not be root-n

consistent have been developed for a weighted bootstrap procedure in [10].

8. Appendix. We first present some technical tools about the entropy

calculations and increments of empirical processes which will be employed

in the proofs that follow.

T1. For each 0 < C < ∞ and δ > 0 we have

HB(δ, {η : ‖η‖∞ ≤ C, J(η) ≤ C}, ‖ · ‖∞) <∼ (
C

δ
)1/k,(44)

H(δ, {η : ‖η‖∞ ≤ C, J(η) ≤ C}, ‖ · ‖∞) <∼ (
C

δ
)1/k.(45)

T2. Let F be a class of measurable functions such that Pf2 < δ2 and

‖f‖∞ ≤ M for every f in F . Then

E∗
P‖Gn‖F <∼ K(δ,F , L2(P ))

(

1 +
K(δ,F , L2(P ))

δ2
√

n
M

)

,

where K(δ,F , ‖ · ‖) =
∫ δ
0

√

1 + HB(ǫ,F , ‖ · ‖)dǫ.

T3. Let F = {ft : t ∈ T} be a class of functions satisfying |fs(x)−ft(x)| ≤

d(s, t)F (x) for every s and t and some fixed function F . Then, for any norm
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‖ · ‖,

N[](2ǫ‖F‖,F , ‖ · ‖) ≤ N(ǫ, T, d).

T4.

− Pθ0 log
pθ

pθ0

≥
∫

(√
pθ −

√
pθ0

)2
dµ.(46)

T5. Let F be a class of measurable functions f : D × W 7→ R on a

product of a finite set and an arbitrary measurable space (W,W). Let P be

a probability measure on D×W and let PW be its marginal on W. For every

d ∈ D, let Fd be the set of functions w 7→ f(d,w) as f ranges over F . If

every class Fd is P -Donsker with supf∈F |Pf(d,W )| < ∞ for every d, then

F is P -Donsker.

T6. Let F be a uniformly bounded class of measurable functions such

that for some measurable f0, supf∈F ‖f − f0‖∞ < ∞. Moreover, assume

that HB(ǫ,F , L2(P )) ≤ Kǫ−α for some K < ∞ and α ∈ (0, 2) and for all

ǫ > 0. Then

sup
f∈F

[

|(Pn − P )(f − f0)|
‖f − f0‖1−α/2

2 ∨ n(α−2)/[2(2+α)]

]

= OP (n−1/2).

T7. For a probability measure P , let F1 be a class of measurable functions

f1 : X 7→ R, and let F2 denote a class of nondecreasing functions f2 : R 7→

[0, 1] that are measurable for every probability measure. Then,

HB(ǫ,F2(F1), L2(P )) ≤ 2HB(ǫ/3,F1, L2(P )) + sup
Q

HB(ǫ/3,F2, L2(Q)).

T8. Let F and G be classes of measurable functions. Then for any prob-

ability measure Q and any 1 ≤ r ≤ ∞,

HB(2ǫ,F + G, Lr(Q)) ≤ HB(ǫ,F , Lr(Q)) + HB(ǫ,G, Lr(Q)),(47)
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and, provided F and G are bounded by 1,

HB(2ǫ,F × G, Lr(Q)) ≤ HB(ǫ,F , Lr(Q)) + HB(ǫ,G, Lr(Q)).(48)

Remark 10. The proof of T1 is found in [1]. T1 implies that the

Sobolev class of functions with known bounded Sobolev norm is P -Donsker.

T2 and T3 are separately lemma 3.4.2 and theorem 2.7.11 in [21]. (46) in

T4 relates the Kullback-Leibler divergence and Hellinger distance. Its proof

depends on the inequality that log x ≤ 2(
√

x−1) for every x > 0. T5 is lemma

9.2 in [15]. T6 is a result presented on page 79 of [19] and is a special case

of lemma 5.13 on the same page, the proof of which can be found in pages

79–80. T7 and T8 are separately lemma 15.2 and 9.24 in [6].

Proof of theorem 1: The definition of η̂θ̃n,λn
implies that

λ2
nJ2(η̂θ̃n,λn

) ≤ λ2
nJ2(η0) + (Pn − P )

(

ℓθ̃n,η̂θ̃n,λn

− ℓθ̃n,η0

)

+ P

(

ℓθ̃n,η̂θ̃n,λn
− ℓθ̃n,η0

)

≤ λ2
nJ2(η0) + I + II.

Note that by T6 and assumption (21), we have

I ≤ (1 + J(η̂θ̃n,λn
))OP (n−1/2) ×











∥

∥

∥

∥

∥

∥

ℓθ̃n,η̂θ̃n,λn

− ℓ0

1 + J(η̂θ̃n,λn
)

∥

∥

∥

∥

∥

∥

1− 1
2k

2

∨ n
− 2k−1

2(2k+1)











+(1 + J(η0))OP (n−1/2) ×







∥

∥

∥

∥

∥

ℓθ̃n,η0
− ℓ0

1 + J(η0)

∥

∥

∥

∥

∥

1− 1
2k

2

∨ n
− 2k−1

2(2k+1)







.

By assumption (24), we have

II <∼ − d2
θ̃n

(η̂θ̃n,λn
, η0) + ‖θ̃n − θ0‖2.
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Combining with the above, we can deduce that

d̂2
n + λ2

nĴ2
n

<∼ (1 + Ĵn)OP (n−1/2) ×







(

d̂n + ‖θ̃n − θ0‖
1 + Ĵn

)1− 1
2k

∨ n
− 2k−1

2(2k+1)







+ (1 + J0)OP (n−1/2) ×







(

‖θ̃n − θ0‖
1 + J0

)1− 1
2k

∨ n
− 2k−1

2(2k+1)







+ λ2
nJ2

0 + ‖θ̃n − θ0‖2,(49)

where d̂n = dθ̃n
(η̂θ̃n,λn

, η0), J(η0) = J0 and Ĵn = J(η̂θ̃n,λn
). The above in-

equality follows from assumption (23). Combining all of the above inequali-

ties, we can deduce that

u2
n = OP (1) + OP (1)u

1− 1
2k

n ,(50)

vn = v−1
n OP (‖θ̃n − θ0‖2) + u

1− 1
2k

n OP (λn) + OP (n− 1
2 λ−1

n ‖θ̃n − θ0‖1− 1
2k ),(51)

where un = (d̂n +‖θ̃n− θ0‖)/(λn +λnĴn) and vn = λnĴn +λn. The equation

(50) implies that un = OP (1). Inserting un = OP (1) into (51), we can know

that vn = OP (λn + ‖θ̃n − θ0‖), which implies un has the desired order. This

completes the whole proof. �

Proof of corollary 1: Conditions (22)–(24) can be verified easily in this

example based on the arguments in theorem 1 because ℓ̈θ,f has finite second

moment, and pθ,f is bounded away from zero and infinity uniformly for

(θ, f) ranging over the whole parameter space. Note that dθ(f, f0) = ‖pθ,f −

p0‖2
>∼ ‖qθ,f − qθ0,f0‖2 by Taylor expansion. Then by the assumption that

EV ar(U |V ) is positive definite, we know that ‖qθ̃n,f̂θ̃n,λn

−qθ0,f0‖2 = OP (λn+

‖θ̃n−θ0‖) implies ‖f̂θ̃n,λn
−f0‖2 = OP (λn +‖θ̃n−θ0‖). Thus we only need to

show that the ǫ-bracketing entropy number of the function class O defined
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below is of order ǫ−1/k to complete the proof of (25)–(26):

O ≡
{

ℓθ,f (X)

1 + J(f)
: ‖θ − θ0‖ ≤ C1, ‖f − f0‖∞ ≤ C1, J(f) < ∞

}

,

for some constant C1. Note that ℓθ,f(X)/(1 + J(f)) can be rewritten as:

∆A−1 log Φ ( ¯qθ,fA) + (1 − ∆)A−1 log (1 − Φ ( ¯qθ,fA)) ,(52)

where A = 1 + J(f) and q̄θ,f ∈ O1, where

O1 ≡
{

qθ,f(X)

1 + J(f)
: ‖θ − θ0‖ ≤ C1, ‖f − f0‖∞ ≤ C1, J(f) < ∞

}

,

and where we know HB(ǫ,O1, L2(P )) <∼ ǫ−1/k by T1.

We next calculate the ǫ-bracketing entropy number with L2 norm for the

class of functions R1 ≡ {ka(t) : t 7→ a−1 log Φ(at) for a ≥ 1 and t ∈ R}. By

some analysis we know that ka(t) is strictly decreasing in a for t ∈ R, and

supt∈R |ka(t) − kb(t)| <∼ |a − b| because |∂/∂a(ka(t))| is bounded uniformly

over t ∈ R. In addition, we know that supa,b≥A0,t∈R |ka(t) − kb(t)| <∼ A−1
0

because the function u 7→ u log Φ(u−1t) has bounded derivative for 0 < u ≤ 1

uniformly over t ∈ R. The above two inequalities imply that the ǫ-bracketing

number with uniform norm is of order O(ǫ−2) for a ∈ [1, ǫ−1] and is 1 for

a > ǫ−1. Thus we know HB(ǫ,R1, L2) = O(log ǫ−2). By applying a similar

analysis to R2 ≡ {ka(t) : t 7→ a−1 log(1 − Φ(at)) for a ≥ 1 and t ∈ R}, we

obtain that HB(ǫ,R2, L2) = O(log ǫ−2). Combining this with T7 and T8, we

deduce that HB(ǫ,O, L2) <∼ ǫ−1/k. This completes the proof of (25)–(26).

For the proof of (27), we apply arguments similar to those used in the

proof of theorem 1 but after setting λn, J0 and Ĵn to zero in (49). Then

we obtain the following equality: d̂2
n = OP (n−2k/(2k+1)) + ‖θ̃n − θ0‖2 +

OP (n−1/2)‖θ̃n − θ0‖1−1/2k + OP (n−1/2)(‖θ̃n − θ0‖ + d̂n)1−1/2k. By treating
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‖θ̃n − θ0‖ ≤ n−k/(2k+1) and ‖θ̃n − θ0‖ > n−k/(2k+1) differently in the above

equality, we obtain (27).�

Proof of corollary 2: Lemma 7.1 in [14] establishes that

∥

∥

∥

∥

pθ̃n,η̂θ̃n,λn

− pθ0,η0

∥

∥

∥

∥

2
+ λnJ(η̂θ̃n,λn

) = OP (λn + ‖θ̃n − θ0‖)(53)

after choosing

mθ,λ,η = log
pθ,η + pθ,η0

2pθ,η0

− 1

2
λ2(J2(η) − J2(η0))

in theorem 2. Note that the map θ 7→ pθ,η0/f
W,Z(w, z) is uniformly bounded

away from zero at θ = θ0 and continuous around a neighborhood of θ0. Hence

mθ,λ,η is well defined. Moreover, Pnmθ,λ,η̂θ,λ
≥ Pnmθ,λ,η0 by the inequality

that ((pθ,η +pθ,η0)/2pθ,η0)
2 ≥ (pθ,η/pθ,η0). (53) now directly implies (32). For

the proof of (31), we need to consider the conclusion of lemma 7.4 (i), which

states that

‖pθ,η − pθ0,η0‖2
>∼ (‖θ − θ0‖ ∧ 1 + ‖|η − η0| ∧ 1‖2) ∧ 1.(54)

Thus we have proved (31). For (33), we just replace the mθ,λ,η with mθ,0,η

in the proof of lemma 7.1 in [14]. Thus we can show that dθ(η, η0) = ‖pθ,η −

pθ0,η0‖2. By combining lemma 1 and (54), we know that ‖η̂θ̃n
− η0‖2 =

OP (δn + ‖θ̃n − θ0‖), for δn satisfying K(δn,Sδn , L2(P )) ≤ √
nδ2

n. Note that

K(δ,Sδ , L2(P )) is as defined in (30). By similar analysis as used in the proof

of lemma 7.1 in [14] and the strengthened assumption on η, we then find

that K(δn,Sδn , L2(P )) <∼ δ
1−1/2k
n , which leads to the desired convergence

rate given in (33). �
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Proof of theorem 3. Note that

Plλn

θ̃n,η̂θ̃n,λn
,h

− Plλn
θ0,η0,h

= V (θ̃n, η̂θ̃n,λn
)h − Pnlλn

θ̃n,η̂θ̃n,λn
,h
− 2λ2

n

∫

h(k)(η̂
(k)

θ̃n,λn
− η

(k)
0 )dz

= −(Vn − V )(θ̃n, η̂θ̃n,λn
)h + 2λ2

n

∫

h(k)η
(k)
0 dz

= −(Vn − V )(θ0, η0)h + o∗P (n−1/2) + 2λ2
n

∫

h(k)η
(k)
0 dz

= OP (n−1/2) + 2λ2
n

∫

h(k)η
(k)
0 dz.

The last two equalities in the above follow from assumptions (34) and (35).

The Fréchet differentiability of V (·, ·) at (θ0, η0) establishes that

Plλn

θ̃n,η̂θ̃n,λn
,h

− Plλn
θ0,η0,h

= V̇ (θ̃n − θ0, η̂θ̃n,λn
− η0) + o∗P (‖θ̃n − θ0‖ + dθ̃n

(η̂θ̃n,λn
, η0))

−2λ2
n

∫

h(k)(η̂
(k)

θ̃n,λn
− η

(k)
0 )dz.

Combining the above two sets of equations, we have, by the linearity of

V̇ (·, ·), established that

V̇ (0, η̂θ̃n,λn
) = OP (n−1/2) + OP (‖θ̃n − θ0‖) + 2λ2

n

∫

Z
h(k)η̂

(k)

θ̃n,λn
dz.

Now by the invertibility of V̇ (0, ·), we can deduce that dθ̃n
(η̂θ̃n,λn

, η0) =

OP (n−1/2 + ‖θ̃n − θ0‖ + λ2
nJ2(η̂θ̃n,λn

)). �

Proof of theorem 4. We first show (37), and then we need to state one

lemma before proceeding to the proof of (38). For the proof of (37), note

that

0 = Pnℓ̇(θ̂λn , θ̂λn , η̂λn) + 2λ2
n

∫

Z
η̂

(k)
λn

(z)h
(k)
0 (z)dz.

Combining the third order Taylor expansion of θ̂λn 7→ Pnℓ̇(θ̂λn , θ, η) around

θ0, where θ = θ̂λn and η = η̂λn , with conditions (19) and (20), the first term
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in the right-hand-side of the above displayed equality equals Pnℓ̃0− Ĩ0(θ̂λn −

θ0) + OP (λn + ‖θ̂λn − θ0‖)2. By the inequality 2λ2
n

∫

Z η̂
(k)
λn

(z)h
(k)
0 (z)dz ≤

λ2
n(J2(η̂λn) + J2(h0)) and assumption (10), the second term in the right-

hand-side of the above equality is equal to OP (λn +‖θ̂λn −θ0‖)2. Combining

everything, we obtain the following:

1√
n

n
∑

i=1

Ĩ−1
0 ℓ̃0(Xi) =

√
n(θ̂λn − θ0) + OP (n1/2(λn + ‖θ̂λn − θ0‖)2).(55)

The right-hand-side of (55) is of the order OP (
√

nλ2
n +

√
nwn(1+wn +λn)),

where wn represents ‖θ̂λn−θ0‖. However, its left-hand-side is trivially OP (1).

Considering the fact that
√

nλ2
n = oP (1), we can deduce that θ̂λn − θ0 =

OP (n−1/2). Inserting this into the previous display completes the proof of

(37).

We next prove (38). Note that θ̂λn − θ0 = OP (n−1/2). Hence the order of

the remainder terms in (19) and (20) becomes OP (λn + ‖θ̃n − θ̂λn‖)2 and

OP (λn +‖θ̃n− θ̂λn‖), respectively. Expression (61) in lemma 6 below implies

that

logplλn(θ̂λn) = log plλn(θ0) + n(θ̂λn − θ0)
T

Pnℓ̃0(56)

− n

2
(θ̂λn − θ0)

T Ĩ0(θ̂λn − θ0) + OP (n1/2λ2
n).

The difference between (56) and (61) generates

log plλn(θ̃n) = log plλn(θ̂λn) + n(θ̃n − θ̂λn)T
(

Pnℓ̃0 − Ĩ0(θ̂λn − θ0)
)

− n

2
(θ̃n − θ̂λn)T Ĩ0(θ̃n − θ̂λn) + OP (gλn(‖θ̃n − θ̂λn‖)).

(38) is now immediately obtained after considering (37). �

Proof of theorem 5. Suppose that Fλn(·) is the penalized posterior profile

distribution of
√

n̺n with respect to the prior ρ(θ), where the vector ̺n
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is defined as Ĩ
1/2
0 (θ − θ̂n). The parameter set for ̺n is Ξn. Fλn(·) can be

expressed as:

Fλn(ξ) =

∫

̺n∈(−∞,n−1/2ξ]∩Ξn
ρ(θ̂λn + Ĩ

− 1
2

0 ̺n)
plλn(θ̂λn+Ĩ

−
1
2

0 ̺n)

plλn(θ̂λn )
d̺n

∫

̺n∈Ξn
ρ(θ̂λn + Ĩ

− 1
2

0 ̺n)
plλn(θ̂λn+Ĩ

−
1
2

0 ̺n)

plλn(θ̂λn )
d̺n

.(57)

Note that d̺n in the above is the short notation for d̺n1 × . . .× d̺nd. To

prove theorem 5, we first partition the parameter set Ξn as {Ξn ∩ {‖̺n‖2 >

rn}} ∪ {Ξn ∩ {‖̺n‖2 ≤ rn}}. By choosing the proper order of rn, we find

the posterior mass in the first partition region is of arbitrarily small order,

as verified in lemma 5.1 immediately below, and the mass inside the second

partition region can be approximated by a stochastic polynomial in powers of

n−1/2 with error of order dependent on the smoothing parameter, as verified

in lemma 5.2 below. This basic technique applies to both the denominator

and the numerator, yielding the quotient series, which gives the desired

result.

lemma 5.1. Choose rn = o(n−1/3) and
√

nrn → ∞. Under the conditions

of theorem 5, we have

∫

‖̺n‖>rn

ρ(θ̂λn + Ĩ
− 1

2
0 ̺n)

plλn(θ̂λn + Ĩ
− 1

2
0 ̺n)

plλn(θ̂λn)
d̺n = OP (n−M ),(58)

for any positive number M .

Proof: Fix r > 0. We then have

∫

‖̺n‖>r
ρ(θ̂λn + Ĩ

− 1
2

0 ̺n)
plλn(θ̂λn + Ĩ

− 1
2

0 ̺n)

plλn(θ̂λn)
d̺n

≤ I{∆r
λn

< −n− 1
2 } exp(−

√
n)

∫

Θ
ρ(θ)dθ + I{∆r

λn
≥ −n− 1

2 },

where ∆r
λn

= sup‖̺n‖>r∆λn(θ̂λn + ̺nĨ
−1/2
0 ). Then by lemma 3.2 in [2],

I{∆r
λn

≥ −n− 1
2} = OP (n−M ) for any fixed r > 0. This implies that there
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exists a positive decreasing sequence rn = o(n−1/3) with
√

nrn → ∞ such

that (58) holds. �

lemma 5.2. Choose rn = o(n−1/3) and
√

nrn → ∞. Under the conditions

of theorem 5, we have

∫

‖̺n‖≤rn

∣

∣

∣

∣

∣

∣

plλn(θ̂λn + Ĩ
− 1

2
0 ̺n)

plλn(θ̂)
ρ(θ̂λn + Ĩ

− 1
2

0 ̺n) − exp

(

−n

2
̺T

n̺n

)

ρ(θ̂λn)

∣

∣

∣

∣

∣

∣

×d̺n = OP (λ2
n).(59)

Proof: The posterior mass over the region ‖̺n‖2 ≤ rn is bounded by

∫

‖̺n‖2≤rn

∣

∣

∣

∣

∣

∣

plλn(θ̂λn + Ĩ
− 1

2
0 ̺n)

plλn(θ̂λn)
ρ(θ̂λn) − exp

(

−n

2
̺T

n̺n

)

ρ(θ̂λn)

∣

∣

∣

∣

∣

∣

d̺n (∗)

+

∫

‖̺n‖2≤rn

∣

∣

∣

∣

∣

∣

plλn(θ̂λn + Ĩ
− 1

2
0 ̺n)

plλn(θ̂λn)
ρ(θ̂λn + Ĩ

− 1
2

0 ̺n) − plλn(θ̂λn + Ĩ
− 1

2
0 ̺n)

plλn(θ̂λn)
ρ(θ̂λn)

∣

∣

∣

∣

∣

∣

d̺n. (∗∗)

By (38), we obtain

(∗) =

∫

‖̺n‖2≤rn

[

ρ(θ̂λn) exp

(

−n̺T
n̺n

2

)

|exp(OP (gλn(‖̺n‖))) − 1|
]

d̺n.

Obviously the order of (∗) depends on that of | exp(OP (gλn(‖̺n‖))) − 1|

for λn satisfying (3) and ‖̺n‖ ≤ rn. In order to analyze its order, we par-

tition the set {λn = oP (n−1/4) and λ−1
n = OP (nk/(2k+1))} with the set

{λn = OP (n−1/3)}, i.e. Un = {λn = oP (n−1/4) and λ−1
n = OP (nk/(2k+1))} ∩

{λn = OP (n−1/3)} and Ln = {λn = oP (n−1/4) and λ−1
n = OP (nk/(2k+1))} ∩

{λn = OP (n−1/3)}C . For the set Un, we have | exp(OP (gλn(‖̺n‖))) − 1| =

gλn(‖̺n‖)×OP (1). For the set Ln, we have OP (gλn(‖̺n‖)) = OP (n‖̺n‖λ2
n+

n1/2λ2
n). We can take rn = n−1−δλ−2

n for some δ > 0 such that
√

nrn → ∞

and rn = o(n−1/3). Then | exp(OP (gλn(‖̺n‖)))− 1| = (n‖̺n‖λ2
n +n1/2λ2

n)×

OP (1). Combining with the above, we know that (∗) = OP (λ2
n). By similar
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analysis, we can also show that (∗∗) has the same order. This completes the

proof of lemma 5.2. �

We next start the formal proof of theorem 5. By considering both lemma 5.1

and lemma 5.2, we know the denominator of (57) equals

∫

{‖̺n‖2≤rn}∩Ξn

[

exp

(

−n

2
̺T

n̺n

)

ρ(θ̂λn)

]

d̺n + OP (λ2
n).

The first term in the above display equals

n−1/2ρ(θ̂λn)

∫

{‖un‖2≤
√

nrn}∩
√

nΞn

e−uT
nun/2dun = n−1/2ρ(θ̂λn)

∫

Rd
e−uT

n un/2dun

+ O(λ2
n),

where un =
√

n̺n. The above equality follows from the inequality that
∫∞
x e−y2/2dy ≤ x−1e−x2/2 for any x > 0. Consolidating the above analyses,

we deduce that the denominator of (57) equals n− 1
2 ρ(θ̂λn)(2π)d/2 + OP (λ2

n).

The same analysis also applies to the numerator, thus completing the whole

proof. �

Proof of corollary 3: We only show (41) in what follows. (42) can be veri-

fied similarly. Showing (41) is equivalent to establishing Ẽλn

θ|x(̺n) = OP (λ2
n).

Note that Ẽλn

θ|x(̺n) can be written as:

Ẽλn

θ|x(̺n) =

∫

̺n∈Ξn
̺nρ(θ̂λn + Ĩ

− 1
2

0 ̺n)
plλn(θ̂λn+Ĩ

−
1
2

0 ̺n)

plλn(θ̂λn )
d̺n

∫

̺n∈Ξn
ρ(θ̂λn + Ĩ

− 1
2

0 ̺n)
plλn(θ̂λn+Ĩ

−
1
2

0 ̺n)

plλn(θ̂λn )
d̺n

.

By analysis similar to that applied in the proof of theorem 5, we know

the denominator in the above display is n−1/2(2π)d/2ρ(θ̂λn) + OP (λ2
n) and

the numerator is a random vector of order OP (n−1/2λ2
n). This yields the

conclusion.�
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Proof of theorem 6. Note that (40) implies κnα = Ĩ
−1/2
0 zα + OP (n1/2λ2

n),

for any ξ < α < 1 − ξ, where ξ ∈ (0, 1
2 ). Note also that the α-th quantile

of a d dimensional standard normal distribution, zα, is not unique if d > 1.

The classical Edgeworth expansion implies that P (n−1/2∑n
i=1 Ĩ

−1/2
0 ℓ̃0(Xi) ≤

zα + an(α)) = α, where an(α) = O(n−1/2), for ξ < α < 1 − ξ. Note that

an(α) is uniquely determined for each fixed zα since ℓ̃0(Xi) has at least one

absolutely continuous component. Let κ̂nα = Ĩ
−1/2
0 zα + (

√
n(θ̂λn − θ0) −

n−1/2∑n
i=1 Ĩ−1

0 ℓ̃0(Xi)) + Ĩ
−1/2
0 an(α). Then P (

√
n(θ̂λn − θ0) ≤ κ̂nα) = α.

Combining with (37), we obtain κ̂nα = κnα + OP (n1/2λ2
n). The uniqueness

of κ̂nα up to order OP (n1/2λ2
n) follows from that of an(α) for each chosen

zα.�

Proof of lemma 2. Assumptions S1 and S2 are verified in lemma 5 of [3].

For the verifications of the assumption E1, we first show the asymptotic

equicontinuity condition (15). Without loss of generality, we assume that λn

is bounded below by a multiple of n−k/(2k+1) and bounded above by n−1/4

in view of (3). Thus

P





ℓ̇(θ0, θ0, f̂θ̃n,λn
) − ℓ̇0

n
1

4k+2 (λn + ‖θ̃n − θ0‖)





2

<∼
‖f̂θ̃n,λn

− f0‖2
2

n
1

2k+1 (λn + ‖θ̃n − θ0‖)2
= OP

(

n− 1
2k+1

)

,

where (25) implies the equality in the above expression.

By (26), we know that J(f̂θ̃n,λn
) = OP (1 + ‖θ̃n − θ0‖/λn) and ‖f̂θ̃n,λn

‖∞
is bounded by some constant, since f ∈ HM

k . We then define the set Qn as

follows:

{

ℓ̇(θ0, θ0, f) − ℓ̇0

n
1

4k+2 (λn + ‖θ − θ0‖)
: J(f) ≤ Cn(1 +

‖θ − θ0‖
λn

), ‖f‖∞ ≤ M, ‖θ − θ0‖ ≤ δ

}

∩
{

g ∈ L2(P ) : Pg2 ≤ Cnn− 1
2k+1

}

,
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for some δ > 0. Obviously the function n−1/(4k+2)(ℓ̇(θ0, θ0, f̂θ̃n,λn
)−ℓ̇0)/(λn+

‖θ̃n−θ0‖)) ∈ Qn on a set of probability arbitrarily close to one, as Cn → ∞.

If we can show limn→∞ E∗‖Gn‖Qn < ∞ by T2, then assumption (15) is

verified. Note that ℓ̇(θ0, θ0, f) depends on f in a Lipschitz manner. Conse-

quently we can bound HB(ǫ,Qn, L2(P )) by the product of some constant

and H(ǫ,Rn, L2(P )) in view of T3. Rn is defined as

{Hn(f) : J(Hn(f)) <∼ λ−1
n n−1/(4k+2), ‖Hn(f)‖∞ <∼ λ−1

n n−1/(4k+2)},

where Hn(f) = f/(n1/(4k+2)(λn + ‖θ − θ0‖)). By [1], we know that

H(ǫ,Rn, L2(P )) <∼ (λ−1
n n

−1
(4k+2) )/ǫ)1/k.

Note that δn = n−1/(4k+2) and Mn = n(2k−1)/(4k+2) in T2. Thus by calcu-

lation we know that K(δn,Qn, L2(P )) <∼ λ
−1/2k
n n−1/(4k+2). Then by T2 we

can show that limn→∞ E∗‖Gn‖Qn < ∞.

We next show (18). It suffices to verify that the sequence of classes of

functions Vn is P -Glivenko-Cantelli, where Vn ≡ {ℓ(3)(θ̄n, θ̃n, f̂θ̃n,λn
)(x)}, for

every random sequence θ̄n → θ0 and θ̃n → θ0 in probability. A Glivenko-

Cantelli theorem for classes of functions that change with n is needed. By

revising theorem 2.4.3 in [21] with minor notational changes, we obtain

the following suitable extension of the uniform entropy Glivenko-Cantelli

theorem: Let Fn be suitably measurable classes of functions with uniformly

integrable functions and H(ǫ,Fn, L1(Pn)) = o∗P (n) for any ǫ > 0. Then

‖Pn − P‖Fn → 0 in probability for every ǫ > 0. We then apply this revised

theorem to the set Fn of functions ℓ(3)(t, θ, f) with t and θ ranging over

a neighborhood of θ0 and λnJ(f) bounded by a constant. By the form of
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ℓ(3)(t, θ, f), the entropy number for Vn is equal to that of

F̃n ≡ {φ(qt,ft(θ,f)(x))R(qt,ft(θ,f)(x)) : (t, θ) ∈ Vθ0 , λnJ(f) ≤ C, ‖f‖∞ ≤ M}.

By arguments similar to those used in lemma 7.2 of [14], we know that

supQ H(ǫ, F̃n, L1(Q)) <∼ (1 + λ−1
n /ǫ)1/k = oP (n). Moreover, the F̃n are uni-

formly bounded since f ∈ HM
k . Considering the fact that the probability

that Vn is contained in F̃n tends to 1, we have completed the proof of (18).

For the proof of (16), we only need to show that Gn(ℓ̈(θ0, θ̃n, f̂θ̃n,λn
)−ℓ̈0) =

oP (1) since ℓ̈0(x) is uniformly bounded in x. Note that we only need to show

(16) holds for θ̃n = θ̂n + o(n−1/3) based on the arguments in lemma 5.2. We

next show that Gn(ℓ̈(θ0, θ̃n, f̂θ̃n,λn
) − ℓ̈0) = oP (1 + n1/3‖θ̃n − θ0‖) = oP (1).

By the rate assumptions R1, we have

P





ℓ̈(θ0, θ̃n, f̂θ̃n,λn
) − ℓ̈0

1 + n1/3‖θ̃n − θ0‖





2

<∼
‖θ̃n − θ0‖2 + ‖f̂θ̃n,λn

− f0‖2
2

(1 + n1/3‖θ̃n − θ0‖)2
= OP (n−1/2).

We next define Q̄n as follows:

{

ℓ̈(θ0, θ, f) − ℓ̈0

1 + n1/3‖θ − θ0‖
: J(f) ≤ Cn(1 +

‖θ − θ0‖
λn

), ‖f‖∞ ≤ M, ‖θ − θ0‖ < δ

}

∩
{

g ∈ L2(P ) : Pg2 ≤ Cnn− 1
2

}

.

Obviously the function (ℓ̈(θ0, θ̃n, f̂θ̃n,λn
) − ℓ̈0)/(1 + n1/3‖θ̃n − θ0‖) ∈ Q̄n on

a set of probability arbitrarily close to one, as Cn → ∞. If we can show

limn→∞ E∗‖Gn‖Q̄n
→ 0 by T2, then the proof of (16) is completed. Accord-

ingly, note that ℓ̈(θ0, θ, f) depends on (θ, f) in a Lipschitz manner. Conse-

quently we can bound HB(ǫ, Q̄n, L2(P )) by the product of some constant

and (H(ǫ, R̄n, L2(P )) + log(1/ǫ)) in view of T3. R̄n is defined as

{Hn(f) : J(Hn(f)) <∼ 1 + (n1/3λn)−1, ‖Hn(f)‖∞ <∼ 1 + (n1/3λn)−1},
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where Hn(f) = f/(1 + n1/3‖θ − θ0‖). By [1], we know that

H(ǫ, R̄n, L2(P )) <∼ ((1 + n−1/3λ−1
n )/ǫ)1/k.

Then by analysis similar to that used in the proof of (15), we can show that

limn→∞ E∗‖Gn‖Q̄n
→ 0 in view of T2. This completes the proof of (16).

For the proof of (17), it suffices to show that Gn(ℓt,θ(θ0, θ̄n, f̂θ̃n,λn
) −

ℓt,θ(θ0, θ0, f0)) = oP (1) for θ̃n = θ̂n + o(n−1/3) and for θ̄n between θ̃n and

θ0, in view of lemma 5.2. Then we can show that Gn(ℓt,θ(θ0, θ̄n, f̂θ̃n,λn
) −

ℓt,θ(θ0, θ0, f0)) = oP (1 + n1/3‖θ̃n − θ0‖) = oP (1) by similar analysis as used

in the proof of (16).�

Proof of lemma 3. By the assumption that ∆λn(θ̃n) = oP (1), we have

∆λn(θ̃n) − ∆λn(θ0) ≥ oP (1). Thus the following inequality holds:

n−1
n
∑

i=1

log





lik(θ̃n, f̂θ̃n,λn
,Xi)

lik(θ0, f̂θ0,λn ,Xi)



− n−1λ2
n[J2(f̂θ̃n,λn

) − J2(f̂θ0,λn)] ≥ oP (1)

By considering assumption (10), the above inequality simplifies to

n−1
n
∑

i=1

log





H(θ̃n, f̂θ̃n,λn
;Xi)

H(θ0, f̂θ0,λn ;Xi)



 ≥ oP (1),

where H(θ, f ;X) = ∆Φ(C − θU − f(V )) + (1−∆)(1−Φ(C − θU − f(V ))).

By arguments similar to those used in lemma 2.2 and by T5, we know

H(θ̃n, f̂θ̃n,λn
;Xi) belongs to some P -Donsker class. Combining the above

conclusion and the inequality α log x ≤ log(1+α{x−1}) for some α ∈ (0, 1)

and any x > 0, we can show that

P log



1 + α





H(θ̃n, f̂θ̃n,λn
;Xi)

H(θ0, f̂θ0,λn ;Xi)
− 1







 ≥ oP (1).(60)

The remainder of the proof follows the proof of lemma 6 in [3].�
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Proof of lemma 4. The maps (11) are uniformly bounded since F (·), Ḟ (·)

and F̈ (·) are all uniformly bounded in (−∞,+∞). This completes the verifi-

cations of S1. Note that (W,Z) are in [0, 1]2 and h0(·) is intrinsically bounded

over [0, 1]. Hence we can show that the Fréchet derivatives of η 7→ ℓ̈(θ0, θ0, η)

and η 7→ ℓt,θ(θ0, θ0, η) for any η ∈ Hk are bounded operators, from which we

can deduce that |ℓ̈(θ0, θ0, η)(X)− ℓ̈0(X)| is bounded by the product of some

integrable function and |η − η0|(Z). This ensures (12) and (13). For (14),

P ℓ̇(θ0, θ0, η) can be written as P (F (θ0w + η0) − F (θ0w + η(z)))(w − h0(z))

since P ℓ̇0 = 0. Note that P (w − h0(z))Ḟ (θ0w + η0(z))(η − η0)(z) = 0. This

implies that P ℓ̇(θ0, θ0, η) = P (F (θ0w + η0) − F (θ0w + η(z)) + Ḟ (θ0w +

η0(z))(η − η0)(z))(w − h0(z)). However, by the common Taylor expansion,

we have |F (θ0w + η)−F (θ0w + η0)− Ḟ (θ0w + η0)(η− η0)| ≤ ‖F̈‖∞|η− η0|2.

This proves (14).

We next verify assumption E1. For the asymptotic equicontinuity condi-

tion (15), we first apply analysis similar to that used in the proof of lemma 2

to obtain

P





ℓ̇(θ0, θ0, η̂θ̃n,λn
) − ℓ̇0

n
1

4k+2 (λn + ‖θ̃n − θ0‖)





2

<∼ OP

(

n− 1
2k+1

)

.

By lemma 7.1 in [14], we know that J(η̂θ̃n,λn
) = OP (1 + ‖θ̃n − θ0‖/λn) and

‖η̂θ̃n,λn
‖∞ is bounded in probability by a multiple of J(η̂θ̃n,λn

) + 1. Now we

construct the set Q̃n as follows:
{

ℓ̇(θ0, θ0, η) − ℓ̇0

n
1

4k+2 (λn + ‖θ − θ0‖)
: J(η) ≤ Cn(1 +

‖θ − θ0‖
λn

), ‖η‖∞ ≤ Cn(1 + J(η)),

‖θ − θ0‖ < δ} ∩
{

g ∈ L2(P ) : Pg2 ≤ Cnn− 1
2k+1

}

.

Clearly, the probability that the function n−1/(4k+2)(ℓ̇(θ0, θ0, η̂θ̃n,λn
)−ℓ̇0)/(λn+

‖θ̃n−θ0‖)) ∈ Q̃n approaches 1 as Cn → ∞. We next show that limn→∞ E∗‖Gn‖Q̃n
<
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∞ by T2. Note that ℓ̇(θ0, θ0, η) depends on η in a Lipschitz manner. Con-

sequently, we can bound HB(ǫ, Q̃n, L2(P )) by the product of some constant

and H(ǫ,Rn, L2(P )) in view of T3, where Rn is as defined in the proof of

lemma 2. By similar calculations as those performed in lemma 2, we can ob-

tain K(δn, Q̃n, L2(P )) <∼ λ
−1/2k
n n−1/(4k+2). Thus limn→∞ E∗‖Gn‖Q̃n

< ∞,

and (15) follows.

Next we define V̄n ≡ {ℓ(3)(θ̄n, θ̃n, η̂θ̃n,λn
)(x)}. Similar arguments as those

used in the proof of lemma 2 can be directly applied to the verification of

(18) in this second model. By the form of ℓ(3)(t, θ, η), the entropy number

for V̄n is bounded above by that of F̄n ≡ {F̈ (tw + η(z) + (θ − t)h0(z)) :

(t, θ) ∈ Vθ0 , λnJ(η) ≤ Cn, ‖η‖∞ ≤ Cn(1 + J(η))}. Similarly, we know

supQ H(ǫ, V̄n, L1(Q)) ≤ supQ H(ǫ, F̄n, L1(Q)) <∼ ((1 + λ−1
n )/ǫ)1/k = oP (n).

Moreover, the F̄n are uniformly bounded. This completes the proof for (18).

The proof of (16) and (17) follows arguments quite similar to those used in

the proof of lemma 2. In other words, we can show that Gn(ℓ̈(θ0, θ̃n, η̂θ̃n,λn
)−

ℓ̈0) = oP (1+n1/3‖θ̃n−θ0‖) = oP (1) and Gn(ℓt,θ(θ0, θ̃n, η̂θ̃n,λn
)−ℓt,θ(θ0, θ0, η0)) =

oP (1 + n1/3‖θ̃n − θ0‖). This concludes the proof.�

Proof of lemma 5: The proof of lemma 5 is analogous to that of lemma 3.�

Lemma 6. Assuming the assumptions in theorem 4, we have

logplλn(θ̃n) = log plλn(θ0) + n(θ̃n − θ0)
T

Pnℓ̃0(61)

− n

2
(θ̃n − θ0)

T Ĩ0(θ̃n − θ0) + OP (gλn(‖θ̃n − θ̂λn‖)),

for any θ̃n = θ0 + oP (1).

Proof. n−1(log plλn(θ̃n) − log plλn(θ0)) is bounded above and below by

Pn(ℓ(θ̃n, θ̃n, η̂θ̃n,λn
) − ℓ(θ0, θ̃n, η̂θ̃n,λn

)) − 1

n
λ2

n(J2(η̂θ̃n,λn
) − J2(ηθ0(θ̃n, η̂θ̃n,λn

)))
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and

Pn(ℓ(θ̃n, θ0, η̂θ0,λn) − ℓ(θ0, θ0, η̂θ0,λn)) − 1

n
λ2

n(J2(ηθ̃n
(θ0, η̂θ0,λn)) − J2(η̂θ0,λn)),

respectively. By the third order Taylor expansion of θ̃n 7→ Pnℓ(θ̃n, θ, η)

around θ0, for θ = θ̃n and η = η̂θ̃n,λn
, and the above empirical no-bias

conditions (19) and (20), we can find that the order of the difference be-

tween Pn(ℓ(θ̃n, θ̃n, η̂θ̃n,λn
) − ℓ(θ0, θ̃n, η̂θ̃n,λn

)) and (θ̃n − θ0)
T

Pnℓ̃0 − (θ̃n −

θ0)
T (Ĩ0/2)(θ̃n−θ0) is OP (n−1gλn(‖θ̃n−θ̂λn‖)). By the inequality J2(ηt(θ, η)) ≤

2J2(η)+2(θ−t)2J2(h0), we know that λ2
n(J2(η̂θ̃n,λn

)−J2(ηθ0(θ̃n, η̂θ̃n,λn
))) =

OP (‖θ̃n − θ̂λn‖+λn)2 provided assumptions (3) and (10) hold. Similar anal-

ysis also applies to the lower bound. This proves (61).�
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