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Abstract

In this paper we study the asymptotic behaviour of empirical pro-
cesses when parameters are estimated, assuming that the underlying
sequence of random variables is long-range dependent. We show com-
pletely different phenomena compared to i.i.d. situation, as well as
compared to ordinary empirical processes of long range dependent
sequences. Applications include Kolmogorov-Smirnov and Cramer-
Smirnov-von Mises goodness-of-fit statistics.
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1 Introduction and statement of results

Let {€;,7 > 1} be a centered sequence of i.i.d. random variables. Consider
the class of stationary linear processes

[e'9)
XZ' = Z CL€i—k, ) > 1. (1)
k=0

We assume that the sequence ¢, k > 0, is regularly varying with index —(,
B € (1/2,1) (written as ¢y € RV_g). This means that ¢, ~ k=P Lo(k) as k —
00, where Ly is a slowly varying function at infinity. We shall refer to all such
models as long range dependent (LRD) linear processes. In particular, if the
variance exists, then the covariances pp := EX¢ X} decay at the hyperbolic
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rate, pr = L(k)k~®F=1) = L(k)k~P, where limy,_,, L(k)/LE(k) = B(23 —
1,1 — () and B(-,-) is the beta-function. Consequently, the covariances are
not summable (cf. [9]).

Assume that X7 has a continuous distribution function F. Given X1, ..., X,,
let F(x) =n"13" 1 {Xx;<z} be the empirical distribution function.

Assume that Ee? < co. Let r be an integer and define

n T
Yor=>. Y. [ n>1,

i=11<j1 <-<jr 5=1
so that Y, 0 =n, and Y, 1 = 311 X;. If p < (28— 1)}, then
o2, = Var(Yy,,) ~ n* PN LI (), (2)
From [10] we know that for p < (28 —1)7!, as n — oo,
Ur?,}ayn,p < Zp, (3)

where Z, is a random variable which can be represented by appropriate
multiple Wiener-It6 integrals. In particular, Z; is standard normal.

In the present paper we study the asymptotic behaviour of empirical
processes when unknown parameters of the underlying distribution func-
tion are estimated. The motivation to study such problems comes from
Kolmogorov-Smirnov type statistics. From [10] we know that, as n — oo,

0 insup| Fu(z) — F(a)] 5 |21 sup f(a), (4)
zeR zeR

where Z7 is a standard normal random variable and f is the density function
of F. The above result can be used, in principle, to test whether data
Xq,...,X, are consistent with a given distribution F'. If however F' belongs
to a one-parameter family {F'(-,0),0 € R} say, then in order to use () one
needs to know the value of the parameter 0. A straightforward procedure
would be to estimate it and use the statistic

o1 sup [Py (x) — F(x;0,)],
x€R

where F(z;0,) is the distribution function F(z) = F(z;6) in which the
parameter 6 has been replaced with its estimator 6,,. However, in the i.i.d.
case, it is known that such procedure changes a limiting process. To be more



specific, assume for a while that X7,..., X, are i.i.d. random variables and
consider

Vi sup | Fy () — F(x)].

zeR

As it is well-known, the above supremum converges in distribution to the
supremum of a Brownian bridge on [0,1]. On the other hand, for a large
class of estimators,

VnlFy () — F(x;0,)],
converges weakly to a Gaussian process, but no longer to a Brownian bridge.
The corresponding comments apply to the Cramér-Smirnov-von Mises statis-
tic

Vi [ (Fuf@) = F(a)PdF(a)

and its ’estimated’ version
Vi [ (Fulaw) = Fla:0,))2dF (236,).
R

We refer to [5], [8], [I1] and [I] for more details.

Coming back to LRD sequences, we will focus on a location-scale family
of distributions. We shall assume that Y; = 0 X;+pu, where X; is given by ()
and o # 0. Clearly, if F' is the distribution of X7 and H is the distribution
of Y1, then H(z) = F (x—;’i) Moreover, the empirical processes

Bu(@) = o in(Fale) — F(a)), zcR

and
(@) = opin(Hy(z) — H(z)), z€R

associated with X; and Y;, respectively, are related by

T — p
la) =5 (S )
o
From [10], 5, ()= f(x)Z1, so that ~, (x)=f(*£)Z,. Here and in the sequel,
= denotes weak convergence in D((—00,00)). On the contrary, if 6, is an
appropriate sequence of estimators of the mean p, we will show that, as
n — 0o,

(@) = opin(Hy(z) — H(z;:0,)), z€R

converges in probability to 0. Choosing a different scaling one can obtain
weak convergence, however the limiting process depends on the choice of



the estimator. In particular, using én =Y, (the sample mean of Y1,...,Y,)
or 0, = M, (M-estimator), we can obtain different limits, depending on
the so-called second-order M-rank of the estimator M,, introduced in [12].
Also, the scaling and the limiting process depend on whether 3 > 3/4 or
B < 3/4. In particular, if 5 > 3/4, then we obtain /n-consistency of a
modified Kolmogorov-Smirnov type statistics. The appropriate results are
stated in Theorems and [[.41

The proofs of our results will be based on a reduction principle for long-
range dependent empirical processes (see Theorem [[1] below), combined
with approximation method as in [I]. The fact, that we were able to use the
latter, Hungarian-like approach, shows its extreme power. The Hungarian
construction approach was for example employed to obtain the Komlds-
Major-Tusnady (KMT) strong approximation of empirical processes. Then,
this approach was followed to establish a number of optimal or almost opti-
mal results for functionals of empirical and quantile processes, including the
one in [I] for empirical processes with parameters estimated (we refer to [2]).
The KMT construction is tailored for the i.i.d. situation. However, a lot
of further developments based on this kind of approach, can be applied to
long-range dependent sequences. Very recent examples of such an approach
include [3], [4], [14].

The reduction principle was obtained first in [6] in case of subordinated
Gaussian processes. In more generality, it was obtained in the landmark
paper [10]; see also [13] for related studies. The best available result along
these lines is due to Wu [I5]. To state a particular version of his result, we
shall introduce the following assumptions, which will be valid throughout
the paper. Let F; be the distribution function of the centered i.i.d. sequence
{€i,7 > 1}. Assume that for a given integer p, the derivatives Fe(l), R Fe(p +3)
of F, are bounded and integrable. Note that these properties are inherited
by the distribution F' as well (cf. [I0] or [15]).

Theorem 1.1 Let p be a positive integer. Then, as n — 00,

n p 2
Esup > (lx,<py — F(2)) + D (-1 F(2)Y,,| = O(E, +n(logn)?),
z€R |1 r=1
where
_ [ om), (p+1)(26-1) > 1
T 02 EEID LD () - (p+1)(26 - 1) < 1

We will a require second-order expansion, thus in the above theorem, p = 2.



Let ¢ be a real-valued function of bounded variation such that E¢(Y; — u)

0. M-estimators are defined as

n

> U — )

M =M, = argmin{
j=1

, X E ]R} .
For k =1,2, let
A = /R ¥(y)F*) (y)dy.

Let k* = k*(8) = [1/(28 — 1)], where [-] denotes the integer part. The
second-order rank rj/(2) of the M-estimator is: rp(2) = 2 if &* =1 (so
that 8 > 3/4); rpr(2) = 2 if k* > 1 and Ao # 0; rpr(2) > 2 if k* > 1 and
A2 = 0. We refer to [12] for more details.

Let
-1

an = 0n20, 1.

Now, we are ready to state our results. We start with the case § < 3/4.

Theorem 1.2 Assume that 0y = p and 5 < 3/4. Then, under the condi-
tions of Theorem [L1], as n — oo, we have

° Ifén =Y, orf, = M,,, then

sup [¥,(z)| = op(1). (6)
zeR

g

1 . A x— [
0 (o) = o dn(Ho (o) — Hwid)=0 () v @)
where V is a linear combination of Zy and %le

o Iff, = M,, Eezllvzk*(e) < oo and rp(2) > 2, then () holds.

o If 0, = M, Eei‘\/%*(g) < oo and ry(2) =2
ey 1 (e (1) x‘”) Ml (”f—l‘
7 (o) = o bn(Ho (o)~ H(as6,)= 1O (T2 ) v g2 2 (22
(8)

where V is as in Q) and Vi is a linear combination of Z3 and Zs.

)vl,



Example 1.3 Assume that p = 0, f is symmetric and v is skew-symmetric.
For f < 3/4, rp(2) > 3 (cf. [12]) and the limiting behaviour is described
by (@). If, however, f is not symmetric, then Ay # 0 and (&) holds.

As for the case 8 > 3/4 we have the following theorem.

Theorem 1.4 Assume that 8y = p and 3 > 3/4. Then, under the condi-
tions of Theorem [T, as n — oo, we have

° Ifén =Y, or én = M, then

sup Yy ()| = op(1).
zeR

° Ifén =Y, then

o (@) = V(o () — H(x; 6))=W (”“’ - ”) T

where W (-) is a Gaussian process.

o If 0, = M, Eei‘\/%*(g) < o0, then

2
—1x ~ Xr — g T —
Vo, in A (z) = Vn(Hy (2)—H(z;0,))=W ( M)—F—d}f ( > ,u) Z1,
(10)
ai is given by the formula (1.18) in [12].
An immediate corollary to Theorem [L2lis the following Cramér-Smirnov-von
Mises test. An appropriate version can also be stated in terms of Theorem

L4

Corollary 1.5 Let 8y = p and 6,, = Y,,. Under the conditions of Theorem
7,

a;én/R(Hn(x)—H(x;én))2dH(x;én) 4, %v?/R <f<1> (u)>2f (“”” - ") dz.

g

The above result should be compared with a regular situation of non-estimated
Cramer-Smirnov-von Mises statistics in [7]. The limiting distribution for the
model () in case of Gaussian errors ¢;, is a random variable Z2 multiplied
by a deterministic function.

In what follows C' will denote a generic constant which may be differ-
ent at each of its appearance. Also, for any sequences a,, and b,, we write
ap, ~ by if lim, .~ a, /b, = 1. Moreover, f (k) denotes the kth order deriva-
tive of f.



2 Proofs

Let p be a positive integer. Recall that
ap = ngcr;llLo(n),
and let

4 [ UL () (logn)* 2 (loglog )/, (p+1)(28 —1) > 1
P n_p(ﬁ_%)Lg(n)(log n)/2(loglogn)®*, (p+1)(28—1) <1

Note that d, 2 = o(ay,) provided g8 < %,
Put
p

Sn,p($) = Z(l{Xlgx} - F(l‘)) + Z(_l)T_lF(r) (x)Yn,r
i=1

r=1

(Lx,<ay = F(@)) + Vap(2)-

-

@
Il
—

Using Theorem [I.1] we obtain
Tryp SUP S p ()] =
zeR

{ Ou.s.(n~ G PE=3D [P (n)(log n)*/2 (log log n)*/4), (p+1)(26 — 1) > 1

Ou.s.(n™7=2) Lo(n) (log n)/*(log log n)*/1), (P+1)2F-1) <1’
Since (see (2)))
Inp === [~ (), (11)
On,1
we obtain
sup |5, (x) + 0,1 Vp()| = (12)
zeR

n
g _ _
= —Lsup Un,;: E :(1{Xi§x} - F(z)) + Un,;yvn,p(x) = 0g.5.(dnp)-
On,1 zeR i=1

For a function g(x;6) denote by Vjg(z;6p) its rth order derivative with
respect to @, evaluated at § = 6. In particular, V = V1.



2.1 Proof of Theorem

Recall ([Bl). For an arbitrary unknown parameter 6y and its estimator 0,, we
have by (I2)

(@) = m(z) + 0, 1n(H(x;00) — H(w; 60))

_ 3, (w - “) o n(H (x: 0) — H(x:0,)

T —p

- op(dn,a)—a,:jvn,2< >+a;jn<eo—én)veH(x;eo>

1 A 1 R A
+§0’;11n(90 —0,)*V2H (x:;600) + 605711”(90 —0,)3V3H (z:60)

_ xr — " _ xr —
= Op(dn,2) - O-n711 < p Iu> ZXZ + O-n711f(1) <Tlu> Yn,2
=1

) 1 ;
051100 — 0n) Vo H (w5 60) + 507 (80 — 0n)* V3 H (5 60)

1 N N
+50n1n(00 = 0n) VG H (2:07), (13)
with some 6% such that |0% — 6,,| < |0o — 67|.
If 8g = p, then
r r LT— U r 1 (r—1) (x—,u)
H(z)=V,F =(-1)"— — . 14
H(@) = VP (T 1) = -1y gt (2 (14)
Also, if 0,, = Y,,, then X
0 — 0o = 0 X, (15)

Hence, using uniform boundness of (%),

nle) = op(dna) ~ ok (o) L Xk ol () Vi
=1

o
_ T — - 1 _ T — - -
amll < > ,u> ZXZ' + §Jn711”f(1) < - N) X2+ 0p (O‘mll’l’LXg) .
i=1

Since 8 < 3/4, note that 0, 1Y, 2 = 0,(1) (cf. (@))), 0;1171)22 = op(1) and
a,jan’g = op(1). Thus, we conclude that sup, |5, (z)| £ 0 for 6, = ¥,,.

Further,

. T — _ 1 ., -

ufe) = 1O () [ori¥aa + 5orin®?]
0p(dn2a;,") + Op(ay, o, 10 X3) = 0,(1) + Op(a, oy ynn >0y, 1)

= op(1).

-1
a,, sup
x




Thus, (@) follows.

If 6, = M, then, as in (I3) and (),
ﬁn(‘/p) = Op(dn,2)_o- ( )ZX ‘|‘O' f(l < o >Yn,2+

ol =Y (T8) = Zoptath - ans (T E) +

g g

2127”,f“ < o )(u-—ALJ2+ch%a;bMu-ﬂﬂ0%
)~ St -0 ()

g

— op(dua) + oW (2

1 _ T — U
tozonind® (T2 (0= Mo+ Oplozin(u = M,)0)
From [12],
T in(My — p) = o5 in(Yo — ) + 0p(1) % 0% 2y (16)
and O';lln(Yn — M,,) = op(1). Thus, sup, |jn(z)| 2 0 for 6, = M,.

If ras(2) > 2, then from [12] Theorem 1.1],
aglg;jn(f/n — M,) = op(1),
thus in this case
2 N -1 L 2
An(T) — f( ) <T) [Un,lyn,2 + Famln(l‘ — M) }
= op(dnpa, ') +op(1) + Oplay, ‘o, 1n(p — My)?) = op(1).

Therefore, in view of (I6), () follows.
If rpr(2) = 2, then a;la;}ln is the proper scaling for (Y;, — M,,) and thus

o) = 10 (4 )[o;&m,ﬁi”(“‘M")Q]

2020, 1

+ f<x_”>0%—w%)

001 o
= Op(dn,2a;1) + Op(aglcf;’lln(,u - Mn)g) = op(1),
and hence (8)) follows using (I6) and Corollary 1.1 in [12].

a,, ! sup
x

a, 1sup




2.2 Proof of Corollary
Write

As for the second term, we have

/ ()2 gh(300) (Br) — 00)dz + R,
where R,, = Op((én —6p)?) = OP(én — 6p). Thus, the second term is of a X
smaller rate than the first one and the limiting behaviour of a;! [ 4, (x)?dH (x;0,)

is the same as that of [ 4, (z)%h(z;60y)dz. Thus, Corollary follows from
Theorem

©

2.3 Proof of Theorem 1.4
Recall that § > 3/4. Then

Vo in” i (x) = Vnowin ™ B, ( ) " \/_<
—

- ﬁ(Fn(ﬂ”;“)—Fﬁ‘“)H
( )ZZ L X —lf(Qo— On)f (“;“)+0(\/ﬁ(eo—én)2)
:: Wn( = ) <:13;,u> Z:i:/lﬁ i—;\/ﬁ(Qo—én)f<x;M)

+O(v/n(fo — 6n)?).
If g = 1 and 0, = Y,,, then via (I3,

7N
2%

sup ’\/ﬁan,ln_lfyﬂ(az) - W, ($ — M)} = Op(v/n(p —0,)?) = op(1).

zeR o
Thus, using [15] Theorem 3], we obtain ().
If g = p and 0,, = M, then

sup
zeR

Vi n ™ (o) = Wa(a) + - f () VA, - Ta)

10



If 3 > 3/4, then from [12, Theorem 1.1], \/n(M, — Yy,) N N(O,a%). Thus,
(I0) follows.
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