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Abstract. We study optimal behavior of energy producers under a CO2 emission abatement pro-

gram. We focus on a two-player discrete-time model where each producer is sequentially optimizing

her emission and production schedules. The game-theoretic aspect is captured through a reduced-

form price-impact model for the CO2 allowance price. Such duopolistic competition results in a

new type of a non-zero-sum stochastic switching game on finite horizon. Existence of game Nash

equilibria is established through generalization to randomized switching strategies. No uniqueness

is possible and we therefore consider a variety of correlated equilibrium mechanisms. We prove

existence of correlated equilibrium points in switching games and give a recursive description of

equilibrium game values. A simulation-based algorithm to solve for the game values is constructed

and a numerical example is presented.

1. Introduction

In this paper we study a new class of non-zero-sum stochastic switching games with continuous

state-space. Such games have natural applications in economics and finance, in particular for

describing oligopolistic competition between large commodity producers. Our motivating example

comes from the CO2 cap-and-trade markets and our analysis provides new quantitative insight into

the game-theoretic aspects of these schemes.

From a probabilistic perspective, a switching game is a repeated stopping game. It is character-

ized by a finite number of system states ~u, jointly selected by the players. In addition, there are

also system variables represented as controlled stochastic processes. The players dynamically react

to the evolution of state variables and actions of other players by strategically modifying the system

state. Overall, a switching game is a special class of dynamic non-zero-sum state-space games.

To our knowledge, such stochastic games have not been treated in detail before. Thus, our

contribution is a first rigorous probabilistic analysis of switching games. The structure of game Nash

equilibria in our model is delicate. In particular, we cannot guarantee a priori a unique equilibrium,

so that an additional mechanism is needed for equilibrium selection. We propose to apply the wider

concept of correlated equilibria. Our key result is the description of correlated equilibria in switching

games in Section 4.4. The resulting representation in Theorem 4.4 of switching games in terms

of a recursive sequence of stopping games leads to a constructive characterization of equilibrium

strategies. Namely, we prove the analogue of the dynamic programming equation for the game
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values which enables numerical solution through backward recursion. Thus, the complexity of

switching games is only slightly higher than for regular optimal switching problems.

In terms of existing literature this work can be seen as extending two separate strands of research.

Work on stochastic stopping games dates back to Dynkin [15] who considered zero-sum games.

Such games, now called Dynkin games, were progressively generalized, see [1, 11, 17, 20, 41].

Later extensions also treated special cases of non-zero-sum stopping games, especially the so-called

monotone type [25, 34, 35]. The key tool of correlated equilibria in stochastic dynamic games was

studied by [33, 37, 38, 39, 40]. Contemporaneously, the theory of optimal switching for a single

agent was developed and extensively studied in the past decade. Let us cite [8, 12, 22, 36] for

the associated results and the connections to optimal stopping. Combining the two literatures and

especially following the methods of Ramsey and Szajowski [37], we construct an equilibrium point

in the switching game. Simultaneously, we show that at equilibrium each player essentially faces

an optimal switching problem.

Beyond the theoretical characterization, another of our contributions is a construction of nu-

merical schemes to compute game-values and equilibrium strategies of switching games. This is

achieved by combining backward recursion together with recursive solution of local 2 × 2 games.

We suggest two approaches, one based on the Markov chain approximation method and a second

algorithm that relies on least squares Monte Carlo. The latter is a novel extension of our previous

work in [8, 30] and borrows ideas from standard optimal stopping theory to implement the analogue

of the dynamic programming recursion on a set of Monte Carlo simulations.

A significant portion of the paper is dedicated to the application of our model to emissions

trading. With imminent ramping up of CO2-emissions markets around the world, it is crucial to

understand energy producer behavior under the new frameworks. By design, the carbon allowances

will be scarce. As a result, the proposed CO2 cap-and-trade schemes will lead to (oligopolistic)

producers competing for finite permit resources. Following the well-established approach of using

game-theoretic methods in models of pollution and environmental impact (see e.g. the textbook

[14]), our analysis sheds new light on the implications of such dynamic competition. Overall, our

model is a first attempt to investigate oligopolistic behavior in CO2 markets and can serve as a

stepping-stone to more sophisticated modeling that addresses global market design (e.g. allocation

of allowances) and comparative statics of our framework.

The rest of the paper is organized as follows. In Section 2 we provide a general discussion of

oligopolistic competition in commodity production, followed by a description in Section 3 of the

precise stochastic model we employ. Section 4 constructs the representation of switching games

in terms of repeated stopping games. Section 5 describes our numerical solution algorithms and

presents a computational example. Finally, Section 6 discusses extensions of the model, notably to

a continuous-time setting, and points directions for future work.
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2. Competitive Equilibrium among Oligopolistic Producers

In this section we expand on the nature of the competitive dynamic equilibrium between pro-

ducers with market power.

2.1. Producer Behavior under Cap-and-Trade Emission Schemes. The pending expansion

of CO2 emission cap-and-trade schemes will lead to new competitive phenomena in energy markets.

In particular, the possibility of trading the carbon allowances will create a new major commodity

market. This market will differ from classical commodities due to its limited size (the total number

of allowances will be scarce) and its extreme seasonality (permits will be distributed each calendar

year and expire at year-end). Also, it will be intrinsically linked to other energy markets, notably

electricity whose production accounts for the bulk of regulated emissions. Last but not least, it is

likely that major carbon polluters will have strong influence in the carbon market and the ability to

dramatically move carbon prices based on their emission schedules. Hence, to understand equilibria

in CO2-markets it is useful to consider them from the point of view of large traders.

The model proposed below captures this price impact for a joint electricity-carbon market.

To fix ideas, consider two heterogenous producers (henceforth termed players) who each produce

commodity P (electricity) and consume commodity X (carbon allowances). These two producers

generate “dirty” electricity from e.g. coal or gas and can be viewed as representative agents of a

park of power plants with identical engineering characteristics. We assume that the two players

are large traders in the carbon market, but small players on the electricity market. This reflects

the fact that the other “green” producers (who use nuclear, hydroelectric, renewable, etc. sources)

create a competitive electricity market while remaining passive in the CO2-permits arena. Thus,

the players are price-takers for P but can each influence the price of X; at date t these prices

are denoted as Pt and Xt. All the other participants in the electricity and CO2 markets are not

modeled explicitly; rather we postulate that their collective actions induce stochastic fluctuations

in the respective commodity prices.

The key feature of our model is that both producers can affect the dynamics of the carbon

allowance price, leading to a non-zero sum stochastic game between them. The objective of the

producers is to maximize their expected net profits over the planning horizon, generally correspond-

ing to the expiry date of the carbon permits. Once the CO2 market is running, the producers’ profit

will depend on their clean dark spread [18] which is defined as the difference between electricity

price and the carbon-adjusted production cost (we assume that input fuel costs are fixed as is often

the case for power generators with long-term supply contracts). The strategy of each player is

described by a repeated start-up/shut-down option. Namely, if the market conditions are unfavor-

able, a player can stop production, eliminate CO2 emissions and avoid losses; she can then restart

production when the profit spread improves. As a first approximation we assume that these choices

of production regimes are binary and denoted as “off” (0) and “on” (1). In a single-player model,

such timing optionality is known as a real option and has been thoroughly investigated since the
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seminal work of [4, 13]. Repeated real options have attracted considerable attention recently, see

[8, 22, 30], and others.

Moving to the duopoly setting, the presence of multiple large traders in the market leads to

competitive effects. While each player is maximizing her own profits, the competitor actions will

also affect her decisions. Indeed, because the total number of allowances is limited, emissions today

shrink remaining permit supplies and tend to increase future CO2 prices. Therefore, if player 1 is

producing, player’s 2 expected future profits are reduced through this feedback effect. Overall, the

producers are facing a stochastic game where actions correspond to the latest choice of production

regime by each player and payoffs are a function of the exogenous price Pt and the endogenous price

Xt that is partly controlled by the players. Following classical game theory, competitive equilibrium

is then typically described through a Nash equilibrium point (NEP) of this game. Since the game

is stochastic and multi-period with Markov state variables, we restrict our attention to Markovian

(feedback) Nash equilibria. We are now interested in characterizing any and all such game equilibria

and then computing the corresponding game value functions (which describe expected profits) and

equilibrium emission schedules.

2.2. Types of Competitive Equilibrium. Intuitively, the dynamic switching game is a sequence

of one-period bimatrix games. At each stage t, the control or action ui(t) ∈ {0, 1} of each player

i ∈ {1, 2} is simply “on” or “off”, leading to the classic 2× 2 game. From a dynamic point of view,

the relevant payoffs to the players at stage t are then the sum of the current clean spreads and the

continuation values that correspond to the optimal game value that can be realized in the future

by the respective player contingent on current state of the world. In turn, these continuation values

depend on the future equilibria that will be implemented.

Let us recall that a one-shot 2× 2 game that has no weakly dominant actions (see Section 3.3),

can be classified as belonging to one of three possible types [5]:

(1) Standard game. This is the basic case where one action strictly dominates the other for at

least one player and a single pure Nash equilibrium point exists.

(2) Competitive game. No pure Nash equilibria exist, but a single mixed-strategy equilibrium

point is available.

(3) (anti-) Coordination game which yields two pure Nash equilibria, plus an additional mixed

Nash equilibrium point.

All of the above three types of 2×2 games are relevant for the analysis of competitive equilibrium

between the two producers of Section 2.1. Because the (P,X)-prices are stochastic, it is impossible

to a priori rule out some of the above scenarios; in fact depending on current input/output prices

we expect that all three game types can emerge locally. In particular, the third case of “battle-of-

the-sexes” or “chicken” game is likely to appear in the competitive duopoly case when the market

conditions are only able to support one producer. Thus, when the electricity-carbon spread is

slightly positive, each of the players will have an incentive to emit. However, if the price impact is

strong enough, it is not profitable for both of them to consume permits due to the associated future
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negative externalities. As a result, two pure Nash equilibria are possible whereby one producer

yields the market to the other. Hence, the two players try to achieve anti-coordination, taking the

opposite actions of each other.

In our repeated game setting, the players must a priori agree on how to implement future equilib-

ria, otherwise the outlined computation of continuation values would not be possible. Consequently,

without a clear equilibrium selection mechanism, the solution of the full switching game remains

ill-defined.

Remark 2.1. An alternative formulation is to take the controls ui(t) to be continuous, so that the

producers can choose the emissions level precisely rather than working with the binary “on/off”

controls. This would lead to a model of a non-zero-sum stochastic dynamic game. Such models have

been extensively studied in the past, both in discrete and continuous time, see for example [24,

32] and references therein. The problem of equilibrium selection is sometimes less severe with

continuous controls thanks to the convexity of value functions. In this work we choose to focus on

the timing flexibility and therefore maintain the discrete control space that can be interpreted in

terms of (sequential) optimal stopping. Otherwise, the distinction is similar to that between real

options models that analyze the best time to begin a project (timing option) vis-a-vis models that

focus on gradual capital accumulation (singular/continuous controls).

2.3. Equilibrium Selection. To describe equilibrium selection, we expand the notion of game

equilibria to the larger class of correlated equilibrium points. Namely, we shall assume that the

players engage in communication at each stage of the game which allows them to correlate their

decisions. This communication device is formally represented by a fictitious third party that directs

the players to implement a particular strategy profile via (randomized) private signals, see Section

4.2. The meaning of the resulting correlated equilibrium is that conditional on the private signal,

neither player has an incentive to deviate from the prescribed action, see condition (9) below.

Economically, the alluded third party is either a real entity, such as a government regulator or

market watchdog, or is a proxy for market frictions that make one equilibrium most preferable.

Thus, in spite of the description in the previous paragraph, no inherent collusion is required; corre-

lated decision-making can emerge thanks to factors that are outside our modeling scope or through

repeated learning, etc. The game is still non-cooperative and differs markedly from monopoly. If

the players are directed by a regulator, the latter may select a socially beneficial equilibrium. For

instance, a “utilitarian” communication device maximizes the (weighted) sum of the firms contin-

uation values so that the producers as a whole have best economic health. Alternatively, a “green”

device chooses the equilibrium that minimizes CO2 emissions. On the other hand, a “preferential”

communication mechanism can endogenously emerge without a third party due to extra advantages

available to a given player (e.g. due to preferential regulatory treatment or other externalities).

In the case-study below (Section 5.3 we will examine the following possibilities:

• A utilitarian mechanism, maximizing the sum of game values for the players;

• An egalitarian (Rawls) mechanism, maximizing the minimum game value of the players;
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• A fixed preferential mechanism, maximizing the game value for player 1 (resp. player 2).

Once a (contingent) correlated equilibrium device is fixed for each stage of the dynamic game,

we will show that the full competitive producer equilibrium problem has a well-defined game value

and equilibrium production schedules. Its solution can then be obtained through a variant of the

dynamic programming paradigm that is used in ordinary stochastic control problems. Namely, we

proceed through backward recursion, iteratively solving one-period 2 × 2-games to compute the

required continuation values. The formal details of this construction will be presented in Section 4.

In preparation, the next section completes our mathematical setup and culminates with a rigorous

formulation of the game objectives.

Remark 2.2. A related concept of competitive equilibrium in the industrial organization literature

is that of a stage Stackelberg game [3]. In a Stackelberg game, at each stage one player is the leader

and has priority in making decisions; the second player then follows. This description corresponds

closely to the preferential mechanism of equilibrium selection which always favors a given player.

3. Optimization Problem

3.1. Price Dynamics. Start with a filtered probability space (Ω,H, (Ft),P), t ∈ T , {0, 1, . . . , T}.
The full σ-algebra H is strictly bigger than FT , in particular big enough to support extra random-

ization parameters needed below.

The electricity price is given by the discrete-time stochastic process (Pt), for simplicity taken to

be one-dimensional,

Pt+1 = a(Pt, ε
P
t ),

where the innovations (εPt ) are independent. Our canonical example is the logarithmic Ornstein-

Uhlenbeck process which is a log-normal stationary Gaussian process with standard Gaussian

i.i.d. εP ’s,

Pt+1 = Pt · exp
(
κP (P̄ − logPt) + σP ε

P
t

)
, εPt ∼ N (0, 1),(1)

for some positive constants κP , P̄ , σP .

Let Xt be the carbon price at date t. We model Xt as another mean-reverting process, with

a policy-dependent mean and log-Gaussian increments. Namely, conditional on player actions

u1(t), u2(t), {
Xt+1 = Xt · exp

(
κX(f(u1(t), u2(t))− logXt) + σXε

X
t

)
with

f(u1, u2) = log(X̄ + g1u1 + g2u2).
(2)

The sequence (εXt ) are again standard Gaussian random variables, with correlation ρ to (εPt ), i.e.

εXt = ρεPt +
√

1− ρ2ε⊥t with ε⊥t ∼ N (0, 1) independent of εPt . Rising electricity prices are likely

to increase the overall CO2 emission rates and therefore we expect that P and X are positively

correlated, ρ > 0.
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Remark 3.1. To motivate the meaning of (2) in a carbon market, we recall from [19] that one

expects “Xt = xP̄{CT > c̄|Ft}” where CT is the cumulative total CO2 emission on [0, T ], x̄ is the

penalty for going over the allowance limit and c̄ is the total amount of allowances allocated. We

postulate that CT =
∑T−1

s=0

{
(
∑2

i=1 biui(s)) + ũ(s)
}

where giui(s) are the emissions of producer i

in period s and ũ(s) are the emissions by all the other market participants. Assuming independent

stochastic increments (due to external shocks such as weather effects, etc.) in ũ(s), the dynamics (2)

follow, with some complicated and time-dependent functions f(t, ·) and coefficients κX(t), σX(t).

Moreover, the above P̄ should be the equilibrium measure, incorporating future state-contingent

equilibrium emission strategies (u∗1, u
∗
2)(s) for s > t. To sidestep these challenges, (2) can be viewed

as a simplified (reduced-form) version of this description chosen to succinctly capture the temporal

feedback effect between ui’s and Xt. The form of (2) is only to fix ideas and much more complex

equations can be considered; the subsequent analysis makes only minor use of (2). Finally, let us

note that the form of the price impact f(u1, u2) is crucial to obtain an “interesting” game setting.

Without price impact the game becomes degenerate and reduces to standard optimization problems

for each producer. On the contrary, if the supply curve for the CO2 allowances is convex, then this

price impact would be nonlinear and further magnify the competitive effects.

As discussed above, the producers have simplified binary production schedules, so that ui ≡
(ui(t)) are {0, 1}-valued controls. Moreover, we assume that the producers have zero allowance

allocations and cannot bank allowances; therefore they must purchase the requisite allowances

separately at each stage of the game. The total P&L of the electricity producers then consists of

(i) revenue from selling electricity, minus the (ii) cost of buying emission allowances, as well as

(iii) operational costs due to adopted strategy ui. An important case of operational costs are fixed

switching costs K{i,j1,j2} that are paid each time the production regime of agent i is changed from

j1 to j2 and corresponding to the ramping-up/winding-down costs associated with the electricity

turbines [8, 18]. We set K{i,j1,j1} = 0∀j1 so costs are charged only at production regime switches.

Given a production schedule ui the net profit of producer i up to terminal date T is then

T−1∑
t=0

{
(aiPt − biXt − ci)ui(t) −K{i,ui(t−),ui(t)}

}
,(3)

for some constants ai, bi, ci,K{i,j1,j2}, i = 1, 2, representing amount of electricity produced by the

facility, the amount of corresponding CO2 allowances needed, fixed production costs and switching

costs, respectively. The ratio ai/bi represents the carbon efficiency of producer i. Below, the theo-

rems on existence of equilibria in stochastic games require bounded payoffs; therefore we formally

assume that payoffs are truncated as ψi(p, x, u) , N̄ ∧ (aip− bix− ci)u for some large constant N̄ .

3.2. Randomized Emission Schedules. Denote by F = (Ft), with Ft = σ(X0, P0, . . . , Xt, Pt),

the filtration generated by the price histories. The strategies ui may be mixed or randomized; recall

that a randomized F-stopping time is an F-adapted stochastic process p = (pt) with 0 ≤ pt ≤ 1,



8 MICHAEL LUDKOVSKI

a.s. The corresponding stopping time is

τ(p) , inf{t : ηt ≤ pt}, ηt ∼ Unif(0, 1) ⊥ FT , i.i.d.(4)

Thus, pt is interpreted as the probability of stopping at date t, conditional on not stopping so far.

When pt ∈ {0, 1} for all t, we are back in the case of regular F-stopping times. Otherwise, τ(p)

is not F-adapted because its value depends on η’s that are independent of (Ft). However, one

may enlarge the filtration so that {τ(p) ≤ t} is σ(Ft, ηs : 0 ≤ s ≤ t)-measurable. Thus, given

any enlarged filtration (G̃t) satisfying Ft ⊂ G̃t and P(A|Ft) = P(A|G̃t) for all t ≤ T,A ∈ FT , we

may identify any G̃-adapted stopping time with a F-randomized stopping time. We then denote

by DG̃(t) the set of all such randomized F-stopping times bigger than t.

In (8) below we define Git ⊇ Ft which is the private information filtration of player i; the

corresponding set of stopping times (viewed as F-randomized times) is denoted by Di. An admis-

sible production schedule pair (u1(t), u2(t)) consists of Gi-adapted {0, 1}-valued processes. Because

ui(t) ∈ {0, 1}, we have a one-to-one correspondence between admissible ui’s and sequences (τuk )∞k=1

satisfying τuk+1 ∈ Di(τuk ), via the alternative representation (using ī ≡ 1− i)

ui(t) =
∞∑
k=0

ui(0)1[τu2k,τ
u
2k+1) + ui(0)1[τu2k+1,τ

u
2k+2), τu0 = 0.(5)

The switching times τuk encode the times of production regime shifts defined by ui. The represen-

tation (5) holds because at most one regime switch can be made by each player at any given stage.

Indeed, multiple simultaneous regime switches by the same producer are strongly sub-optimal if

K{i,j1,j2} > 0 and weakly suboptimal otherwise.

A third representation of ui can be given in terms of the one-step switching probabilities (pt).

Namely, ui ≡ (pt, ηt) where 0 ≤ pt ≤ 1 is a F-adapted process and ηt is an i.i.d. sequence of

Unif(0, 1) random variables, independent of FT and with ηt ∈ Git . Given such (pt, ηt) we define

the Gi-stopping time

τuk+1 = inf{t > τuk : ηt ≤ pt}

and then use (5).

Let P~u be the law of (Pt, Xt) given a strategy pair ~u ≡ (u1(t), u2(t))Tt=0. We also use the notation

P~ζ to denote the law of (Pt, Xt) under a constant strategy profile ~u(t) ≡ ~ζ. The interpretation

of the randomization for the dynamics of Xt is straightforward: if pit denotes the probability of

changing the regime at date t by player i then

Xt+1 =



Xt · exp(κX(f(u1(t), u2(t))− logXt) + σXε
X
t ) on the event {ω : p1

t ≤ η1
t , p

2
t ≤ η2

t };

Xt · exp(κX(f(u1(t), u2(t))− logXt) + σXε
X
t ) on the event {ω : p1

t > η1
t , p

2
t ≤ η2

t };

Xt · exp(κX(f(u1(t), u2(t))− logXt) + σXε
X
t ) on the event {ω : p1

t ≤ η1
t , p

2
t > η2

t };

Xt · exp(κX(f(u1(t), u2(t))− logXt) + σXε
X
t ) on the event {ω : p1

t > η1
t , p

2
t > η2

t }.
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The corresponding expected cumulative profit starting with Ps = p0, Xs = x0 and initial production

regime ~ζ ∈ {0, 1}2 is

Vi(s, p0, x0, ~ζ; ~u) = E~u
[
T−1∑
t=s

{
(aiPt − biXt − ci)ui(t) −K{i,ui(t−),ui(t)}

} ∣∣∣Ps = p0, Xs = x0, ~u(s−) = ~ζ

]
.

(6)

Observe that a producer may immediately change her production mode at t = s, so that the

initial production regime is interpreted as occurring just before s.

3.3. Equilibria in 2×2 One Period Games. To define the notion of game equilibrium with the

player objectives given by (6) we first recall basic results on Nash equilibria in bimatrix games, see

[3, 21].

Consider a 2-by-2 one-shot game H with payoffs (αij , βij), i, j ∈ {0, 1}. The value αij ∈ R (resp.

βij) defines the payoff to player 1 (resp. player 2) when player 1 chooses action i ∈ {0, 1} and player

2 chooses action j ∈ {0, 1}. In matrix notation the normal form of H is

H =

(
(α00, β00) (α01, β01)

(α10, β10) (α11, β11)

)
,(7)

where the rows of H are interpreted as action choices of player 1, and the columns correspond to

the actions of player 2. A strategy of player i is a vector ~πi ≡ (π0
i , π

1
i ) whence πji is the probability

that player i chooses action j. Thus, ~πi is in the 2-simplex ∆2 , {(π0, π1) : πj ≥ 0, π0 + π1 = 1}.
If π0

i · π1
i = 0 then the strategy is pure; that is the choice of action is deterministic. Otherwise, the

strategy is mixed. A strategy profile is a pair (~π1, ~π2) specifying the strategies of each player. We

use the notation ~π−i ≡ ~π3−i to denote the strategy of the player other than i.

Given a strategy profile, the value to player 1 is A(~π1, ~π2) ,
∑

j,k π
j
1π

k
2α

jk and is B(~π1, ~π2) ,∑
j,k π

j
1π

k
2β

jk to player 2. The above shows that a strategy profile (~π1, ~π2) can be viewed as a

probability distribution on the corresponding payoff space, given by the product measure ~π1×~π2 of

the marginal strategies. This factorization is due to the fact that agents make independent decisions

about their actions.

A strategy profile (~π∗1, ~π
∗
2) is a Nash equilibrium point (NEP) of H if we have

A(~π∗1, ~π
∗
2) ∈ arg sup

(π0
1 ,π

1
1)∈∆2

∑
j,k

πj1(π∗2)kαjk,

B(~π∗1, ~π
∗
2) ∈ arg sup

(π0
2 ,π

1
2)∈∆2

∑
j,k

(π∗1)jπk2β
jk.

Hence, ~π∗i is a best-response for player i, given that the other player uses ~π∗−i. We denote by

E(H) = {(A,B)(~π1, ~π2) : (~π1, ~π2) is a NEP of H},

the set of all game values corresponding to Nash equilibria points. The subset of NEP corresponding

to pure strategy profiles is denoted by Ep and can be directly characterized as [35]

Ep(H) =
{

(αi
∗j∗ , βi

∗j∗) : αi
∗j∗ ≥ αij∗ , βi∗j∗ ≥ βi∗j ∀i, j

}
.



10 MICHAEL LUDKOVSKI

We say that action i of agent 1 dominates (resp. weakly dominates) action i′ if the expected payoff

from implementing i is strictly bigger (resp. no smaller) than the expected payoff of i′, αij > αi
′j

for all j. A NEP involving weakly dominant actions is subject to “trembling hand” deviations and

will be ruled out in the sequel. As mentioned in Section 2, depending on three possible game types,

Ep is then either empty, consists of a singleton or contains two pure Nash equilibrium points. The

classical theorem of Nash shows that the full |E| > 0 is always non-empty.

The above classification implies that to establish existence of NEP, one must consider mixed

strategies; furthermore uniqueness is usually unavailable. In order to have a well-defined game value,

we employ equilibrium refinement methods. Our construction relies on a correlation mechanism

γ ≡ (γij) ∈ ∆4 [2, 31]. A correlated equilibrium is a probability distribution γij on the strategy

profile space, which is communicated to the players using signals µi(γ) ∈ {0, 1}, defined by µ1(γ) =

1{γ10+γ11<η1} and µ2(γ) = 1{γ01+γ11<η2} where η1, η2 are two independent uniform random variables

on [0, 1], the randomization parameters. The η’s are not observed; each player only sees her signal

µi. Conditional on the signal, the agent can impute the conditional strategy of the other player

by e.g. ~π2(γ)
∣∣
µ1(γ)=0

= ( γ00
γ00+γ01

, γ01
γ00+γ01

). By definition of µi(γ), the resulting strategy profile

(~π1(γ), ~π2(γ)) has dependent marginals and joint distribution γ.

The meaning of equilibrium is that given a signal µi(γ) and the implied strategy π−i(γ)|µi(γ)

by the other player, player i has no incentive to deviate from the signalled action µi(γ). For 2× 2

games, since the only deviation is choosing the opposite action, this reduces to (see [2, 5]),

Definition 3.1. A probability distribution γ on {0, 1}2 is a correlated equilibrium point (CEP) of

the bimatrix game H in (7) if

{
γ00α

00 + γ01α
01 ≥ γ00α

10 + γ01α
11, γ11α

11 + γ10α
10 ≥ γ11α

01 + γ10α
00,

γ00β
00 + γ10β

10 ≥ γ00β
01 + γ10β

11, γ11β
11 + γ01β

01 ≥ γ11β
10 + γ01β

00.

For instance, the first inequality means that conditional on player 1 signal being µ1(γ) = 0, the

expected payoff to player 1 from action 0 (the right-hand-side) is better than the expected payoff

from action 1. In either scenario, player 2 implements the conditional strategy ( γ00
γ00+γ01

, γ01
γ00+γ01

).

We recall that the set of correlated equilibria points, denoted Ec ⊇ E includes the convex hull of

all Nash equilibrium points and therefore allows randomization over which NEP is chosen (if more

than one is available). Given a correlation device γ, the resulting game value is denoted

V alγ(H) ,

(∑
i,j γijα

ij∑
i,j γijβ

ij

)
.

Except for the strictly-competitive games, one may always find correlation devices that corre-

spond to pure Nash equilibria so that randomization (either by players or regulator) would not be

needed otherwise. Nevertheless, to maintain generality we continue to work with general fully-mixed

correlation devices.
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Remark 3.2. For standard and strictly-competitive games, the set of CEP coincides with the unique

NEP available. On the other hand, a continuum of correlated equilibria exist in the (anti-) coor-

dination case [5]. In particular, new Pareto-efficient fully mixed equilibria can be obtained by

correlating the actions of each player and reducing the wasteful non-coordinated outcomes that

would arise from independent randomizations.

3.4. Formal Objective. We now combine the performance criteria in (6) with the concept of

correlated equilibria to state the final optimization problem. Let γ ≡ (γt) be a fixed Markovian

communication device, i.e. a map γt : (s, p, x, ~ζ)→ ∆4. As before, γ produces a private correlation

signal µi(t; γ) for agent i ∈ {1, 2} at each stage t. We denote the resulting strategy profile as

~u(t; γ) = (µ1(t; γ), µ2(t; γ)) and assume a full-information setting, whereby the emission schedules

of each agent are publicly known. Define

Git = σ(Ft, µi(s; γ), 0 ≤ s ≤ t).(8)

The set of admissible strategies for player i is Ui, consisting of all Gi-adapted switching randomized

controls ui. Since the equilibrium strategy of player i at each stage is pure given the signal µi, one

can in fact restrict admissible strategies to just Gi-adapted switching controls (in the same way as

one can restrict attention to pure stopping times in optimal stopping problems).

Definition 3.2. A correlated equilibrium point (CEP) for the switching game is a communication

device γ and a joint production schedule ~u∗ such that ∀(s, p0, x0, ~ζ) (recall definition of Vi in (6)){
V1(·;u∗1, u∗2) ≥ V1(·;u1, u

∗
2) ∀u1 ∈ U1,

V2(·;u∗1, u∗2) ≥ V2(·;u∗1, u2) ∀u2 ∈ U2.
(9)

The resulting game value is denoted simply as Vi(·; γ).

Note that in (9), even if a player chooses to deviate from the recommendation µi(t; γ) she

continues to receive future signals µi(s; γ), s > t and therefore information about the implied

strategy of the other player. Existence of CEP of switching games will be established in Theorem

4.4. We will also provide a recursive construction of Vi(t, ·) in terms of conditional expectations of

Vi(t+ 1, ·) and one-shot 2× 2 games.

4. Sequential Stopping Game

Our analysis of the switching game will consist of building up the solution in several steps. We

begin with analyzing the single-agent objective. Next, in Section 4.2 we move on to the one-shot

non-zero-sum stopping game that is built iteratively from the one-period 2×2 games, following the

methods of [37]. Finally, in Section 4.4 we describe the sequential stopping game that in the limit

leads to our original model and definition (9).
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4.1. Single Producer Problem. Before tackling the stochastic duopoly game, let us briefly re-

view the solution of the single-player model. Since the control ui(t) takes on a finite number of

values, we have an optimal switching model that can be viewed as a sequence of optimal stopping

problems. Such models (including price impact) were studied in [8, 30].

Let us consider the optimization for producer 1. For the remainder of this section we fix a

production schedule u2 of the second producer, as well as a communcation device γ that sends

private signals µ1(γ) to player 1. In the single-producer problem, the objective is to maximize the

expected profit

sup
(u(t))∈U1

E(u,u2,γ)

[
T−1∑
t=0

{
(a1Pt − b1Xt − c1)u(t) −K{1,u(t−),u(t)}

}]
.(10)

Because producer 1 receives private signals µ1(t; γ), the set of admissible controls is again U1,

i.e. G1-adapted.

Consider initial conditions Ps = p,Xs = x, u2(s) = ζ2 and let V (s, p, x, ζ2) be the value function

corresponding to (10) conditional on starting in the “on”-production regime, and W (s, p, x, ζ2) the

value function starting offline. Furthermore, using same initial conditions define recursively



V 0(s, p, x, ζ2) = E(1,u2,γ)

[
T−1∑
t=s

(a1Pt − b1Xt − c1)

]
, as well as W 0(s, p, x, ζ2) = 0;

V n(s, p, x, ζ2) = sup
τ∈D1(s)

E(1,u2,γ)

[
τ−1∑
t=s

(a1Pt − b1Xt − c1) + (Wn−1(τ, Pτ , Xτ , u2(τ))−K{1,1,0})

]
;

Wn(s, p, x, ζ2) = sup
τ∈D1(s)

E(0,u2,γ)
[
V n−1(τ, Pτ , Xτ , u2(τ))−K{1,0,1}

]
, n ≥ 1

(11)

where under P(i,u2,γ) the drift of the carbon allowance price is f(i, u2(t)).

Proposition 4.1. Let Un1 , {u ∈ U1 : u has at most n switches}. Then,

V n(s, p, x, ζ2) = sup
(u(t))∈Un

1 ,u(s−)=1
E(u,u2,γ)

[
T−1∑
t=s

{
(a1Pt − b1Xt − c1)u(t) −K{1,u(t−),u(t)}

}]
,

and as n → ∞, V n(s, p, x, ζ2) → V (s, p, x, ζ2), Wn(s, p, x, ζ2) → W (s, p, x, ζ2) uniformly on com-

pacts.

Proof. This is an analogue of [8, Theorem 1]. Compared to our earlier work, the only new feature is

that the payoffs to producer 1 are randomized. Indeed, from her perspective, the strategy of player

2 (implied through the private signal µ1(γ)) may be mixed. In the latter case her continuation

value is unknown at decision time, depending as it is on the action of player 2. Formally, allowing

for a relaxed switching control p1
s at date s (representing probability of a switch) the dynamic
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programming principle implies that in (11)

V n(s, p, x, ζ2) = Eγs
[

sup
p1s∈[0,1]

{
(1− p1

s)(a1p− b1x− c1) + p1
sK{1,1,0}

+ Eµ1(s;γ)
[
p1
sp

2
sW

n−1(s+ 1, Ps+1, X
(0,ζ̄2)
s+1 , ζ̄2) + p1

s(1− p2
s)W

n−1(s+ 1, Ps+1, X
(0,ζ2)
s+1 , ζ2)

+ (1− p1
s)p

2
sV

n(s+ 1, Ps+1, X
(1,ζ̄2)
s+1 , ζ̄2) + (1− p1

s)(1− p2
s)V

n(s+ 1, Ps+1, X
(1,ζ2)
s+1 , ζ2)

]}]
.

The outer expectation is averaging over the signal µ1 whose law is specified by the communication

device γ; however the decision-maker has access to µ1(t; γ) and therefore makes the switching

decision p1
s based on the conditional strategy (p2

s)|µ1(s) of player 2. The inner optimization is

linear in p1
s and therefore the optimizer must be an end point of [0, 1]. Thus, as expected, we can

continue to work with pure Gi-adapted controls. Note, that from the perspective of an observer

who has access only to Fs, the strategy of both players appears randomized.

The rest of the proof proceeds exactly as in [8] by iterating over the control decisions of producer

1 using the strong Markov property of (P,X) and the Snell envelope characterization of optimal

stopping problems. �

Proposition 4.1 shows that the solution to (10) can be represented in terms of the sequence

(V n,Wn) which correspond to optimal stopping problems defined in (11). Taking the limit n→∞
we obtain the corollary

Corollary 4.1. (V,W ) satisfy the coupled dynamic programming equation:


V (s, p, x, ζ2) = sup

τ∈D1(s)

E(1,u2,γ)

[
τ−1∑
t=s

(a1Pt − b1Xt − c1) + (W (τ, Pτ , Xτ , u2(τ))−K{1,1,0})

]
W (s, p, x, ζ2) = sup

τ∈D1(s)

E(0,u2,γ)
[
V (τ, Pτ , Xτ , u2(τ))−K{1,0,1}

]
,

(12)

Moreover, an optimal strategy u∗1 ∈ U1 exists.

4.2. Non-Zero-Sum Stopping Games. In this section we recall existing results on two-player

non-zero sum stopping games in discrete time, and finite horizon. We refer to [20, 34, 35, 37, 39]

for further references.

Let Z ≡ (Zjki (t)), i ∈ {1, 2}, j, k ∈ {0, 1} be a octuple of bounded (Ht)-adapted stochastic

processes on a filtered probability space (Ω,H, (Ht),P). Consider a finite horizon stochastic game

with player i ∈ {1, 2} maximizing the reward

J̃i(s, τ1, τ2) ,

τi∧τ−i−1∑
t=s

Z00
i (t)

+ Z10
i (τi)1{τi<τ−i} + Z01

i (τ−i)1{τ−i<τi} + Z11
i (τi)1{τi=τ−i},(13)

where the (randomized) (Ht)-stopping times τi ≤ T are chosen by player i. In words, Z00
i is the

ongoing reward for staying in the game, Z10
i is the reward if the player stops first; Z01

i is the reward
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if the other player stops first and Z11
i is the reward if both players stop simultaneously. Thus,

continuing is associated with action ‘0’ and stopping with action ‘1’.

The theory of game equilibria of (13) has been divided according to the relationships between

Zjk’s. The first case of the Dynkin zero-sum stopping game corresponds to Z10
1 = −Z01

2 , Z01
1 =

−Z10
2 , Z11

1 = −Z11
2 and was recently fully analyzed by Ekstrom and Peskir [17]. Also, the monotone

cases Z01
i ≤ Z11

i ≤ Z10
i P̄-a.s. (where both players prefer to stop late) and Z01

i ≥ Z11
i ≥ Z10

i

where both players prefer to stop first, were considered by Ohtsubo [34]. In these special cases,

the assumptions on the payoff structure ensure the existence of a unique pure Markov NEP. The

fundamental result of [34, 35] states that if one can find a pair of H-adapted random processes

(V1, V2) such that Ē[sup0≤t≤T Vi(t)] <∞ and

(V1(t), V2(t)) ∈ E

(
(Ē[V1(t+ 1)|Ht] + Z00

1 (t), Ē[V2(t+ 1)|Ht] + Z00
2 (t)) (Z01

1 (t), Z01
2 (t))

(Z10
1 (t), Z10

2 (t)) (Z11
1 (t), Z11

2 (t))

)
,(14)

for all 0 ≤ t ≤ T then (V1, V2) form a pair of game value functions for the stopping game Z. The

functions Vi(t) can be sequentially constructed using backward recursion, starting with the terminal

condition Vi(T ) = 0, and the usual conditional expectation paradigm. This reduces computation

of game values to iterative solution of one-shot 2 × 2 games, in complete analogy to standard

discrete-time dynamic programming.

Without any assumptions on the structure of Z appearing in (13), the existence of a pure NEP

is not guaranteed. However, as shown by [20] a two-person stopping game always admits a mixed

Nash equilibrium point. This is consistent with our discussion in Section 3.3 where we have shown

that |E| > 0 for the 2-by-2 game (14) arising at each stage of the stopping game. A randomized

stopping strategy profile is a pair (τ(p1), τ(p2)) of randomized (Ht)-stopping times, recall (4). It

can also be viewed as a sequence of one-period strategy profiles defined by ~πi(t) = (1− pi(t), pi(t)).

4.3. Correlated Equilibria in Stopping Games. In order to have a well-defined concept of a

game value for a stopping game, the problem of potentially multiple equilibria must be addressed.

Following [37] we use the concept of weak (stepwise) communication device γ. Such γ is an (Ht)-
adapted stochastic process taking values in ∆4, i.e. γ(t) is a probability measure on the stopping

action pair, where γ10(t) (resp. γ01(t)) specifies the probability that the first (resp. second) player

stops at stage t, γ00(t) is the probability that both continue and γ11(t) is the probability that both

stop. Thus, conditional on the game still continuing, the stage-t expected payoff to player i is∑
j,k γjk(t)Z

jk
i (t). Given (γjk(t)), the randomized stopping rules are defined by{
τ1(γ) , inf{t : η′1(t) ≤ γ10(t) + γ11(t)},

τ2(γ) , inf{t : η′2(t) ≤ γ01(t) + γ11(t)},
η′1(t), η′2(t) ∼ Unif [0, 1] i.i.d.

Overall, the total expected payoff to player i is

Ēγ
[
J̃i(s, τ1(γ), τ2(γ))

]
= Ē

T−1∑
t=s

∑
j,k

{(t−1∏
r=0

γ00(r)
)
γjk(t)Z

jk
i (t)

} .(15)
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The correlation is implemented by a third-party simulating the pair (η′1, η
′
2) and then communi-

cating the signal µi(t; γ) = 1{τi(γ)≥t}1{η′i(t)≤γi(−i)(t)+γ11(t)} to player i. In comparison to independent

randomizations giving rise to τ(p1), τ(p2) above, the stopping times τi(γ) may be dependent. The

communication device is active on the full horizon [0, T ], regardless of deviations. Consequently,

given γ, the payoff functionals J̃1(t, τ̃1, τ2(γ)) and J̃2(t, τ1(γ), τ̃2), as defined in (13) are well-defined

for any τ̃i ∈ Di(t). This leads to

Definition 4.1. Consider a stopping game (Zjki ) with payoffs in (13). A stopping strategy ~τ(γ) ,

(τ1(γ), τ2(γ)) ∈ D1×D2 is a correlated equilibrium of Z with communication device γ if for i = 1, 2

and all 0 ≤ t < T we have

Vi(t; γ,Z) , Ēγ [J̃i(t, ~τ(γ))|Ht] ≥ Ēγ [J̃i(t, τ̃i, τ−i(γ))|Ht], ∀τ̃i ∈ Di(t).(16)

Observe that given a device γ leading to a correlated equilibrium, it must be that

(17) Vi(t; γ,Z) = sup
τ∈Di(t)

Ēγ
[(τ∧τ−i(γ))−1∑

s=t

Z00
i (s)

+ Z10
i (τ)1{τ<τ−i}

+ Z01
i (τ−i)1{τ−i<τ} + Z11

i (τ)1{τ=τ−i}
∣∣Ht]

which is a standard optimal stopping problem for player i in the enlarged filtration Gi. Let us also

recall the following result (compare to (14)).

Lemma 4.2. [37, Theorem 2.3] Consider a CEP with communication device γ of a stopping game

Z. Then for all t ∈ {0, 1, . . . , T − 1} we have



γ00(t)(Ē[V1(t+ 1)|Ht] + Z00
1 (t)) + γ01(t)Z01

1 (t) ≥ γ00(t)Z10
1 (t) + γ01(t)Z11

1 (t));

γ00(t)(Ē[V2(t+ 1)|Ht] + Z00
2 (t)) + γ10(t)Z10

2 (t) ≥ γ00(t)Z01
2 (t) + γ10(t)Z11

2 (t);

γ10(t)Z10
1 (t) + γ11(t)Z11

1 (t) ≥ γ10(t)(Ē[V1(t+ 1)|Ht] + Z00
1 (t)) + γ11(t)Z01

1 (t);

γ01(t)Z01
2 (t) + γ11(t)Z11

2 (t) ≥ γ01(t)(Ē[V2(t+ 1)|Ht] + Z00
2 (t)) + γ11(t)Z10

2 (t).

(18)

As shown by [37, Theorem 2.4], any finite-horizon stopping game with bounded payoffs admits a

CEP; in fact outside the zero-sum and monotone cases we expect that a large number of CEPs are

possible. It is convenient to think of communication device γ leading to a CEP as a measurable

selector of local correlated equilibrium points in the one-shot 2 × 2 games. Thus, let Γ : T × Ω ×
R2×2×2 → ∆4 be a measurable map such that for any 2 × 2 game H, Γ(t, ω,H) ∈ Ec(H). Then

using Γ, one may construct a communication device γ by using the CEP Γ(t, ω,Z(t, ω)) on (14)

and applying backward induction. Observe that for most H’s, Γ(·, H) is simply the unique NEP

available, so that the selection feature is “silent”, and the device is only really activated when

considering the coordination game. With this perspective in mind, we call a correlation law Γ a

communication device which is based on the same local criterion (for instance “minimize today’s

emissions” or “maximize today’s value of player 1”).
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Remark 4.1. A variety of correlated decision-making is possible in sequential games [31]. Here

we focus on the stepwise weak communication device which means that players and the regulator

communicate before each stage; such a formulation allows the most flexibility and fits our economic

description. However, in practice much weaker correlation could suffice. For instance, players can

agree at date 0 to use the preferential-i correlation law which means that in any “tie-break” case,

player i “wins”. Once this rule is fixed, no further communication (or randomization by regulator)

would be necessary. Similarly, if Γ is such that the implied strategy ~π−i(Γ)|µi(γ) of the other player

is always pure, then a public randomization (representing external circumstances not part of the

model) is sufficient at each step and no private signals are needed.

4.4. Recursive Construction. We return to the CO2-duopoly market setup. The emission sched-

ules of the two agents are interpreted as a sequence of regime-changes. Thus, the single-stopping

game in the previous section is viewed as the sub-game for making the next regime-switch. The

stopping game in Section 4.2 is accordingly denoted as a (1, 1)-fold switching game and we now

will consider (n,m)-fold switching games with game value functions V n,m. These games have a

restricted set of possible production strategies; namely the total number of regime switches over

the game horizon is bounded by n and m, respectively. Using the Markov property of the game

state and actions it is not surprising that these various switching games are related to each other.

In terms of the notation of Section 4.2, we identify the running profit with Z00
i (t) = (aiPt −

biXt − ci)ui(t) and the other Zjki ’s with various game continuation-values. The generic filtration

(Ht) of the previous section will be replaced with the filtration (Ft) generated by (Pt, Xt), and we

will make explicit the resulting dependence of game values on current prices and initial regime ~ζ.

For the remainder of the section, we make a standing assumption that a communication device

γ is chosen and fixed. Let us fix an initial state Ps = p,Xs = x and initial production regime
~ζ = (ζ1, ζ2). Define a double cascade of stopping games indexed by n and m via

V n,m
i (s, p, x, ~ζ) , Vi(s; γ, Z̃n,m(~ζ)), n,m ≥ 1(19)

which uses the notation of (16) based on the recursive payoff structure

(Z̃n,m)00
i (t, ~ζ) = (aiPt − biXt − ci)ζi;

(Z̃n,m)01
i (t, ~ζ) = V n,m−1

i (t, Pt, Xt, ζ1, ζ̄2)− 1{i=2}K{2,ζ2,ζ̄2};

(Z̃n,m)10
i (t, ~ζ) = V n−1,m

i (t, Pt, Xt, ζ̄1, ζ2)− 1{i=1}K{1,ζ1,ζ̄1};

(Z̃n,m)11
i (t, ~ζ) = V n−1,m−1

i (t, Pt, Xt, ζ̄1, ζ̄2)−K{i,ζi,ζ̄i}.

(20)

The boundary cases are first

V 0,0
i (s, p, x, ~ζ) , E~ζ

[
T−1∑
t=s

(aiPt − biXt − ci)ζi

]
;
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next, V n,0
1 (s, p, x, ~ζ) and V 0,m

2 (s, p, x, ~ζ) are identified with the single-player optimization problems

as in (11) (keeping the emission regime of the other player fixed at ζ−i). Finally, we take

V n,0
2 (s, p, x, ~ζ) = E(un,∗

1 ,ζ2,γ)

[
T−1∑
t=s

(a2Pt − b2Xt − c2)ζ2

]
where un,∗1 is an optimal control for the problem defining V n,0

1 , and similarly for V 0,m
1 (s, p, x, ~ζ).

4.5. Switching Game Equilibrium as Sequential Stopping Game Equilibrium. We now

proceed to glue the sequential stopping games of V n,m
i and re-interpret the latter as value functions

of a switching game. Recall that for n ≥ 0, Uni ⊂ Ui is the set of all production strategies for player

i with at most n switches. Consider the restricted repeated game with payoffs (6) where we require

u1 ∈ Un1 and u2 ∈ Um2 , so that the first producer may change her production regime at most n

times, and the second producer at most m times.

Our first task is to obtain a switching-game CEP that matches the definition of V n,m. To do

so we pick a correlation law Γ; Γ gives rise to a CEP of any stopping game, in particular it leads

to well-defined game values V n,m
i in (19). We now construct a communication device γn,m for the

(n,m)-switching game. Let ki(t) be the number of production switches used by player i by stage

t. We define γn,m(t) at stage t by applying the device Γ(Z̃n−k1(t),m−k2(t)(t, ~u(t)) defined in terms

of (20) and the latest regime ~u(t). Note that the overall γn,m is no longer Markovian since it has

memory of the number of switches made by each player, which is necessary in the constrained game.

The above construction is well-defined for all paths of (P,X, ~u), even outside equilibrium.

Using γn,m we proceed to construct switching controls un,mi for the (n,m)-switching game. To

simplify notation we write τn,m = τ1(γn,m) ∧ τ2(γn,m) which is interpreted as the equilibrium

first stopping time for the game defined by (19) under the correlation law Γ. Given the starting

production regime ~ζ = (ζ1, ζ2), let us define the switching controls un,mi (s) for this game by

un,m1 (s) = ζ1 for s < τn,m;

un,m1 (s) =


ζ̄1 for τn,m ≤ s < τn−1,m when τn,m1 < τn,m2 ;

ζ1 for τn,m ≤ s < τn,m−1 when τn,m2 < τn,m1 ;

ζ̄1 for τn,m ≤ s < τn−1,m−1 when τn,m1 = τn,m2 ,

(21)

... and so on,

and similarly for un,m2 (t). In words, un,mi keeps track of the production regime of the i-th agent

following the decision rules defined sequentially by descending through the family of the V n,m-

stopping subgames (one stopping game at a time). Then by definition of (19) we have un,m1 ∈ Un1
and un,m2 ∈ Um2 . It can also be seen through an easy induction argument that

V n,m
i (s, p, x, ~ζ) = Vi(s, p, x, ~ζ; ~un,m),(22)

so that the switching control ~un,m of (21) allows to achieve the game values V n,m defined recur-

sively in (19). Moreover, the next theorem shows that the pair (un,m1 , un,m2 ) is in fact a correlated

equilibrium (using correlation device γn,m) for the game (6) over the control set Un1 × Um2 .
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Theorem 4.3. For all n > 0 and u1 ∈ Un1 we have V1(t, ·;un,m1 , un,m2 ) ≥ V1(t, ·;u1, u
n,m
2 ). Similarly

for all m > 0 and u2 ∈ Um2 we have V2(t, ·;un,m1 , un,m2 ) ≥ V2(t, ·;un,m1 , u2).

Proof. The idea of the proof is to make use of the Markov structure of our problem and apply

induction. The other key tool is that given γn,m, we can look at one player at a time which

essentially reduces to a single-player problem studied before, see (17).

Due to symmetry, it suffices to prove the result for player 1. When m = 0 the other player

cannot act, the game becomes trivial and Theorem 4.3 is just a re-statement of Proposition 4.1.

Conversely, when n = 0, the first player cannot act and there is nothing to prove. Using induction

we assume that the theorem has been shown for the pairs (n− 1,m− 1), (n,m− 1) and (n− 1,m);

let us show it for the case (n,m). Given an arbitrary u1 ∈ Un1 , write it as u1 = (τ1, û1) where

û1 ∈ Un−1
1 denotes the remainder of u1 after the first switch time τ1. Let τ2,∗ ≡ τ2(γn,m) be the

first switch for the second player dictated through γn,m. Define τ = τ1 ∧ τ2,∗. Also for notational

convenience we omit all the arguments of V n,m except for the time variable. Then the strong

Markov property of (P,X) and the way un,m2 (t) was constructed show that

E(u1,u
n,m
2 ,γn,m)

[
T−1∑
s=τ

(a1Ps − b1Xs − c1)û1(s)

]
= E(u1,u

n,m
2 ,γn,m)

[
V1(τ ; û1, u

n−1,m
2 )1{τ1<τ2,∗}

+ V1(τ ; û1, u
n,m−1
2 )1{τ1>τ2,∗} + V1(τ ; û1, u

n−1,m−1
2 )1{τ1=τ2,∗}

]
.

Conditioning on τ1 and τ2,∗ we therefore have

V1(t;u1, u
n,m
2 ) = E(u1,u

n,m
2 ,γn,m)

[(τ−1∑
s=t

(a1Ps − b1Xs − c1)u1(t)

)
+

(
T−1∑
s=τ1

(a1Ps − b1Xs − c1)û1(s)

)
1{τ1<τ2,∗}

+
( T−1∑
s=τ2,∗

(a1Ps − b1Xs − c1)û1(s)
)

1{τ1>τ2,∗} +

(
T−1∑
s=τ1

(a1Ps − b1Xs − c1)û1(s)

)
1{τ1=τ2,∗}

]

= E(u1,u
n,m
2 ,γn,m)

[(τ−1∑
s=t

(a1Ps − b1Xs − c1)u1(t)

)
+ V1(τ ; û1, u

n−1,m
2 )1{τ1<τ2,∗}

+ V1(τ ; û1, u
n,m−1
2 )1{τ1>τ2,∗} + V1(τ ; û1, u

n−1,m−1
2 )1{τ1=τ2,∗}

]
by induction hypothesis we have the inequality

≤ E(u1,u
n,m
2 ,γn,m)

[(τ−1∑
s=t

(a1Ps − b1Xs − c1)u1(t)

)
+ V1(τ1;un−1,m

1 , un−1,m
2 )1{τ1<τ2,∗}

+ V1(τ2,∗;un,m−1
1 , un,m−1

2 )1{τ1>τ2,∗} + V1(τ1;un−1,m−1
1 , un−1,m−1

2 )1{τ1=τ2,∗}

]
≤ sup

τ1∈D1(t)

E(u1(t),un,m
2 ,γn,m)

[(τ−1∑
s=t

(a1Ps − b1Xs − c1)u1(t)

)
+ V1(τ1; ~un−1,m)1{τ1<τ2,∗}

+ V1(τ2,∗; ~un,m−1)1{τ1>τ2,∗} + V1(τ1; ~un−1,m−1)1{τ1=τ2,∗}

]
= V1(t; ~un,m1 ),
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where the last line uses the relationship (22), the construction of the stopping game defining V n,m

in (20), and property (17). �

The above construction leads to the key result of this section that characterizes CEP of switch-

ing games, establishes their existence, and gives a recursive formula for the resulting game value

functions.

Theorem 4.4. Fix a correlation law Γ. Then Γ gives rise to a CEP of the switching game (6).

Moreover, the corresponding value functions Vi(t, p, x, ~ζ; Γ) solve

(23) (V1(t, ~ζ), V2(t, ~ζ)) =

V alΓ(t)

(
(Z1(t, ζ1, ζ2), Z2(t, ζ1, ζ2)) (Z1(t, ζ1, ζ̄2), Z2(t, ζ1, ζ̄2)−K2,ζ2,ζ̄2

)

(Z1(t, ζ̄1, ζ2)−K1,ζ1,ζ̄1
, Z2(t, ζ̄1, ζ2)) (Z1(t, ζ̄1, ζ̄2)−K1,ζ1,ζ̄1

, Z2(t, ζ̄1, ζ̄2)−K2,ζ2,ζ̄2
)

)

where Zi(t, ~ζ) = E~ζ [Vi(t+ 1, ~ζ)|Ft] + (aiPt − biXt − ci)ζi. Moreover the equilibrium controls can be

taken as u∗i ≡ u
T,T
i , as defined in (21).

Proof. We wish to take n,m→∞ in Theorem 4.3. Because for n > m, Um ⊆ Un, it follows that for

a fixed m, V n,m
1 is increasing in n (and for a fixed n, V n,m

2 is increasing in m). For our finite horizon

discrete-time game, at most T regime switches are possible for each player. Therefore u∗i ∈ UTi and

it follows that V n,n
i ≡ Vi for all n > T . In particular, a switching CEP based on Γ results by using

γT,T .

Moreover, at equilibrium at most one switch is made at any given stage. Therefore, suppose it

is optimal to switch at stage t from ~ζ to ~u; then already starting at regime ~u at t (and same state

variables) it is optimal to make no changes, so that Vi(t, ~u) = E~u[Vi(t+1, ~u)|Ft]+(aiPt−biXt−ci)ui
for that scenario. Combining these facts with the form of (14) and dropping the constraints on the

number of switches, we may express all payoffs in terms of next-stage game values. The recursion

(23) is now obtained by making this substitution in (14). �

5. Numerical Implementation

Theorem 4.4 shows that a game value and equilibrium strategy profile can be obtained recursively

by solving the 1-period 2-by-2 games in (23). The payoffs of those games are given iteratively in

terms of conditional expectations of next-stage game values. Therefore, a numerical implementation

hinges on accurate evaluation of these expectations. Since our state-space in (P,X) is continuous,

it is impossible to make this computation exactly. Instead, we must resort to an approximation;

below we present two possible approaches.

5.1. Markov Chain Approximation Algorithm. Our model would be simplified if the contin-

uous state space of (P,X) is discretized. Let (P̃ , X̃) be an approximating discrete-state process

with (P̃t, X̃t) living on a finite subset Dt ⊂ R2
+. If the pair (P̃ , X̃) is furthermore chosen to be again

Markov, this is known as the Markov Chain Approximation (MCA) method of [27]. With such

(P̃ , X̃), a conditional expectation E[f(P̃t+1, X̃t+1)|P̃t, X̃t] for any measurable function f is just a
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weighted sum based on the transition probability matrix of (P̃ , X̃). The backward recursion in (23)

for Ṽi, the corresponding approximation of Vi, can now be implemented directly for each stage t and

each possible state of (P̃t, X̃t) ∈ Dt. A well-known procedure constructs (P̃ , X̃) by taking Dt to be

a 2-dimensional regular grid or lattice and allowing state transitions only between neighboring grid

points. Moreover, the transition probabilities of (P̃ , X̃) are chosen so that to have local consistency

in the first two moments with the 1-step transition densities of (P,X); see [27, Chapter 5].

To use this approach in our model, one must take into account the price impact. Therefore, we

construct four approximations (P̃ , X̃
~ζ) indexed by the possible joint production regimes ~ζ ∈ {0, 1}2

that induce different local dynamics of X̃
~ζ , see (2). In other words, our effective state variables

are (P̃ , X̃, ~ζ). For every possible combination (t, p̃, x̃, ~ζ) ∈ T × Dt × {0, 1}2 the relation (23) is

then solved through backward recursion. A generic convergence proof (as the grid spacing tends to

zero) of this procedure for finite-horizon non-zero-sum stochastic games was obtained in [26]. Note

that in our model the controls ~u(t) are discrete and finite-valued and therefore all the compactness

conditions in [26] for the control space are automatically satisfied.

5.2. Least Squares Monte Carlo Approach. Like classical dynamic programming, the MCA

method above suffers from the curse of dimensionality. Indeed, the size of the approximating grid

grows exponentially in the dimension of the state variables. In our basic model (P,X) are two-

dimensional; however realistic implementations are likely to take multi-dimensional factor models

for P and (possibly) X. Thus, it is helpful to seek a more robust algorithm.

A seminal idea due to [9, 16, 29] is to use a cross-sectional regression combined with a Monte

Carlo simulation to make the recursive computations of the relevant conditional expectations. The

key step is a global approximation of the maps (t, p, x, ~ζ) 7→ Vi(t, p, x, ~ζ) and equilibrium one-step

strategies (t, p, x, ~ζ) 7→ ~u(t, p, x, ~ζ) (based on a fixed correlation law Γ) via a random sample of

(Pt, Xt). The construction is iterative and backward in time.

Suppose that the current date is t and we already know all the approximations vi(s, p, x, ~ζ) '
Vi(s, p, x, ~ζ) for s > t and the corresponding equilibrium strategy profiles. Then given a collection

of initial points (pnt , x
n
t ), for n = 1, . . . , N , and an arbitrary starting emission regime ~ζ = ~un(t) we

simulate the future cashflows on [t+ 1, T ] for each scenario n by iteratively computing the equilib-

rium actions uni (s) of each player for s = t + 1, . . . , T based on the estimated future game values

vi(s, p
n
s , x

n
s , ·) and the chosen communication device Γ. If Γ leads to randomized strategies, such a

randomization is naturally implemented as part of this simulation. Given a strategy profile ~un(s),

we update (pns+1, x
n
s+1) by an independent draw from the conditional law P~un(s). Eventually the

simulation procedure reaches terminal date T , whereupon we have for each path n a realized equi-

librium cashflow pair ϑni (t+1, ~ζ). Each ϑni represents an empirical draw from Vi(t+1, Pt+1, X
~ζ
t+1,

~ζ)

conditional on Pt = pnt , Xt = xnt . We now perform a cross-sectional regression of (ϑni (t + 1, ~ζ))Nn=1

against (pnt , x
n
t )Nn=1 to compute the continuation values

v̂i(t, p
n
t , x

n
t ,
~ζ) ' E~ζ

[
Vi(t+ 1, Pt+1, Xt+1, ~ζ)|Pt = pnt , Xt = xnt

]
.
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Finally, using v̂i together with the current payoffs and the correlation law Γ we solve for the equi-

librium game values vi(t, p
n
t , x

n
t , ~u) for each production regime ~u, taking into account the switching

costs K{i,ui,ζi}. The computed game equilibrium also provides the map (t, pnt , x
n
t , ~u) 7→ ~u∗(t) for

the equilibrium strategies. The regression results allow to further extend this to arbitrary initial

condition (t, p, x, ~u).

The initial collection (pnt , x
n
t ) is obtained by simulation. Since, X is affected by the price impact

of ~u, to implement this simulation we need to select some anterior auxiliary strategy profile ~u0.

While in theory ~u0 can be arbitrary, in practice it should be close to the equilibrium ~u∗. Indeed,

the collection (vi(t, p
n
t , x

n
t ,
~ζ))Nn=1 is supposed to approximate Vi(t, Pt, X

∗
t , ~u(t)) where X∗t is the

equilibrium CO2 allowance price. Because vi’s are computed by employing regression, the resulting

approximation cannot be uniformly good on R2
+. From the point of view of accurate solutions,

it needs to be good around the region of interest for X∗t . Thus, we need most of the xnt ’s to

be in the same (a priori unknown) neighborhood. To overcome this difficulty, as the algorithm

works back through time, the future paths (pns , x
n
s ), s > t are re-computed using the now-available

(approximately) equilibrium strategies u∗(s). To further mitigate the problem, we iteratively re-do

the whole simulation and subsequent backward recursion a few times (in practice three iterations

suffice), using the computed ~u∗ from one iteration as the anterior ~u0 in the next one.

Selection of basis functions should reflect the expected shape of (p, x) 7→ Vi(t, p, x, ~ζ). A typical

choice is to use low-degree polynomial basis functions, such as p, p2, x, x2, etc. In practice, r = 5−7

basis functions and N = 32000 − 50000 paths suffice. A large degree of customization, such

as time-varying bases, constrained least-squares regression, variance reduction methods, etc., is

possible to speed up the computations. Also, note that as for standard optimal stopping [16], it is

not necessary to actually store the values vi(t, ·), but only the realized cashflows ϑni (t, ~ζ) and the

regression coefficients ~αi(t, ~ζ). Below, we summarize the above scheme in pseudo-code in Algorithm

1. It calls as a sub-routine Algorithm 2 that carries out the forward simulations of ϑni .

The cost of simulations in Algorithm 1 is roughly N · (1+2+ . . .+T ) = O(N ·T 2) which consists

of re-simulating N paths on [t, T ] as t goes from T − 1 to zero (see Algorithm 2). The cost of doing

regression against r basis functions on each path and for each stage is O(N · T · r3) and the cost

of computing continuation values is O(N · T 2 · r). The memory requirements are O(N · T ) which

comes from storing all the simulation paths during the backward recursion.
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Algorithm 1 Computing Correlated Equilibrium Game Values

input: N > 0 (number of paths); B`(p, x), ` = 1, . . . , r (r regression basis functions)

input: Correlation law Γ

Select anterior strategy profile ~u0

for each regime ~ζ ∈ {0, 1}2 do

Set pn0 = p0, x
~ζ,n
0 = x0 for n = 1, . . . ,N

Simulate N independent paths (pnt , x
n,~ζ
t )Nn=1 under P~u0 using Algorithm 2

end for

Initialize ϑni (T, ~ζ)← 0, n = 1, . . . , N

for t = (T − 1), . . . , 1, 0 do

for each regime ~ζ do

Evaluate B`(p
n
t , x

~ζ,n
t ) for ` = 1, . . . , r and n = 1, . . . , N

Regress

~αi(t, ~ζ)← arg min
~α∈Rr

N∑
n=1

∣∣∣ϑni (t+ 1, ~ζ)−
r∑
`=1

α`B`(p
n
t , x

~ζ,n
t )
∣∣∣2

end for

for each current regime ~u do

for each ~ζ ∈ {0, 1}2, and each n = 1, . . . , N do

// Compute the predicted continuation value for each player from taking action ~ζ

// Note that evaluate on the x~u,n-paths using ~α(t, ~ζ)-coefficients

Set q̂ni (t, ~u, ~ζ)←
∑r

`=1 α
`
i(t,

~ζ)B`(p
n
t , x

~u,n
t ).

// Add the switching costs and current payoff (based on ~ζ)

q̂ni (t, ~u, ~ζ)← q̂ni (t, ~u, ~ζ)−K{i,ui,ζi} + (aip
n
t − bix

~u,n
t − ci)ζi

end for

for each path n = 1, . . . , N do

Compute the stage-t game values based on q̂n· (t, ~u, ·) and Γ, see (23)

Obtain the equilibrium policy ~un,∗(t, ~u)

Using Algorithm 2 update ϑni (t, ~u) using ~un,∗(t, ~u) and ~αi(t, ~ζ)

end for

end for

end for

return Vi(0, p0, x0, ~ζ) ' 1
N

∑N
n=1 ϑ

n
i (0, ~ζ)

return Regression coefficients ~αi(t, ~ζ) summarizing equilibrium strategies

5.3. Numerical Examples. In this section we illustrate our analysis with a numerical case-study.

The selected model parameters are listed in Table 1. The example represents emission scheduling of

two producers over one calendar year; all the parameters of (P,X) are in annualized units and we use

T ′ = 26 bi-weekly periods to model the actual scheduling flexibility. Note that the electricity price

Pt is more volatile than the CO2 allowance price Xt; also the mean-reversion strength κX is quite
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Algorithm 2 Simulating one realized cashflow path ϑ

input: Basis functions B`(p, x), ` = 1, . . . , r

input: Regression coefficients ~αi(t, ~ζ); correlation law Γ

input: Initial condition (p0, x0, ~u0); horizon T

Initialize ϑi(0)← 0 // Realized cashflows

for t = 0, . . . , T − 1 do

for each ~ζ ∈ {0, 1}2 do

// Evaluate the predicted continuation values from taking action ~ζ

Set q̂i(t, ~ζ)←
∑r

`=1 α
`
i(t,

~ζ)B`(pt, xt)−K{i,(ut)i,ζi} + (aipt − bixt − ci)ζi
end for

Compute the stage-t game values based on q̂·(t, ·) and Γ, see (23)

Obtain the correlated equilibrium strategy ũt.

if ũt is mixed then

Perform randomization to obtain the realized action pair ~ut+1

else

Set ~ut+1 ← ~ut // ~ut is pure

end if

Update ϑi(t+ 1)← ϑi(t)−K{i,(ut)i,(ut+1)i} + (aipt − bixt − ci)(ut+1)i, i = 1, 2

Update (pt+1, xt+1) through an independent draw from the law P~ut+1(·|pt, xt)
end for

return Simulated cumulative cashflow pair ϑi(T ).

large, implying a significant price impact. For the latter we take f(ζ1, ζ2) = log(12+8ζ1+4ζ2) in (2),

so that the mean-reversion level of logX is linear in the production regimes of producers 1 and 2,

with producer 1 having more influence due to emitting twice as much carbon, b1 = 2b2 ⇒ g1 = 2g2.

The stylized production/emission parameters are supposed to represent a dirty “coal” producer 1

who has low input costs but needs lots of allowances and a clean “natural gas” producer 2 who

has high fixed costs but small sensitivity to allowance prices (and can generate twice as much

electricity). Observe that if both producers emit simultaneously for a long period of time, then

we expect Pt ∼ P̄ = 45, Xt ∼ f(1, 1) = 24 meaning that both producers will be losing money.

Therefore, extended joint emissions are not sustainable.

We proceed to look at the duopoly setting where the two producers above compete against each

other. A large variety of CEP are possible in our model; for the sake of illustration we consider

the four choices of Utilitarian, Egalitarian, Preferential 1 and Preferential 2 correlation laws, see

Section 2.3. Table 2 shows the game values corresponding to these different correlation laws. These

values were obtained by running Algorithm 1 of Section 5.2 using N = 40000 paths, and the basis

functions {1, p, x, x2, (2p− x− 80)+, (p− 2x− 10)+}.

We find that the correlation law modifies the expected profit of the producers by 3% − 5%.

As expected, individual producer values are maximized by the preferential equilibria that always
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κX 3 σX 0.25

κP 2 σP 0.4

T 1 ρ 0.6

P̄ 45 X̄ 12

P0 45 X0 15

Producer 1 Producer 2

a1 1 a2 2

b1 2 b2 1

c1 10 c2 80

g1 8 g2 4

K1 0.2 K2 0.2

Table 1. Model Parameters for the Examples in Section 5.3.

Correlation Law V1(0, P0, X0) V2(0, P0, X0)

Utilitarian 5.30 4.14

Egalitarian 5.33 4.20

Preferential 1 5.39 4.11

Preferential 2 5.02 4.24

Table 2. Comparison of equilibrium game values for different correlation laws Γ.

Standard errors of the Monte Carlo scheme are about 1%. Parameters are as given

in Table 1.

favor the respective player. However, counterintuitively, the egalitarian CEP produces larger game

values to both producers than the utilitarian CEP. This occurs because the correlation law is applied

stage-wise and therefore optimizes a local criterion; there is no guarantee that the corresponding

global criterion is respected. A similar phenomenon was observed in [37, Section 5.4].

To illustrate the equilibrium strategy profiles, Figure 1 shows the empirical regions in the (P,X)-

space corresponding to different equilibrium strategies at a fixed date t = 7 (i.e. about three months

into the year) using the Preferential-1 correlation law that always favors producer 1. As expected,

when the current P&L of both producers is strongly negative (upper-left corner), the equilibrium

action is ~u∗(t) = (0, 0); when it is strongly positive (large Pt) the equilibrium is to generate

electricity ~u∗(t) = (1, 1). Because of the differing carbon-efficiencies of the producers, there are

also large regions where exactly one producer can generate profit (e.g. around {Pt ∈ [40, 45], X∗t ∈
[10, 12]} only producer 2 is profitable). However at the border regions, the price impact and

competition create new effects. In Figure 1, we observe the emergence of a local anti-coordination

game around {(Pt, X∗t ) = (50, 15)}, and a competitive game around {(Pt, X∗t ) = (50, 12)}. We do

not have any tools to analytically check whether a particular type of game may emerge locally; thus

the competitive game region in Figure 1 could be either a true phenomenon or an aberration due

to numerical errors (e.g. poor regression fit in that region). Note that most simulated equilibrium

paths for X∗t stay above x = 13 so the competitive game scenario at t = 7 is very unlikely to be

realized (i.e. very few paths hit that region).

To better illustrate the optimal strategy over time, Figure 2 shows a sample path of the equilib-

rium (X∗t ) for one simulated ω, obtained using Algorithm 2. Analogously to single-player problems,
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the CO2 allowance price undergoes hysteresis cycles [13]. Thus, when (X∗t ) is small, production

becomes profitable. This leads to increased emissions and X∗t rises through the price impact mech-

anism. In turn, this rise in emission costs eventually curtails production and X∗t starts to fall.

The presence of switching costs Ki lowers the scheduling flexibility of the producers and further

amplifies this cycle through inertia. The pathwise cycle is of course also strongly influenced by the

stochastic shocks in (P,X).

Figure 1. Equilibrium game strategy u∗(t) as a function of (Pt, X
∗
t ) for t = 7.

Here ~ζ = (0, 0). The green region denotes the anti-coordination game-type where

the Preferential-1 correlation law is used, and the red region denotes the competitive

game-type where the unique mixed NEP is chosen.

6. Conclusion

In this paper we studied a new type of stochastic games which were motivated by dynamic emis-

sion schedules of energy producers under cap-and-trade schemes. Because multiple game equilibria

can emerge, we explored various correlated equilibria. It is an interesting economic policy question

which equilibrium is likely/desirable to be implemented and how the regulator can steer market

participants towards that choice. The related issue of unwanted producer collusion is also highly

relevant. Charging for emission externalities is supposed to promote cleaner energy generation

and partially drive out “dirty” producers. It would be an interesting exercise to study how much

these effects are amplified by the competitive equilibrium and especially equilibrium selection. It

can be imagined that under some equilibria dirty producers could be entirely blockaded out of the

electricity market.
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Figure 2. Sample path of equilibrium X∗t , including the corresponding strategy

u∗ ∈ {00, 01, 10, 11} ≡ {1, . . . , 4}. Top left panel: cumulative realized P&L of the

players. Bottom left panel: the electricity-carbon spread of each producer for the

current time step. Right panel: evolution of the controlled equilibrium allowance

price X∗t , as well as the implemented strategy ~u∗(t). Note that as ~u∗(t) increases

(in the lexicographic order), emissions rise and X∗t tends to increase.

In our simplified model, the producers only made binary emission decisions at each stage. On

a practical level, much finer granularity is available. It would be straightforward to extend our

problem and allow a more general finite-state control set of size |A|. The only modification would

be to replace the 2 × 2 bimatrix games with a more general A × A bimatrix. The theory for

more than two producers is still not developed and it is an open problem to establish existence of

CEP/NEP for multi-player stopping games.

6.1. Further Extensions. Several aspects of our model merit further analysis. First, our model

for CO2 allowance prices in (2) was highly stylized. It was selected to capture succinctly the

price impact of each producer. However, many other features were left out. As described in the

introduction, as the permit expiration date T approaches, the CO2 price should converge either to

zero (if excess permits remain) or to a fixed upper bound x (the penalty for emitting without an

allowance). New (time-dependent) stochastic models are needed to mimic this property, see [7, 19].

Also, some cap-and-trade proposals will allow free trading of allowances by financial participants;

if so, then no-arbitrage restrictions might have to be imposed on the dynamics of X. All these

possibilities can in theory be handled straightforwardly, since the main construction is for arbitrary

X-dynamics.
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Ideally, a fully endogenous model is desired for allowance prices; namely Xt should be a function

of total expected emissions until T compared to total current supply, i.e. have a characterization

in terms of conditional expectations of future equilibrium emission schedules. See [6, 7, 10] for

such price-formation models and related general equilibrium frameworks. These extensions will be

considered in forthcoming papers.

Our formulation was in discrete-time; while this is sufficient for practical purposes, it is of great

theoretical interest to construct a continuous-time model counterpart. The overall structure of a

switching game as a sequence of stopping games straightforwardly carries over to continuous-time.

However, description of correlated stopping equilibria in continuous time has not been attempted so

far. In fact, the only reference dealing with randomized continuous-time stopping games is [41] (see

also [28] for the latest results on general continuous timing games). Note that in continuous-time

one must work with Nash ε-equilibria since all stopping strategies are defined only in the almost-

sure sense. Second, to ensure the representation of Vi as iterative stopping games through V n,m
i , it

is necessary to a priori show that each player makes finitely many regime switches. At this point

we are not able to state any conditions to guarantee this, except requiring mandatory “cool-off”

periods between each emission regime switch.

In our Markovian setting, solutions of continuous-time single-player switching problems have

representations in terms of reflected backward stochastic differential equations (BSDE) [22]. This

representation should continue to hold in a game setting. Similar representations were obtained

for stochastic differential game analogues of our setup, whence ui is continuous, see [23, 24]. Note

that the BSDE reflection mechanism for the game value is highly non-trivial and depends on the

chosen communication device, as well as all eight possible continuation (payoff) functions Zjki (t).

This direction will be explored in a separate paper.
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