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Chaos Models in Economics 
Sorin Vlad, Paul Pascu and Nicolae Morariu 

Abstract—The paper discusses the main ideas of the chaos theory and presents mainly the importance of the nonlinearities in 
the mathematical models. Chaos and order are apparently two opposite terms. The fact that in chaos can be found a certain 
precise symmetry (Feigenbaum numbers) is even more surprising. As an illustration of the ubiquity of chaos, three models 
among many other existing models that have chaotic features are presented here: the nonlinear feedback profit model, one 
model for the simulation of the exchange rate and one application of the chaos theory in the capital markets. 

Index Terms—chaos, nonlinear systems, complex behavior, bifurcation diagram. 
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1 INTRODUCTION

NE of the axioms of the modern science asserts that if an 
accurate description of a physical system can be identi-
fied then the possibility of a deeper understanding of the 

system and the prediction of the system evolution is possible.  
These assertions are not always correct. For instance, if one 
applies the laws of motion stated by Newton, then there is 
possible to predict exactly the orbit of the Moon around the 
Earth if the influence of other planets is not considered. 
These predictions were verified and proved to be accurate. If 
the third planet is included, the mathematical model of the 
interaction of the two bodies becomes “the three bodies 
problem”, solved by Newton but for a limited set of cases 
and unsolved for the general case. Today by means of a 
computer, “the tree bodies problem” can be solved, but one 
can observe that the prediction of the orbit of the third planet 
is often impossible. 
A large number of real systems have a nonlinear behavior 
despite the idealized linear behavior used in modeling. The 
development of a new way of dealing with nonlinear sys-
tems is obvious. This “new way of dealing” exists already 
despite the fact that the study of the nonlinearity is still at the 
beginning. 
Some changes in nonlinear systems can lead to a complex 
and erratic behavior called chaos. The nonlinearity is one of 
the conditions needed by a system in order to develop chaos. 
The term chaos is used to describe the behavior of a system 
that is aperiodic and apparently random. 
S. H. Strogatz defines chaos as an aperiodic long time behav-
ior developed by a deterministic system highly sensitive on 
initial condition. [1] Behind this apparently random behavior 
lies the deterministic character determined by the equations 
describing the system. Most of the systems that are used as 
examples to explain the concepts of chaos theory are deter-
ministic. 
There are two types of chaos: deterministic and nondeter-

ministic. The deterministic chaos represents the chaotic mo-
tion of the nonlinear systems whose dynamic laws deter-
mines uniquely the evolution of the system’s state based on 
the previous evolution. 
The deterministic chaos represents only one particular case 
of what is called nondeterministic chaos that exhibits a su-
perexponential divergence of the trajectories. In this case the 
equations describing the evolution of the system are not 
known. The both ways of chaos manifestations are short-
term predictable but long term unpredictable. 
The chaos and the concepts related to the dynamics of the 
systems and the their modeling using differential equations 
is named the chaos theory and is tightly related with the 
notion of nonlinearity [4]. The nonlinearity implies the loss 
of the causality correlation between the perturbation and 
effect propagated in time. The study of the nonlinearity is 
named nonlinear dynamics – a captivating domain using a 
mathematical apparatus still under development. 
Despite the fact that the ideas leading to the emergence of 
the chaos theory existed before longtime, Lorenz (1963) cre-
ated a mathematical model of the convection currents circu-
lation in atmosphere and observed that when the systems 
begins with initial conditions slightly changed from the pre-
vious ones, the results are completely different. This phe-
nomenon will lie at the basis of a very popular paradigm of 
chaos named “the butterfly effect”, that states that if the 
flapping of a butterfly slightly modifies the atmospherically 
conditions in the Amazonian jungle, this fact can have an 
impact, at the end of a complex cause – effect chain in setting 
off a tornado in Texas. 
The butterfly effect paradigm contains the essence of the 
phenomenon characterizing the chaos: first, the sensitive 
dependence on initial conditions and second – the fact that 
to predict the future state of a chaotic system, the current 
state need to be known with infinite prediction. The manifes-
tation of chaos can be found everywhere in the real world, 
for instance: the propagation of the avalanches, epidemics 
spreading, climate evolution, heart beats, lasers, electronic 
circuits, etc. 
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A legitimate question is that the chaos is the rule or the ex-
ception from the rule. Taking into account that most of the 
systems of the real world are nonlinear (the basic condition 
for the emergence of chaos), seems that chaos could be one 
of the not so obvious features of the nature. 
The importance of studying chaos is that chaos offers an 
alternate method that explains the apparently random be-
havior of the complex systems. The chaos plus the specific 
mathematical tools is a framework of studying different 
models from different fields, models that can be reduced to 
elementary models with known chaotic behavior for some 
values of the parameters. 
The way to chaos begins with the phenomenon of period 
doubling. The period doubling evolves in 2, 4, 8, 16 and so 
on periods and the system evolution can abruptly fall into 
chaotic regime. 
In the case of unimodal function there is an interesting 
symmetry in the parameter values for what the period dou-
bling occurs.  
If A1 is the value of the control parameter for what the 
first period doubling occurs and An is the value for what 
the nth period doubling occurs, then: 
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where δ is the Feigenbaum number valable for all unimodal 
functions.[5]  

2 NONLINEAR MODELS 
2.1 Chaos in exchange rates 
For the simulation of the volatile behavior of the exchange 
rates were created models that treat the exchange rates as be-
ing prices of the financial assessments traded on efficient mar-
kets. The current exchange rate contains the currently avail-
able information and the changes observed reflect the effect of 
the new events that are unpredictable by definition. 
The theory states that an accurate a priori prediction of the 
exchange rate evolution is impossible to be made but the sub-
sequent explanation of the changes is possible. In order to 
eliminate these difficulties, the chaos theory and the nonlinear 
models are extensively used. The first researches have been 
carried out starting from 1980. 
In the majority of situations these models are highly nonlinear 
and result in a wide range of dynamic behavior, including 

chaotic dynamics. There is a dispute over the manifestation of 
chaotic dynamics in exchange rates. There are many studies 
that are positive to the chaotic dynamics (Federici 2001, 
Westerhoff, Darvas 1998, Hommes 2005, Vandrocicz 2006) 
and also a number of studies that are rejecting the chaos in 
exchange rate (Brooks, Serletis). 
The chaos theory demonstrates that even the simplest dy-
namical systems can exhibit at some point a very complex 
behavior. If the exchange rates variation is caused due to the 
chaotic nature of the system, this should lead to the fact that 
the smallest influences should have the effect of a nonlinearity 
over the exchange rates – exactly what happens in reality. 
The first model presented demonstrates the fact that even 
the simplest models can exhibit chaotic behavior. [3] 
The demand of foreign currency is determined as percent-
age of the deviation of current exchange rate towards the 
expected one.[2]  
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where 
et is the domestic price of the foreign currency 
ee is the future estimated exchange rate  
α is the sensitivity parameter 
 
The trade balance (Ti) is a linear function depending on the 
current exchange rates and the corresponding exchange rate 
for the last period, written as deviation from the expected val-
ues and is given by the equation: 
The expected exchange rate represents the stable state at 
which the speculators on the market do not wish to sell nor 
buy.  
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The clearing of the exchange markets writes as:  

tt TS =∆  (4) 
After replacing equations (2) and (1) in (4), equation (4) be-
comes:  
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The equation 5 has two roots, the positive one being consid-
ered for obvious reasons. The resulting nonlinear equation is:  
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for α=β=4 and γ=26. 
The graphical representation of the solution et show that the 
graph presents a peak value of 2.76 and a minimum value of 
0.091. Any other value from outside the interval represented 
by these two values is attracted. The evolution of the system 
with the specified parameters is chaotic because satisfies the 
Ly-Yorke condition [3]. 

The Figure 2 illustrates the evolution of the system for 
two initial slightly different values: 0.2 and 0.2005 (the 
dotted line). The values of the two time series are identi-
cal for a short period of time (the first 10 iterations) and 

 
Fig. 1. Lorentz attractor – the symbol of chaos theory. 



JOURNAL OF COMPUTING, VOLUME 2, ISSUE 1, JANUARY 2010, ISSN 2151-9617 
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/ 81 

 

then the trajectories of the systems are diverging. 
The scatterplots for the two time series are provided to 
demonstrate the independence of the two time series after 
10 iterations. The scatterplots presented in Figure 3 and 
Figure 4 one of the fingerprints of chaos: the distance be-
tween two trajectories starting from nearby points in the 
state space diverge over time. 

When the sensitivity parameter is varied, the same effects can 
be observed. Figure 4 presents the trajectories of the system 
for two very near values of α. 
 
The apparently irrelevant changes can affect the longtime be-
havior of the exchange rate modeled using the Ellis model and 
some of these small shocks can determine the system to fall 
into the chaotic regime. 

2.2 The model of the nonlinear feedback mecha-
nism of the profit  
The current spending of a firm can influence the value of the 
profit obtained at the end of the reference period. The profit 
will influence the spending over the next period. The de-
pendence between the previous value of the profit and the 
current value is nonlinear because an increase of the spend-
ing does not reflect in an increase of the profit. The law of the 
decrease of the efficaciousness asserts that a certain mean 
value reaches minimum or maximum value when its magni-
tude equals the marginal value. One can invest in a certain 
production capability but this doesn’t guarantee an unlim-
ited increase of the production but the increase up to a cer-
tain point. Beyond that point the increase of the investment 
does not generates a corresponding increase of the produc-
tion. 
The dependence between the current profit and the pre-
vious profit can be modeled by using the equation:  

2
tt1t BA Π−Π=Π +  (6) 

The maximum profit maxΠ is supposed that it can be de-
termined. 
Dividing the equation (6) with maxΠ  the following result 
is obtained:  
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max

tt1t BA Ππ−π=π +  (8) 

If we take 
B
Amax =Π  the equation above becomes the 

logistic equation:  
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The logistic map exhibits the same dependence on the initial 
condition: the slightest change of the initial condition causes 
a completely different evolution. 

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.2

0.2005

 
Fig. 2. The influence of the initial conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. The scatterplot for the first 10 iterations 

and the scatterplot for the last 41 iterations. 
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Fig. 2. The influence of the initial conditions. 
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The complex behavior of the apparently simple functions 
can be observed using the bifurcation diagram. The bifurca-
tion diagram (Figure 6) is an excellent tool allowing analyz-
ing the behavior of a function by varying a control parame-
ter (in the case of logistic function, the control parameter is 
A). 
The logistic function is known to have a chaotic behavior 
with small isles of periodicity for a value of the parameter A 
greater that 3.57. For A∈ [3.57, 4] there are small areas of 
periodicity, the white stripes that can be observed in the fig-
ure. For A>4 the behavior is completely chaotic. 
 
2.3 The K-Z model of Larrain 
The theory and the models regarding the functioning of the 
capital markets initially developed on the hypothesis accord-
ing to which these markets are efficient. The efficient-market 
hypotheses comprise a series of conditions which basically 
say that the prices of the assets and their turnover can be 
determined based on the supply and demand in the com-
petitive market where there are rational agents. These ra-
tional agents quickly assimilate any piece of information that 
is relevant to determining the prices of the assets and their 
turnover, adjusting the price in accordance with this infor-
mation. In other words, the agents do not have different 
comparative advantages in acquiring information. 
That is to say that such a market does not provide opportu-
nities to obtain a profit on an asset whose turnover is supe-
rior to the risk undertaken by the agent. Thus, the normal 
profits will be nil, taking into consideration the fact that the 
agents procure this piece of information and immediately 
incorporate it into the price of the assets. If the last piece of 

information and the current one are incorporated immedi-
ately into the price of the assets, then only a new piece of 
information, or however else we may call it - the “novelty”, 
will be able to determine a change in prices. 
As novelties are, by definition, unpredictable, then the 
changes in prices (or in turnover) will be unpredictable, too: 
no piece of information at time t or previous to this time will 
be able to help improve the forecast concerning the prices 
and turnovers (nor contribute to the decrease in the forecast 
errors made by the agents in this respect). 
This forecast error independence towards the previous in-
formation is called the feature of orthogonality and is widely 
used in testing the efficient market hypothesis. 
M. Larrain elaborated a model combining a classical descrip-
tion of a Keynesian economy with a non-linear model based 
on the evolution of the interest rates. Because he named the 
behavioural model “Z application” and the non-linear 
model “K application”, this led to the so-called K-Z model. 
Larrain introduces the two components separately. 

Thus, he observes that the future interest rates in the capi-
tal markets depend both on the previous interest rates (the 
technical analysis conception):  

nrfr ntt ,...2,1,0),(1 == −+  (10) 
where f is a non-linear function, and on a series of funda-

mental economic variables (fundamentalist conception):  
)(1 Zgrt =+  (11) 

Where ,...),,( PMyZ = , y - being the real GNP, M - 
the money offer, P - the consumer price index etc. 
The component (1a) shows that the future interest rate de-
pends on its previous rates up to a certain lag n. This de-
pendence of the future sizes on the previous ones is specific 
to the conception of the technical analysis of approaching the 
capital markets. 

The exact form of )( mtrf −  is unknown, it may differ 
from one analyst to another. 

Larrain chooses for this function the expression: 
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where we can notice that if c=b becomes the logistic 
equation, which is known to have a chaotic behaviour for 
certain values of the control parameter b (or c):  

)1(1 t
n

tt rbrar −−=+  (12) 
This represents the K component (application) of the model. 

In what follows we shall present the way in which is built 
the Z component:  

)(1 ∑ −−⋅−+=+ tttttt cYgMfePdyr  (13) 
where d, e, f, g are constants and yt represents the real GNP, 
Mt – the money offer (expressed through the aggregate Mt), Pt 
the - the consumer price index, Yt the real personal and ct – the 
real personal consumption. 
This component reflects the fundamentalist conception ac-
cording to which the interest rates in the capital markets de-
pend on the evolution of fundamental sizes. 

Larrain combines the two components, K and Z, in one 
single expression as follows:  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Phase space portrait of the logistic delayed function 
xt=axt-1(1-xt-2). For small values of the parameter a the non-
chaotic attractor is a point. For a larger value of the parameter 
the nonchaotic attractor is a limit cycle.  
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This expression shows that the future interest rates are a 
combined function of technical and fundamental factors. 
Meanwhile, the former or latter of the two components can 
dominate the other one. Thus, during the stability periods, 
the capital markets are efficient and the interest rates will 
depend on the Z component, to a larger extent. In the unsta-
ble periods of the markets in question, the investors lose 
their trust in fundamental variables, making decisions by 
extrapolating tendencies. Thus, it is the K component that 
becomes dominant. 
In this situation, under certain circumstances, the c control 
parameter can take values in intervals for which the logistic 
equation has a chaotic behaviour, thus inducing crises and 
chaos episodes in the markets in question. 
The tests made with Larrain’s model led to a series of inter-
esting conclusions. 
Thus, for the stable capital markets, such as the bond market 
or the security market, the obtained forecasts covered quite 
well the evolution of the interest rates observed in reality, 
which for such a model represents a success. Still, for the 
estimation of the equation parameters (14), the model used 
techniques of linear regression, which annulled the premise 
that one or another of the two components can be dominant 
in one period or another. 
In order to introduce such an alternation of the dominance 
of the K-Z application components it is necessary that the 
parameters of the function in question should be variable in 
time, which the model in its initial form cannot allow. 
Improving such a model could reconcile the two big tenden-
cies in the analysis of the capital markets, technical and fun-
damentalist, offering a powerful instrument of forecasting 
these markets. 

3 CONCLUSION 
Chaos is can be found almost everywhere in the nature. 
Chaos theory and fractals are currently applied in the 
study of the natural phenomenon. 
An essential condition needed in order that chaos to 
emerge is to have nonlinear systems. In fact very few of all 
models are purely linear, the vast majority of the systems 
are nonlinear. 
The paper emphasizes two of the features of the chaotic 
systems: dependence to initial conditions and the diver-
gence of nearby trajectories. 
The chaos theory has a significant impact on economy and 
especially on capital markets. If the behavior of one eco-
nomic system is proved to be chaotic this guarantees that, 
using appropriate methods, a short-term prediction can be 
made. 
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