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07 Thinning Out Redundant Empirical Data

John Abbott, Claudia Fassino and Maria-Laura Torrente

Abstract. Given a set X of “empirical” points, whose coordinates are per-
turbed by errors, we analyze whether it contains redundant information, that
is whether some of its elements could be represented by a single equivalent
point. If this is the case, the empirical information associated to X could be
described by fewer points, chosen in a suitable way. We present two different
methods to reduce the cardinality of X which compute a new set of points
equivalent to the original one, that is representing the same empirical infor-
mation. Though our algorithms use some basic notions of Cluster Analysis
they are specifically designed for “thinning out” redundant data. We include
some experimental results which illustrate the practical effectiveness of our
methods.

1. Introduction

Often numerical data in scientific computing arise from real-world measurements,
and so are perturbed by noise, uncertainty and approximation. A common tech-
nique to counter this phenomenon is to make “excessively many” measurements,
and as a consequence the resulting body of empirical data appears as a “redun-
dant” set carrying relatively little information compared to its cardinality. Our
aim is to reduce this redundancy by replacing subsets of close values, which we
regard as repeat measurements, by a single representative value.

We view an empirical point (p, ε) as a “cloud” of data which differ from p
by less than the tolerance ε. If the intersection of different clouds is “sufficiently”
large, we can replace them by a single empirical point carrying essentially the same
empirical information. We illustrate this intuitive idea in the following example
where an initial set of 12 points is “thinned out” to an equivalent set of 4 points.

Example 1. Given the set X of 12 points in R
2

X = {(−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0),

(−1, 1), (0, 1), (1, 1), (5,−2.9), (5, 0), (5, 2.9)}

we suppose that each coordinate is perturbed by an error less than 1.43.

http://arXiv.org/abs/math/0702327v1
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Figure 1. Appropriate partition of X

In this situation, the first nine points most likely derive from measurements
of the same quantity; therefore it is quite reasonable (and appropriate) to collapse
them onto a single candidate, for example the point (0, 0). In contrast, since the
last three points are well separated, they should not be collapsed. This partition,
shown in Figure 1, is found by our algorithms, as reported in Examples 2 and 3.

Based on the idea of clustering together empirical points which could derive
from different measurements of the same datum, we have designed two algorithms
which take a large set of redundant data and produce a smaller set of “equivalent”
empirical points. Typically the smaller set contains far fewer elements than the
original one, with obvious consequent gains both in computational speed and in
memory resources used in subsequent processing of the data.

This paper is organized as follows. In Section 2 we introduce the concepts
and tools useful to our work, focussing our attention on the idea of “collapsable
sets” of empirical points. Section 3 describes the Agglomerative and the Divisive
Algorithms to thin out sets of empirical points while preserving the overall geomet-
rical structure. The relationship with the theory of Cluster Analysis is discussed
in Section 4. In Section 5 we present some numerical examples to illustrate the
behaviour of our algorithms on different geometrical configurations of points. The
conclusions are summarized in Section 6.

2. Basic Definitions and Notation

This section recalls the definitions and tools used later in the paper.
We suppose that the points belong to the space R

n, n ≥ 1, and we use the
norm ‖ · ‖2. Further, given an n × n positive diagonal matrix E, we shall also use
the weighted norm ‖ · ‖E,2 as defined in [2]. For completeness, we recall here their
definitions:

‖v‖2 :=

√

√

√

√

n
∑

j=1

v2
j and ‖v‖E,2 := ‖Ev‖2
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Later on the index 2 will be omitted for simplicity of notation.

Intuitively an empirical point, representing real-world measurements, is a
point p of R

n whose coordinates are affected by noise, while only an error estima-
tion on them is known. We suppose we know (for every 1 ≤ i ≤ n) an estimate
εi ∈ R

+ of the error in the i-th component of p, so that each point r which differs
from p componentwise by less than εi can be considered equivalent to p from a
numerical point of view. We can formalize this idea by means of the definition of
empirical point, introduced by Stetter in [7].

Definition 2.1. Let p ∈ R
n be a point and let ε = (ε1, . . . , εn) with each εi ∈ R

+,
be the vector of the componentwise estimated errors. An empirical point pε is the
pair (p, ε), where we call p the specified value and ε the tolerance.

In this paper we shall consider sets of empirical points all having the same
fixed tolerance ε. This is a natural assumption if the points derive from real-world
data measured with the same accuracy. Additionally, this hypothesis simplifies the
theoretical study.

From now on we denote by ε = (ε1, . . . , εn) with each εi ∈ R
+, the fixed

tolerance. So given any p ∈ R
n, we write pε to mean the corresponding empirical

point having p as specified value and ε as tolerance. We denote by X
ε = {pε

1, . . . , p
ε
s}

a set of empirical points each having the tolerance ε and by X = {p1, . . . , ps}
the set of the specified values associated to X

ε. We define the diagonal matrix
E = diag(1/ε1, . . . , 1/εn) and shall use the E-weighted norm on R

n in order to
“normalize” the distance between points w.r.t. the tolerance ε.

An empirical point pε naturally defines the following set:

N(pε) = {r ∈ R
n : ‖p − r‖E ≤ 1}

Each element in N(pε) can be obtained by perturbing the coordinates of the spec-
ified value p by amounts less than the tolerance; for this reason we can say that
the points of N(pε) represent the same empirical information as p. Analogously,
each element of ∩p∈XN(pε), if this intersection is not empty, represents the same
empirical information as the whole set X. Although the choice of an element in
this intersection is quite free, we decide to represent a set of “close” points with
their centroid. The following definitions are introduced in order to formalize this
idea.

Definition 2.2. The set of empirical points X
ε = {pε

1, . . . , p
ε
s} is collapsable if

‖pi − q‖E ≤ 1 ∀i = 1, . . . , s (2.1)

where q = 1
s

∑s

i=1 pi is the centroid of X.

If X
ε is collapsable, the centroid q of X belongs to each of the sets N(pε

i ); so
the empirical point qε is numerically equivalent to every point in X

ε. We formalize
this idea as follows.
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Definition 2.3. The empirical centroid of a set X
ε is the empirical point qε where q

is the centroid of the set X. If X
ε is a collapsable set, its empirical centroid is called

its valid representative.

If a set of empirical points contains a collapsable subset, it contains some
redundancy, i.e. it carries relatively little empirical information compared to num-
ber of points in it. The methods presented in this paper are designed to “thin out”
such sets by finding a smaller set of empirical points with much lower redundancy
which still contain essentially the same empirical information.

3. Algorithms

In this section we describe two algorithms that, given a set X
ε of empirical points,

compute a partition Lε = {Lε
1, . . . , L

ε
k} of it, consisting of non-empty collapsable

sets, and a set Y
ε = {qε

1, . . . , q
ε
k} where each qε

i is the valid representative of Lε
i .

Our algorithms differ in the strategies for building the partitions:

1. the Agglomerative Algorithm initially puts each point of X
ε into a different

subset and then iteratively unifies pairs of subsets into a larger collapsable
set;

2. the Divisive Algorithm initially puts all the points of X
ε into a single subset

and then iteratively splits off the remotest outlier and “evens up” the new
partition.

3.1. The Agglomerative Algorithm

The Agglomerative Algorithm (AA) implements a unifying method. The sets in
the partition are determined by an iterative process. Initially each set contains
a single original empirical point, then iteratively the two closest sets are unified
provided their union is collapsable. This method is quite fast when the input points
are well separated w.r.t. the tolerance, since a small number of set unifications is
required.

Theorem 3.1. (The Agglomerative Algorithm)
Let X

ε = {pε
1, . . . , p

ε
s} be a set of empirical points, with each pi ∈ R

n and a
common tolerance ε = (ε1, . . . , εn). Let ‖ · ‖E be the weighted norm on R

n w.r.t.
E = diag(1/ε1, . . . , 1/εn). Consider the following sequence of instructions.

AA1: Start with the subset list L = [L1, . . . , Ls] where each Li = {pi}, and the
list Y = [q1, . . . , qs] of the centroids of the Li.

AA2: Compute the symmetric matrix M = (mij) such that mij = ‖qi − qj‖E

for each qi, qj ∈ Y.
AA3: If |Y| = 1 or min{mij : i < j} > 2 then return the lists L and Y and stop.
AA4: Choose ı̂, ̂ s.t. mı̂̂ = min{mij : i < j} and compute the centroid q of

Lı̂ ∪ L̂

q =
|Lı̂|q̂ı + |L̂|q̂

|Lı̂| + |L̂|
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AA5: If ‖p − q‖E ≤ 1 for every p ∈ Lı̂ ∪ L̂ then in L replace Lı̂ by Lı̂ ∪ L̂

and remove L̂. Similarly, in Y replace q̂ı by q and remove q̂ and then go to
step AA2. Otherwise put mı̂̂ = ∞ (any value greater than 2 will do) and go
to step AA3.

This algorithm computes a pair (L, Y) such that:

• {Lε
i : Li ∈ L} is a partition of X

ε into collapsable sets such that no pair can
be unified into a collapsable set;

• for each qi ∈ Y the empirical point qε
i is the valid representative of Lε

i .

Proof. First we prove finiteness. Step AA2 is performed only finitely many times
and so a finite number of matrices M is computed. In fact, after the first compu-
tation of M , this step is performed only when the algorithm removes an element
from Y, i.e. at most s − 1 times. Now, also step AA4 is performed only finitely
many times on the same matrix M , because it is performed only when the minimal
element mı̂̂ of the matrix M is less than or equal to 2 and then either two subsets
are unified or mı̂̂ is replaced by ∞, but this can happen at most s2/2 times.

Next we show correctness. First, note that the elements of L define a partition
of X. In fact, in step AA1 we set L = [{p1}, . . . , {ps}]; the only place where L
changes is in Step AA5 when we unite two of its elements, and so a new partition
of X is obtained. Obviously Lε is also a partition of X

ε.

For each Li ∈ L, the corresponding empirical set Lε
i is collapsable. This is

clearly true in step AA1. Step AA5 unites two elements of L only if their union
is collapsable: step AA4 computes the centroid q of Li ∪ Lj and step AA5 tests
condition (2.1) for each point in Li ∪ Lj.

Now we prove that upon termination the union of any pair of elements of L
is not collapsable. If the algorithm stops because Y (and L too) contains a single
element, the conclusion is trivial. Otherwise, the algorithm ends because mij > 2
for all i < j. We observe that the elements mij of the final matrix M are such that
either mij = ‖qi − qj‖E or mij = ∞ but ‖qi − qj‖E ≤ 2. The case where mij = ∞
is trivial: an entry in M can become ∞ only in step AA5 after having verified that
Lε

i ∪ Lε
j is not collapsable. In the case where mij is finite we show that the union

of Lε
i , Lε

j is a not collapsable set by contradiction. We suppose that ‖p− q‖E ≤ 1

for each p ∈ Li ∪ Lj, where q is the centroid of Li ∪ Lj. If m = |Li| and n = |Lj |,
we have

‖qi − qj‖E =

∥

∥

∥

∥

∥

∥

1

m





∑

p∈Li

p − mq



+
1

n



nq −
∑

p∈Lj

p





∥

∥

∥

∥

∥

∥

E

=

∥

∥

∥

∥

∥

∥

1

m

∑

p∈Li

(p − q) +
1

n

∑

p∈Lj

(q − p)

∥

∥

∥

∥

∥

∥

E

≤
1

m

∑

p∈Li

‖p − q‖E +
1

n

∑

p∈Lj

‖q − p‖E

From the hypothesis, we deduce that ‖qi − qj‖E ≤ 2, a contradiction.
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Finally, we can conclude the proof since, by construction, each element qi ∈ Y

is the centroid of Li and Lε
i is collapsable, so the empirical centroid qε

i is indeed
the valid representative of Lε

i . �

Note that, in step AA5, we must check the condition that ‖p − q‖E ≤ 1 for
each p ∈ Lı̂ ∪ L̂. In fact, if we check only the condition ‖q̂ı − q̂‖E ≤ 1, there are
pathological examples where not collapsable sets are built in the final partition
(see Example 8).

The algorithm as presented here can easily be improved from the computa-
tional point of view: in step AA2 it is not necessary to compute a new matrix M
after uniting Lı̂ and L̂, but suffices to remove the ̂-th column and to update the
ı̂-th row.

In the following example we apply the Agglomerative Algorithm on the points
of Example 1 to show that the desired partition is obtained (see Figure 1).

Example 2. Let X
ε = {pε

1, . . . , p
ε
12} be a set of empirical points with tolerance

ε = (1.43, 1.43), whose specified values coincide with the set X of Example 1:

X = {(−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0),

(−1, 1), (0, 1), (1, 1), (5,−2.9), (5, 0), (5, 2.9)}

The AA computes, at each step, the following partitions, only clustering together
the first nine points.

1. L =
{

{p1}, {p2}, {p3}, {p4}, {p5}, {p6}, {p7}, {p8}, {p9}, {p10}, {p11}, {p12}
}

2. L =
{

{p1,p2}, {p3}, {p4}, {p5}, {p6}, {p7}, {p8}, {p9}, {p10}, {p11}, {p12}
}

3. L =
{

{p1,p2,p4}, {p3}, {p5}, {p6}, {p7}, {p8}, {p9}, {p10}, {p11}, {p12}
}

4. L =
{

{p1, p2, p4}, {p3,p6}, {p5}, {p7}, {p8}, {p9}, {p10}, {p11}, {p12}
}

5. L =
{

{p1, p2, p4}, {p3, p6}, {p5,p8}, {p7}, {p9}, {p10}, {p11}, {p12}
}

6. L =
{

{p1,p2,p4,p5,p8}, {p3, p6}, {p7}, {p9}, {p10}, {p11}, {p12}
}

.

7. L =
{

{p1,p2,p3,p4,p5,p6,p8}, {p7}, {p9}, {p10}, {p11}, {p12}
}

8. L =
{

{p1,p2,p3,p4,p5,p6,p7,p8}, {p9}, {p10}, {p11}, {p12}
}

9. L =
{

{p1,p2,p3,p4,p5,p6,p7,p8,p9}, {p10}, {p11}, {p12}
}

3.2. The Divisive Algorithm

The Divisive Algorithm (DA) implements a “subdivision” method. The sets in the
partition are determined by an iterative process. Initially the partition consists
of a single set containing all the points. Then iteratively DA seeks the original
point farthest from the centroid of its set. If the distance between them is below
the tolerance threshold then the algorithm stops, because all original points are
sufficiently well represented by the centroids of their sets. Otherwise it splits off
the worst represented original point into a new set initially containing just itself.
Then DA proceeds with a redistribuition phase with the aim of associating each
original point to the current best representative subset (locally) minimizing the
total central sum of squares, defined as follows [6].
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Definition 3.2. Let X be a subset of R
n and let q be its centroid. The central sum

of squares of X is defined to be:
∑

p∈X

‖p − q‖2

Definition 3.3. Let L = {L1, . . . , Lk} be a partition of the set X. The total central

sum of squares of the partition L is defined to be:

I(L) =

k
∑

j=1

Ij

where Ij is the central sum of squares of Lj .

If X
ε contains large subsets of close empirical points, DA turns out to be

more efficient than AA, since a smaller number of subdivisions is required.

Theorem 3.4. (The Divisive Algorithm)
Let X

ε = {pε
1, . . . , p

ε
s} be a set of empirical points, with each pi ∈ R

n and a
common tolerance ε = (ε1, . . . , εn). Let ‖ · ‖E be the weighted norm on R

n w.r.t.
E = diag(1/ε1, . . . , 1/εn). Consider the following sequence of instructions.

DA1: Start with the list L = [L1] where L1 = X, and the centroid list Y = [q1]
where q1 is the centroid of L1.

DA2: Let L = [L1, . . . , Lr] and Y = [q1, . . . , qr], the centroid list of the elements
of L. For each pi ∈ X set di = ‖pi − qj‖E where Lj is the subset (of X) to
which pi belongs. Build the list D = [d1, . . . , ds].

DA3: If max(D) ≤ 1 then return the lists L and Y, and stop.
DA4: Choose an index ı̂ such that d̂ı = max(D), and compute the index ̂ of

the subset L̂ to which p̂ı belongs. Remove p̂ı from L̂ and compute the new
centroid q̂ of L̂; append Lr+1 = {p̂ı} to L and qr+1 = p̂ı to Y.

DA5: Compute the total central sum of squares I(L) of the new partition L.
DA6: For each p ∈ X and for each Lk ∈ L, denote by Lp,k the partition L but

with p moved into Lk. Compute the total central sum of squares I(Lp,k).

DA7: Choose a point p̂ ∈ X and an index k̂ s.t.

I(L
p̂,k̂

) = min{I(Lp,k) : p ∈ X, Lk ∈ L}

DA8: If I(L
p̂,k̂

) ≥ I(L) then go to DA2. Otherwise set L = L
p̂,k̂

. Compute the

centroids of the new partition L. Go to DA5.

This algorithm computes a pair (L, Y) such that:

• {Lε
i : Li ∈ L} is a partition of X

ε into collapsable sets;
• for each qi ∈ Y, the empirical point qε

i is the valid representative of Lε
i .

Proof. Later on we shall refer to the loop DA5–DA8 as “the redistribution phase”:
points are moved from one subset to another in order to strictly decrease the total
central sum of squares. Note that in the redistribution phase the cardinality of L
does not change as the algorithm never eliminates any set in L. Indeed, if the
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singleton set Lj = {p} belongs to L, the point p will not be moved to another
set Lk ∈ L leaving Lj empty, since this new configuration cannot have smaller total
central sum of squares: the combined central sum of squares of the sets Lj = {p}
and Lk is

Ij + Ik = 0 +
∑

r∈Lk

‖r − qk‖
2

where qk is the centroid of Lk, whereas the combined central sum of squares of the
new sets L′

j = ∅ and L′

k = Lk ∪ {p} is

I ′j + I ′k = 0 +

(

∑

r∈Lk

‖r − q′k‖
2 + ‖p− q′k‖

2

)

where q′k is the centroid of L′

k = Lk ∪ {p}. And since qk is the centroid of Lk, we
have

∑

r∈Lk
‖r− q′k‖

2 ≥
∑

r∈Lk
‖r− qk‖2. Consequently the new total central sum

of squares cannot be smaller.

Now we prove finiteness. The algorithm comprises two nested loops: the outer
loop spanning steps DA2–DA8, and the redistribution phase (steps DA5–DA8).
The outer loop cannot perform more than s iterations because step DA4 can be
performed at most s times; anyway, after s iterations the termination criterion in
step DA3 will surely be satisfied as all the di would be zero.

The redistribution loop will perform only finitely many iterations. Each iter-
ation strictly reduces the total central sum of squares, and since X is finite it has
only finitely many partitions. Consequently there are only finitely many possible
values for the total central sum of squares.

Next we show correctness. The elements of L define a partition of X. This
is trivially true in step DA1. The creation of a new subset in step DA4 clearly
maintains the property. The redistribution phase merely moves points between
subsets (in step DA8), so also preserves the property.

The test in step DA3 guarantees that upon completion of the algorithm
each Li ∈ L corresponds to a collapsable Lε

i . By construction, each element qi ∈ Y

is the centroid of Li. Thus qε
i is the valid representative of Lε

i . �

In the following example we apply the Divisive Algorithm to the points of
Example 1 to show that the desired partition is obtained (see Figure 1).

Example 3. Let X
ε = {pε

1, . . . , p
ε
12} be a set of empirical points with tolerance

ε = (1.43, 1.43), whose specified values coincide with the set X of Example 1:

X = {(−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0),

(−1, 1), (0, 1), (1, 1), (5,−2.9), (5, 0), (5, 2.9)}
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The DA computes, at each step, after the redistribution phase, the following
partitions.

1. L =
{

{p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12}
}

2. L =
{

{p1,p2,p3,p4,p5,p6,p7,p8,p9}, {p10,p11,p12}
}

3. L =
{

{p1, p2, p3, p4, p5, p6, p7, p8, p9}, {p10}, {p11,p12}
}

4. L =
{

{p1, p2, p4, p5, p8, p3, p6, p7, p9}, {p10}, {p11}, {p12}
}

As mentioned before, DA performs fewer iterations than AA since several input
points are close together w.r.t. the tolerance.

3.3. A particularly quick method: the grid algorithm

We recall the ∞-norm and its corresponding E-weighted norm on R
n, see [2]:

‖v‖∞ = max
i=1...n

|vi| and ‖v‖E,∞ = ‖Ev‖∞

where E = diag(1/ε1, . . . , 1/εn), as before.
A particularly quick method for decreasing the cardinality of the set X

ε can be
designed using a regular grid, consisting of half-open balls of radius 1/2 w.r.t. the
E-weighted norm ‖ · ‖E,∞. We arbitrarily choose one ball to have the origin as its
centre then tessellate to cover the whole space.

This algorithm computes a partition of X
ε by gathering all the empirical

points whose specified values lye in the same ball into the same subset. Suppose
that one of these subsets comprises the empirical points pε

1, . . . , p
ε
m, and let qε be

their empirical centroid, then qε is a “good” representative of each pε
i because

‖pi − q‖E,∞ =

∥

∥

∥

∥

∥

∥

pi −
1

m

m
∑

j=1

pj

∥

∥

∥

∥

∥

∥

E,∞

≤
1

m

m
∑

j=1

‖pi − pj‖E,∞ < 1

However, in general such a subset is not collapsable, a notion defined in terms of
the 2-norm.

Note that, since the separations of the empirical points are ignored by this
method, unsatisfactory partitions can be obtained, e.g. close points may happen to
belong to different balls and so be assigned to different subsets. Nevertheless, this
drawback is compensated by the speed and simplicity of the method. In particular,
this grid method (with a smaller radius) can be used to reduce the bulk of a
very large body of data before applying one of the more sophisticated but slower
algorithms, AA or DA. Another application of the grid method is to help choose
the more suitable algorithm between AA and DA by estimating the numbers of
sets in the partitions which would be produced.

4. Relationship with Cluster Analysis

The idea of analyzing a large body of empirical data and of partitioning it into
sets of “similar values” has been well studied in the theory of Cluster Analysis
(e.g. see [4]). The overall aim of Cluster Analysis is to separate the original data
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into clusters where the members of each cluster are much more similar to each
other than to members of other clusters. In contrast, our methods are more con-
cerned with thinning out groups of very close values while ignoring more distant
points. Below we show how Ward’s “classical” algorithm [6], an agglomerative
hierarchical method, and Li’s more recent algorithm [5], a divisive hierarchical
method, partition the empirical points of Example 1.

Example 4. Let X
ε be the set of empirical points whose set of specified values is

given in Example 1; similarly, let ε = (1.43, 1.43) as given there. We recall that in
Examples 2 and 3 both our algorithms AA and DA obtained the minimal partition
into collapsable sets, as illustrated in Figure 1.

Ward’s and Li’s algorithms do not obtain this minimal partition. In fact,
after 8 steps, Ward’s algorithm puts the points (5,−2.9) and (5, 0) into the same
cluster, while the first nine points of X still belong to different clusters. Since this
is an agglomerative method no set of points is split during the computation, so
Ward’s algorithm fails to recognise the collapsable set of nine points. In a similar
vein, Li’s algorithm goes astray at the third step: it divides the first nine points
of X into two subsets while the points (5,−2.9) and (5, 0) still belong to the same
cluster. Since this is a hierarchical divisive method, once a set is split it can never
be joined together again, so Li’s algorithm needlessly splits the collapsable set of
nine points.

Now we consider another method of Cluster Analysis, QT Clustering [3], be-
cause it has a number of similarities to our methods, especially AA. QT Clustering
computes a partition of the input data using a given limit on the diameter of the
clusters. It works by building clusters according to their cardinality, while we are
primarily interested in the local geometrical separations of the input data.

Example 5. Let X
ε be a set of empirical points with tolerance ε = (0.5) and

with specified values X = {0, 0.05, 0.9, 1, 1.2} ⊆ R. Applying the QT Clus-
tering algorithm with maximum cluster diameter equal to 2ε, we obtain the par-
tition

{

{0, 0.05, 0.9, 1}, {1.2}
}

where {0, 0.05, 0.9, 1}ε is a not collapsable set. In
contrast, if we apply AA or DA to X

ε, we obtain the more balanced partition
{

{0, 0.05}, {0.9, 1, 1.2}
}

whose elements consist of specified values of collapsable
sets. We maintain that our partition is more plausible as a grouping of noisy data.

5. Numerical Tests and Illustrative Examples

In this section we present some numerical examples to show the effectiveness and
the potential of our techniques. Both AA and DA have been implemented using
the C++ language, and are included in CoCoALib [1]. All computations in the
following examples have been performed on an Intel Pentium M735 processor
(at 1.7 GHz) running GNU/Linux and using the implementation in CoCoALib.
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Example 6. Clouds of empirical points.

In this example we consider an empirical set X
ε containing two well separated

empirical points and three clusters, two big and one small. Both AA and DA
compute five valid representatives for X

ε, but because the result comprises very
few points DA is faster than AA.
Let X

ε be a set of empirical points, with tolerance ε = (20, 20) and specified values
X = ∪5

i=1Xi ⊆ R
2, where

X1 consists of 82 points lying inside the disk of radius 10 centered on (0, 0),
X2 consists of 64 points lying inside the disk of radius 10 centered on (40, 50),
X3 = {(49, 0), (50, 0), (50, 1)}, X4 = {(9, 41)} and X5 = {(−10, 80)}.

Both AA and DA compute the “intuitive” partition consisting of 5 subsets Li = Xi

for i = 1, . . . , 5, as shown in Figure 2.

Figure 2. Appropriate partition of X

Example 7. Empirical points close to a circle.

In this example we compare the behaviour of AA and DA on a family of test cases,
which comprises sets of empirical points with similar geometrical configurations
but with differing “densities”. Let X1, X2 ⊂ R

2 be two sets of points lying close
to the circle of radius 200 and centered at the origin. They contain 2504 and 5032
points, respectively. For simplicity we choose a tolerance ε = (ε1, ε2) with ε1 = ε2.
The numerical tests are performed by applying both AA and DA to the empirical
sets X

ε
1 and X

ε
2 for various values of ε, viz. ε1 = 2k for k = 0, . . . , 6, since, for

a fixed set of points simply increasing ε effectively increases the density of the
points.

In Table 1 we present the results obtained processing X1 and X2 respectively.
The first column contains the value of the tolerance, the columns labeled with
“#VR” contain the number of the valid representatives computed by AA and DA
respectively, while those labeled with “Time” show the timings (in seconds) of each
algorithm. The results show that DA runs quickly if ε is large, that is when the
set of empirical points is dense enough, since only a few splittings of the original
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2504 empirical points 5032 empirical points

AA DA AA DA

ε #VR Time #VR Time #VR Time #VR Time
1 911 1 s 727 293 s 2096 6 s 1460 2306 s
2 462 3 s 347 184 s 734 31 s 587 1250 s
4 224 8 s 173 114 s 263 118 s 185 577 s
8 108 18 s 87 66 s 121 317 s 86 314 s

16 56 50 s 41 33 s 61 733 s 41 166 s
32 29 117 s 20 15 s 28 1680 s 21 79 s
64 13 2633 s 10 6 s 14 3695 s 10 25 s

Table 1. Points close to a circle

set are needed. On the other hand, when the points are well separated, AA is
preferable since the final partition consists of a large number of sets.

Figure 3 shows a subset of X1 (the crosses) and its valid representatives
(the dots) w.r.t. the tolerance ε = (16, 16).

Figure 3. Valid representatives of X1

The computational timings can be drastically reduced if we perform a grid
procedure before applying AA or DA (see Section 3.3). Let us consider two cases
where computation time was high: AA with ε = 64, and DA with ε = 2. In
the case AA with ε = 64, we make a first reduction of the data using a grid
whose balls have a weighted radius of 1/4; the computation takes 0.14 seconds
and produces 48 points. Now AA is applied to this result, and produces an output
of 13 points in 0.01 seconds — overall far faster than applying AA directly. How-
ever, the final result is less accurate than that obtained by applying AA directly.
The same remarks hold for the test with DA and ε = 2: using a grid whose balls
have a weighted radius of 1/2 we obtain 1657 points in 0.2 seconds; then the exe-
cution of DA on this output takes 83 seconds to return 466 points. Once again, a
drastic reduction in time at the cost of a lower quality result.
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Example 8. Example of the “zip”

This first example illustrates the necessity of the test at Step AA5 of AA. Indeed,
if the condition is not checked the algorithm builds a partition consisting of not
collapsable sets.
Let X

ε be a set of empirical points whose tolerance is ε = (2.199, 2.199) and whose
set of specified values X ⊆ R

2 is given by:

X = {(0.1, 2), (2, 0), (4.2, 0), (6.4, 0), (8.6, 0), (3.1, 3) (5.3, 3), (7.5, 3)}

Applying AA to the set X
ε we obtain the following partition of X

{

{(0.1, 2), (3.1, 3)}, {(2, 0), (4.2, 0)}, {(6.4, 0), (8.6, 0)}, {(5.3, 3), (7.5, 3)}
}

for which the set of specified values of the valid representatives is

Y = {(1.6, 2.5), (3.1, 0), (7.5, 0), (6.4, 3)}

However, if we check only the distance between the centroids in step AA5, all the
elements of X

ε are placed in a single set which is obviously not collapsable.

Example 9. Example of the “three-pointed star”

We have seen that AA always produces a partition into collapsable sets such that
no pair can be unified into a collapsable set. In most cases the partition produced
by DA also enjoys this property; however, this is not true in general. Such a
situation is shown in this example.
Let X

ε be a set of 6 empirical points whose tolerance is ε = (1, 1) and whose set
of specified values X ⊆ R

2 is given by:

X = {(0.577, 0.99), (0.577,−0.99), (0, 0.0001), (0, 0), (−1.1551, 0), (−1.155, 0)}

Applying both AA and DA we obtain the two different partitions LA and LD:

LA =
{

{(0.577,−0.99)},

{(0.577, 0.99), (0, 0.0001), (0, 0)},

{(−1.1551, 0), (−1.155, 0)}
}

LD =
{

{(0.577,−0.99)},

{(0.577, 0.99)},

{(0, 0.0001), (0, 0), (−1.1551, 0), (−1.155, 0)}
}

associated to the valid representatives whose specified values are

YA = {(0.577,−0.99), (0.192333, 0.330033), (−1.15505, 0)}

YD = {(0.577, 0.99), (0.577,−0.99), (−0.577525, 0.000025)}

respectively. It is trivial to verify that the elements of Lε
A are pairwise not unifiable

into a collapsable set, while the same property does not hold for the partition Lε
D

since {(0.577,−0.99)ε} ∪ {(0.577, 0.99)ε} is a collapsable set.
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6. Conclusions

In this paper a new approach to reducing redundancy in sets of noisy data is
described. The key idea is to work with empirical points, i.e. taking into con-
sideration the componentwise tolerances on the input data. The two algorithms
presented are included in CoCoALib which is available from the web site [1].

The experimental results points out that it is faster to use DA when the set
of empirical data is dense enough, since only a few splittings of the original set are
needed. Conversely, when the points are well-separated, AA is preferable, as the
final partition consists of a large number of sets and the algorithm will perform
few iterations. The very quick grid method can be used to estimate the number of
final partitions, and thus guide the choice between AA and DA.
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