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QQ PLOTS, RANDOM SETS

AND DATA FROM A HEAVY TAILED DISTRIBUTION

BIKRAMJIT DAS AND SIDNEY I. RESNICK

Abstract. The QQ plot is a commonly used technique for informally deciding whether a univariate random

sample of size n comes from a specified distribution F . The QQ plot graphs the sample quantiles against

the theoretical quantiles of F and then a visual check is made to see whether or not the points are close to

a straight line. For a location and scale family of distributions, the intercept and slope of the straight line

provide estimates for the shift and scale parameters of the distribution respectively. Here we consider the

set Sn of points forming the QQ plot as a random closed set in R
2. We show that under certain regularity

conditions on the distribution F , Sn converges in probability to a closed, non-random set. In the heavy

tailed case where 1 − F is a regularly varying function, a similar result can be shown but a modification is

necessary to provide a statistically sensible result since typically F is not completely known.

1. Introduction

Given a random sample of univariate data points, a pertinent question is whether this sample comes from
some specified distribution F . A variant question is whether the sample is from a location/scale family
derived from F . Decision techniques are based on how close the empirical distribution of the sample and the
distribution F are for some sample size n. The empirical distribution function of the iid random variables
X1, . . . , Xn is

Fn(x) :=
1

n

n
∑

i=1

I(Xi ≤ x), −∞ < x <∞.

The Kolmogorov-Smirnov (KS) statistic is one way to measure the distance between the empirical distribution
function and the distribution function F. Glivenko and Cantelli showed (see, for example, Serfling (1980))
that the KS-statistic converges to 0 almost surely. The QQ (or quantile-quantile) plot is another commonly
used device to graphically, quickly and informally test the goodness-of-fit of a sample in an exploratory way.
It has the advantage of being a graphical tool, which is visually appealing and easy to understand. The
QQ plot measures how close the sample quantiles are to the theoretical quantiles. For 0 < p < 1, the pth

quantile of F is defined by

F←(p) := inf{x : F (x) ≥ p}.(1.1)

The sample pth quantile can be similarly defined as F←n (p). If X1:n ≤ X2:n ≤ . . . ≤ Xn:n are the order
statistics from the sample, then F←n (p) = X⌈np⌉:n, where as usual ⌈np⌉ is the smallest integer greater than
or equal to np. For 0 < p < 1, X⌈np⌉:n is a strongly consistent estimator of F←(p) (Serfling, 1980, page 75).

Rather than considering individual quantiles, the QQ plot considers the sample as a whole and plots the
sample quantiles against the theoretical quantiles of the specified target distribution F . If we have a correct
target distribution, the QQ plot hugs a straight line through the the origin at an angle of 45◦. Sometimes
we have a location and scale family correctly specified up to unspecified location and scale and in such cases,
the QQ plot concentrates around a straight line with some slope (not necessarily 45◦) and intercept (not
necessarily 0); the slope and intercept estimate the scale and location. Since a variety of estimation and
inferential procedures in the practice of statistics depends on the assumption of normality of the data, the
normal QQ plot is one of the most commonly used.
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2 B. DAS AND S.I. RESNICK

Our goal here is to formally prove the convergence of the QQ plot (perhaps suitably modified) to a straight
line. This would show the asymptotic consistency of the QQ plot. The QQ plot formed by a sample of size
n can be considered a closed subset of R

2 denoted by Sn. This set of points that form the QQ plot in R
2 is

Sn := {(F←(
i

n+ 1
), Xi:n), 1 ≤ i ≤ n}(1.2)

where the function F←(·) is defined by (1.1). For each n, Sn is a random closed set. Note that, if {Sn} has
an almost sure limit S then this limit set by the Hewitt-Savage 0 − 1 law must be almost surely constant.
A straight line (or some closed subset of a straight line) is also a closed set in R

2. Under certain regularity
conditions on F , we show that the random set Sn converges in probability to a straight line (or some closed
subset of a straight line), in a suitable topology on closed subsets of R

2.
Section 2 is devoted to preliminary results on the convergence of random closed sets. We also discuss

a result on convergence of quantiles and, because of our interest in heavy tails, we introduce the concept
of regular variation. In Section 3, we assume the random variables have a specified distribution F and we
consider convergence of the random closed sets Sn forming the QQ plot. In Section 4, the idea of the QQ
plot is extended to the case where we know that the data is heavy tailed, that is 1 − F is regularly varying.
We assume we do not know the exact distribution of F ; we presume the distribution is heavy tailed but do
not know either the tail index or the slowly varying component. The usual QQ plot is not informative in a
statistical sense and hence must be modified by a thresholding technique.

In Corollary 3.4 we have convergence of a log-transformed version of the QQ plot to a straight line when
the distribution of the random sample is Pareto. Now Pareto being a special case of a distribution with
regularly varying tail, we use the same plotting technique for random variables having a regularly varying tail
after thresholding the data. We provide a convergence in probability result considering the k = k(n) upper
order statistics of the data set where k → ∞ and k/n → 0. In Section 5, a continuity result is provided for
a least squares line through these special kinds of closed sets. See Beirlant et al. (1996), Kratz and Resnick
(1996).

2. Preliminaries

2.1. Closed sets and the Fell topology. We denote the distance between the points x and y by d(x,y);
F ,G and K are the classes of closed, open and compact subsets of R

d respectively. These quantities are
sometimes subscripted by the dimension of the space if this needs to be emphasized for clarity. We are
interested in closed sets because the sets of interest such as Sn are random closed sets. There are several
ways to define a topology on the space of closed sets. The Vietoris topology and the Fell topology are
frequently used and these are hit-or-miss kinds of topologies. We shall discuss the Fell topology below. For
further discussion refer to Beer (1993), Matheron (1975), Molchanov (2005).

For a set B ⊂ R
d, define FB as the class of closed sets hitting B and FB as the class of closed sets disjoint

from B:
FB = {F : F ∈ F , F

⋂

B 6= ∅}, FB = {F : F ∈ F , F
⋂

B = ∅}.
Now the space F can be topologized by the Fell topology which has as its subbase the families {FK ,K ∈ K}
and {FG, G ∈ G}.

A sequence {Fn} converges in the Fell topology towards a limit F in F (written Fn → F ) if and only if
it satisfies two conditions:

(1) If an open set G hits F , G hits all Fn, provided n is sufficiently large.
(2) If a compact set K is disjoint from F , it is disjoint from Fn for all sufficiently large n.

The following result (Matheron, 1975) provides useful conditions for convergence.

Lemma 2.1. For Fn, F ∈ F , n ≥ 1, Fn → F as n→ ∞ if and only if the following two conditions hold

For any y ∈ F , for all large n, there exists yn ∈ Fn such that d(yn,y) → 0 as n→ ∞.(2.1)

For any subsequence {nk}, if ynk
∈ Fnk

converges, then lim
k→∞

ynk
∈ F .(2.2)
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Furthermore, convergence of sets Sn → S in K is equivalent to the analogues of (2.1) and (2.2) holding as
well as supj≥1 sup{‖x‖ : x ∈ Sj} <∞ for some norm ‖ · ‖ on R

d.

Note that if the sets are random elements of K and S ∈ K is non-random, then Lemma 2.1 can be used
to characterize almost sure convergence or convergence in probability. We are going to define random sets
in the next subsection.

Definition 2.1 (Hausdorff Metric). Suppose d : R
d×R

d → R+ is a metric on R
d. Then for S, T ∈ K, define

the Hausdorff metric (Matheron, 1975) D : K ×K → R+ by

D(S, T ) = inf{δ : S ⊂ T δ, T ⊂ Sδ},(2.3)

where for S ∈ K and δ > 0,

Sδ = {x : d(x,y) < δ for some y ∈ S}(2.4)

is the δ-neighborhood or δ-swelling of S.

The topology usually used on K is the myopic topology with sub-base elements {KF , F ∈ F} and {KG, G ∈
G}. The myopic topology on K is stronger than the Fell topology relativized to K. The topology on K′ =
K \ {∅} generated by the Hausdorff metric is equivalent to the myopic topology on K′ (Molchanov, 2005,
page 405).

In certain cases, convergence on F can be reduced to convergence on K.

Lemma 2.2. Suppose Fn and F are closed sets in F and and that there exist K1 ⊂ K satisfying

(1)
⋃

K∈K1

K = E.

(2) For δ > 0 and K ∈ K, we have Kδ ∈ K1.

(3) Fn
⋂

K → F
⋂

K, ∀K ∈ K1.

Then Fn → F in F .

Remark 2.1. The converse is false. Let E = R, Fn = {1/n}, F = {0} and K = [−1, 0]. Then Fn → F but

Fn
⋂

K = ∅ 6→ F
⋂

K = F.

The operation of intersection is not a continuous operation in F ×F (Molchanov, 2005, page 400); it is only
upper semicontinuous (Matheron, 1975, page 9).

Proof. We use Lemma 2.1. If x ∈ F, there exists K ∈ K1 and x ∈ K. So x ∈ F ∩K and from Lemma 2.1,
since Fn ∩ K → F ∩K as n → ∞, we have existence of xn ∈ Fn ∩K and xn → x. So we have produced
xn ∈ F and xn → x as required for (2.1).

To verify (2.2), suppose {xnk
} is a subsequence such that xnk

∈ Fnk
and {xnk

} converges to, say, x∞. We

need to show x∞ ∈ F . There exists K∞ ∈ K1 such that x∞ ∈ K∞. For any δ > 0, xnk
∈ Kδ

∞ ∈ K1 for all

sufficiently large nk. So xnk
∈ Fnk

∩Kδ
∞. Since Fnk

∩Kδ
∞ → F ∩Kδ

∞, we have limk→∞ xnk
= x∞ ∈ F ∩Kδ

∞.
So x ∈ F . �

The next result shows when a point set approximating a curve actually converges to the curve. For this
Lemma, C(0, 1] is the class of real valued continuous functions on (0, 1] and Dl(0,∞] is the class of left
continuous functions on (0,∞] with finite right hand limits.

Lemma 2.3. Suppose 0 ≤ x(·) ∈ C(0, 1] is continuous on (0, 1] and strictly decreasing with limǫ↓0 x(ǫ) = ∞.
Suppose further that yn(·) ∈ Dl(0, 1] and y(·) ∈ C(0, 1] and yn → y locally uniformly on (0, 1]; that is,
uniformly on compact subintervals bounded away from 0. Then for k = k(n) → ∞,

Fn := {
(

x(
j

k
), yn(

j

k
)
)

; 1 ≤ j ≤ k} → F := {
(

x(t), y(t)
)

; 0 < t ≤ 1} = {
(

u, y(x←(u))
)

;x(1) ≤ u <∞},

in F .
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Proof. Pick t ∈ (0, 1], so that (x(t), y(t)) ∈ F . Then

Fn ∋
(

x(⌈kt⌉/k), yn(⌈kt⌉/k)
)

→
(

x(t), y(t)
)

∈ F,

in R
2, verifying (2.1). For (2.2), Suppose

(

x(j(n′)/k(n′), yn′(j(n′)/k(n′)
)

∈ Fn′ is a convergent subsequence

in R
2. Then {x(j(n′)/k(n′)} is convergent in R and because x(·) is strictly monotone, {j(n′)/k(n′)} converges

to some l ∈ (0, 1]. Then

Fn′ ∋
(

x(j(n′)/k(n′), yn′(j(n′)/k(n′)
)

→
(

x(l), y(l)
)

∈ F,

which verifies (2.2). �

2.2. Random closed sets and weak convergence. In this section, we review definitions and character-
izations of weak convergence of random closed sets. In subsequent sections we will show convergence in
probability, but since the limit sets will be non-random, weak convergence and convergence in probability
coincide. See also Matheron (1975), Molchanov (2005).

Let (Ω,A, P ′

) be a complete probability space. F is the space of all closed sets in R
d topologized by the

Fell topology. Let σF denote the Borel σ-algebra generated by the Fell topology of open sets. A random
closed set X : Ω 7→ F is a measurable mapping from (Ω,A, P ′

) to (F , σF ). Denote by P the induced

probability on σF , that is, P = P
′ ◦ X−1. A sequence of random closed sets {Xn}n≥1 weakly converges

to a random closed set X with distribution P ) if the corresponding induced probability measures {Pn}n≥1

converge weakly to P , i.e.,

Pn(B) = P
′

n ◦X−1
n (B) → P (B) = P

′ ◦X−1(B), as n→ ∞,

for each B ∈ σF such that P (∂B) = 0.
This is not always straightforward to verify from the definition. We find useful the following characteri-

zation of weak convergence in terms of sup-measures (Vervaat, 1997). Suppose h : R
d 7→ R+ = [0,∞). For

X ⊂ R
d, define h(X) = {h(x) : x ∈ X} and h∨ is the sup-measure generated by h defined by

h∨(X) = sup{h(x) : x ∈ X}

(Molchanov, 2005, Vervaat, 1997). These definitions permit the following characterization (Molchanov, 2005,
page 87).

Lemma 2.4. A sequence {Xn}n≥1 of random closed sets converges weakly to a random closed set X if and
only if Eh∨(Xn) converges to Eh∨(X) for every non-negative continuous function h : R

d 7→ R with a bounded
support.

2.3. Convergence of sample quantiles. The sample quantile is a strongly consistent estimator of the
population quantile (Serfling (1980), page 75). The weak consistency of sample quantiles as estimators of
population quantiles was shown by Smirnov (1949); see also (Resnick, 1999, page 179). We will make use of
the Glivenko-Cantelli lemma describing uniform convergence of the sample empirical distribution and also
take note of the following quantile estimation result.

Lemma 2.5. Suppose F is strictly increasing at F←(p) which means that for all ǫ > 0,

F (F←(p− ǫ)) < p < F (F←(p+ ǫ)).

Then we have that the pth sample quantile, X⌈np⌉:n is a weakly consistent quantile estimator,

X⌈np⌉:n
P→ F←(p)

As before, ⌈np⌉ is the 1st integer ≥ np and Xi:n is the ith smallest order statistic.
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2.4. Regular variation. Regular variation is the mathematical underpinning of heavy tail analysis. It
is discussed in many books such as Bingham et al. (1987), de Haan (1970), de Haan and Ferreira (2006),
Geluk and de Haan (1987), Resnick (1987, 2006), Seneta (1976).

Definition 2.2 (Regular variation). A measurable function U(·) : R+ → R+ is regularly varying at ∞ with
index ρ ∈ R if for x > 0

(2.5) lim
t→∞

U(tx)

U(t)
= xρ.

We write U ∈ RVρ.

Remark 2.2. When ρ = 0 we call U(·) slowly varying and denote it by L(·). For ρ ∈ R, we can always
write U ∈ RVρ as:

(2.6) U(x) = xρL(x)

where L(·) is slowly varying.

3. QQ plots from a known distribution: Random sets converging to a constant set

In this section, we will use the results in Section 2 to show the convergence of the random closed sets
given by (1.2) consisting of the points forming the QQ plot to a non-random set in R

2. First we consider the
easiest case where the random variables are iid from a uniform distribution. Then we consider more general
distributions which are continuous and strictly increasing on their support. This result will be derived from
the uniform case. Because we are interested in heavy tailed distributions, our final corollary in this section
is about the Pareto distribution which is the exemplar of the heavy tailed distribution.

3.1. The Uniform case. The first simple example is QQ plot from the uniform distribution.

Proposition 3.1. Suppose U1, U2, . . . , Un are iid U(0,1). Denote the order statistics of this sample by
U1:n ≤ U2:n ≤ . . . ≤ Un:n. Define

Sn := {( i

n+ 1
, Ui:n), 1 ≤ i ≤ n}(3.1)

and

S := {(x, x) : 0 ≤ x ≤ 1}.(3.2)

Then Sn a.s.→ S in K2.

Proof. We apply the convergence criterion given in Lemma 2.1. The empirical distribution Un(x) =
n−1

∑n
i=1 I(Ui ≤ x) converges uniformly for almost all sample paths to x, 0 ≤ x ≤ 1. Without loss of

generality suppose this true for all sample paths. Then for all sample paths, the same is true for the inverse
process U←n (p) = U⌈np⌉:n, 0 ≤ p ≤ 1; that is

sup
0≤p≤1

|U⌈np⌉:n − p| → 0, (n→ ∞).

Pick 0 ≤ y ≤ 1 and let y = (y, y) ∈ S. For each n, define yn by

(3.3) yn =
( ⌈ny⌉
n+ 1

, U⌈ny⌉:n

)

,

so that yn ∈ Sn. Since |ny − ⌈ny⌉| ≤ 1 , ⌈ny⌉/n+ 1 → y and since U⌈ny⌉:n → y, we have yn → (y, y) ∈ S.
Hence criterion (2.1) from Lemma 2.1 is satisfied.

Now suppose we have a subsequence {nk} such that ynk
∈ Snk

converges. Then ynk
is of the form

ynk
= (ink

/(nk + 1), Uink
:nk

) for some 1 ≤ ink
≤ n and for some x ∈ [0, 1], we have ink

/(nk + 1) → x and

hence also ink
/nk → x. This implies

Uink
:nk

= U
⌈nk·

ink
nk
⌉:nk

→ x,

and therefore ynk
→ (x, x) as required for (2.2). �
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3.2. Convergence for more general distributions. Now consider a distribution function F which is
more general than the uniform, assuming that F is strictly increasing and continuous on its support so that
F← is unique.

Proposition 3.2. Suppose X1, . . . , Xn are iid with common distribution F (·) and X1:n ≤ X2:n ≤ . . . ≤ Xn:n

are the order statistics from this sample. If F is strictly increasing and continuous on its support, then

Tn := {(F←(
i

n+ 1
), Xi:n); 1 ≤ i ≤ n}

converges in probability to

T := {(x, x);x ∈ support(F )}
in F2.

Proof. According to Lemma 2.4, we must prove for any non-negative continuous h : R
2 7→ R+ with compact

support that as n→ ∞,
E
(

h∨(Tn)
)

→ E
(

h∨(T )
)

.

Since F is continuous, F (X1), F (X2), . . . , F (Xn) are iid and uniformly distributed on [0, 1]. Therefore
from Proposition 3.1 we have that

(3.4) Sn := {( i

n+ 1
, F (Xi:n)); 1 ≤ i ≤ n} d

= { i

n+ 1
, Ui:n); 1 ≤ i ≤ n} a.s.→ S = {(x, x); 0 ≤ x ≤ 1}

in K2.
We now proceed by considering cases which depend on the nature of the support of F . We will need the

following identity. For any closed set X , function f : R
2 7→ R+ and function ψ : R

2 7→ R
2, we have,

(3.5) f∨ ◦ ψ(X) = sup
t∈ψ(X)

f(t) = sup
s∈X

f(ψ(s)) = sup
s∈X

f ◦ ψ(s) = (f ◦ ψ)∨(X).

Case 1: The support of F is compact, say [a, b]. This implies F←(0) = a, F←(1) = b. Define the map
g : [0, 1]2 7→ [a, b]2 by

g(x, y) = (F←(x), F←(y)).

Since F is strictly increasing, observe that g(Sn)=Tn and g(S) = T . Define g∗ : R
2 7→ R

2 as the extension
of g to all of R

2:

g∗(x, y) = (g1(x), g1(y))

where

g1(z) =











F←(z), 0 ≤ z ≤ 1

a, z ≤ 0

b, z ≥ 1.

This makes g∗ : R
2 7→ R

2 continuous. Since both Sn and S are subsets of [0, 1]×[0, 1], we have g(Sn) = g∗(Sn)
and g(S) = g∗(S). Let f be a continuous function on R

2 with bounded support and we have, as n → ∞,
using (3.5),

Ef∨(Tn) = Ef∨(g(Sn)) = Ef∨(g∗(Sn))
= E(f ◦ g∗)∨(Sn) → E(f ◦ g∗)∨(S).

The previous convergence results from f ◦ g∗ : R
2 7→ R+ being continuous with bounded support, Sn P→ S,

and Lemma 2.4. The term to the right of the convergence arrow above equals

= Ef∨(g∗(S)) = Ef∨(g(S)) = Ef∨(T ).

Therefore Tn converges to T weakly and since T is a non-random set, this convergence is also true in
probability.
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Case 2: The support of F is R = (−∞,∞). Now define g : (0, 1)2 7→ R
2 by

g(x, y) = (F←(x), F←(y)).

Since F is strictly increasing, g(Sn) = Tn and g(S∩(0, 1)2) = T . Let f be a continuous function with bounded
support in [−M,M ]2, for some M > 0. Extend the definition of g to all of R

2 by defining g∗ : R
2 7→ R

2 as

g∗(x, y) = (g1(x), g1(y)),

where

g1(z) =











F←(z), −M ≤ F←(z) ≤M,

F←(−M), F←(z) ≤ −M,

F←(M), F←(z) ≥M.

Therefore g∗ : R
2 7→ R

2 is continuous. Now note that since support(f) ⊆ [−M,M ]2 and g(x, y) = g∗(x, y)
for (x, y) ∈ [−M,M ]2, we will have f ◦ g = f ◦ g∗. Therefore

Ef∨(Tn) = Ef∨(g(Sn)) = E(f ◦ g)∨(Sn) = E(f ◦ g∗)∨(Sn) → E(f ◦ g∗)∨(S).

As with Case 1, the convergence follows from f ◦ g∗ : R
2 7→ R+ being continuous with bounded support,

Sn P→ S and Choquet’s theorem 2.4. The term to the right of the convergence arrow equals

= E(f ◦ g)∨(S) = Ef∨(g(S)) = Ef∨(T ).

Therefore Tn converges to T weakly. But since T is a non-random set, this convergence is true also in
probability.

Case 3: The support of F is of the form [a,∞) or (−∞, b]. This case can be examined in a similar manner
as we have done for Cases 1 and 2 by considering each end-point of the interval of support of F according
to its nature. �

Corollary 3.3. If F is exponential with parameter α > 0, i.e., F (x) = 1 − e−αx, x > 0, we have

{(− 1

α
log(1 − i

n+ 1
), Xi:n); 1 ≤ i ≤ n} P→ {(x, x) : 0 ≤ x <∞}.

Corollary 3.4. If F is Pareto with parameter α > 0, i.e., F (x) = 1 − x−α, x > 1, we have

{(− log(1 − i

n+ 1
), logXi:n); 1 ≤ i ≤ n} P→ {(x, x

α
) : 0 ≤ x <∞}.

4. QQ plots: Convergence of random sets in the regularly varying case

The classical QQ plot can be graphed only if we know the target distribution F at least up to location
and scale. We would like to extend the idea of QQ plots to the case where the data is from a heavy
tailed distribution; this is a semi-parametric assumption which is more general than assuming the target
distribution F is known up to location and scale.

We model a one-dimensional heavy-tailed distribution function F by assuming it has a regularly varying
tail with some index −α, for α > 0; that is, if X has distribution F then,

(4.1) P [X > x] = 1 − F (x) = F̄ (x) = x−αL(x), x > 0

where L is slowly varying. In at least an exploratory context, how can the QQ plot be used to validate this
assumption and also to estimate α? (See Resnick (2006, page 106).)

Notice that if we take L ≡ 1, F turns out to be a Pareto distribution with parameter α. In Corollary
(3.4), we have seen that if F has a Pareto distribution with parameter α, then Sn defined as:

Sn := {(− log(1 − i

n+ 1
), logXi:n); 1 ≤ i ≤ n}(4.2)
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converges in probability to the set

S = {(x, x
α

); 0 ≤ x <∞}.(4.3)

Keeping this in mind, when we have a general F̄ ∈ RV−α, let us define Sn exactly as in (4.2). Then we
are able to show that, Sn converges in probability to the set

(4.4) S = {(αx, x +
1

α
logL(F←(1 − e−αx))); 0 ≤ x <∞}.

But, since we do not know the slowly varying function L(·), this result is not useful for inference pur-
poses. Estimating α from such a set is not possible unless L(·) is known, nor is it clear how Sn graphically
approximating such a set would allow us to validate the model assumption of a regularly varying tail.

Consequently we concentrate on a different asymptotic regime where the asymptotic behavior of the
random closed set can be freed from L(·). For a sample of size n from the distribution F , where F̄ ∈ RV−α,
we consider the upper k = k(n) order statistics of the sample where k(n)/n → 0 and construct a QQ plot
similar to (4.2). We assume that dF (·, ·) is some metric on F which is compatible with the Fell topology.
Note Flachsmeyer (1963/1964) characterized the metrizability of the Fell topology and since R

d is locally
compact, Hausdorff and second countable his results apply and allow the conclusion that F is metrizable
under the Fell topology.

For what follows, when A ∈ F2, we write A+ (t1, t2) = {a + (t1, t2) : a ∈ A} for the translation of A.

Proposition 4.1. Suppose we have a random sample X1, X2, . . . , Xn from F where F̄ ∈ RV−α and X(1) ≥
X(2) ≥ . . . ≥ X(n) are the order statistics in decreasing order. Define

Sn = {(− log
j

n+ 1
, logX(j)); j = 1, . . . , k}

where k = k(n) → ∞ and k/n→ 0 as n→ ∞. Also define

Tn = {(x, x
α

);x ≥ 0} + (− log
k

n+ 1
, logX(k))

Then as n→ ∞

dF (Sn, Tn) P→ 0

Remark 4.1. So after a logarithmic transformation of the data, we make the QQ plot by only comparing
the k largest order statistics with the corresponding theoretical exponential distribution quantiles. This
produces an asymptotically linear plot of slope 1/α starting from the point (− log k

n+1 , logX(k)).

Proof. Define

S ′

n = {(− log
j

k
, log

X(j)

X(k)
); 1 ≤ j ≤ k}, and T = {(x, x

α
); 0 ≤ x <∞}.

Note that we can write

S ′

n = {(− log
j

k
, log

X(j)

X(k)
); 1 ≤ j ≤ k} = {(− log t, log

X([kt])

X(k)
); t ∈ { 1

k
, . . . ,

k − 1

k
, 1}},

and also write T as

T = {(x, x
α

);x ≥ 0} = {(− log t,− 1

α
log t); 0 < t ≤ 1},

where we put x = − log t. We first show S′n
P→ T .

Referring to Lemma 2.3, set

x(t) = − log t, Yn(t) = log
X(⌈kt⌉)

X(k)
, y(t) = − 1

α
log t, 0 < t ≤ 1.

¿From Resnick (2006, page 82, equation (4.18)), we have Yn
P→ y, in Dl(0, 1], the left continuous functions

on (0, 1] with finite right limits, metrized by the Skorohod metric. Suppose {n′′} is a subsequence. There
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exists a further subsequence {n′} ⊂ {n′′} such that Yn′
a.s.→ y, in Dl(0, 1], and by Lemma 2.3, S′n′

a.s.→ T in

F . Therefore S′n
P→ T , in F , as n→ ∞.

Now observe that with an := (− log k
n+1 , logX(k)), we have

Sn ={(− log
j

n+ 1
, logX(j)); j = 1, . . . , k}

={(− log
j

k
, log

X(j)

X(k)
); j = 1, . . . , k} + (− log

k

n+ 1
, logX(k))

=S ′

n + an.

Also,

Tn = {(x, x
α

);x ≥ 0} + (− log
k

n+ 1
, logX(k)) = T + an.

Now, since dF(S ′

n, T )
P→ 0, we get

dF (Sn, Tn) = dF (S ′

n + an, T + an) = dF (S ′

n, T )
P→ 0,

as required. �

5. Least squares line through a closed set

5.1. Convergence of the least squares line. The previous two sections gave results about the convergence
of the QQ plot to a straight line in the Fell topology of F2. It is of interest to know whether some functional
of closed sets is continuous or not and, in particular, the slope of the least squares line through the points of
QQ plot is one such functional. The slope of the least squares line is an estimator of scale for location/scale
families and this leads to an estimate of the heavy tail index α; see Beirlant et al. (1996), Kratz and Resnick
(1996) and Resnick (2006, Section 4.6).

Intuition suggests that when a sequence of finite sets converges to a line, the slope of the least squares
line should converge to the slope of the limiting line. However there are subtleties which prevent this from
being true in general. We need some restriction on the point sets that converge, since otherwise, a sequence
of point sets which are essentially linear except for a vanishing bump, may converge to a line but the bump
may skew the least squares line sufficiently to prevent the slope from converging; see Example 5.1 below.

The following Proposition provides a condition for the continuity property to hold. First define the
subclass Ffinite or line ⊂ F2 to be the closed sets of F2 which are either sets of finite cardinality or closed,
bounded line segments. These are the only cases of compact sets where it is clear how to define a least
squares line. For F ∈ Ffinite or line, the functional LS is defined in the obvious way:

LS(F ) = slope of the least squares line through the closed set F

For the next proposition, we consider sets Fn := {(xi(n), yi(n)) : 1 ≤ i ≤ kn} of points and write

x̄n =
∑kn

j=1 xj(n)/kn and ȳn =
∑kn

j=1 yj(n)/kn. Also, for a finite set Sn, #Sn denotes the cardinality of Sn.

Proposition 5.1. Suppose we have a sequence of sets Fn := {(xi(n), yi(n)) : 1 ≤ i ≤ kn} ∈ K2, each
consisting of kn points, which converge to a bounded line segment F ∈ K2 with slope m where |m| < ∞, as
kn → ∞. Then

LS(Fn) → LS(F ) = m

provided the following condition holds:

∃ δ > 0, such that pnδ :=
#
(

{(x̄n − δ, x̄n + δ) × (ȳn − δ, ȳn + δ)}⋂Fn
)

#Fn
→ pδ ∈ [0, 1).(5.1)

This Proposition gives a condition for the continuity of the slope functional LS(·) when {Fnn ≥ 1} and
F are bounded sets in Ffinite or line. The next example shows the necessity of condition (5.1), which prevents
a set of outlier points from skewing the slope of the least squares line.
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Example 5.1. For n ≥ 1, define the sets:

Fn = {( i
n
, 0),−n ≤ i ≤ n; (

1

n
(1 +

j

2n
),

1

n
(1 +

j

2n
)), 0 ≤ j ≤ 2n} and F = [−1, 1] × {0}.

We develop features about this example.

(1) For the cardinality of Fn we have

#Fn = kn = 2n + 2n+ 2.

(2) We have Fn → F in K2. As before, denote the Hausdorff distance between two closed sets in K2 by
D(·, ·) and we have D(Fn, F ) < 3/n→ 0 as n→ ∞.

(3) Condition (5.1) is not satisfied. To see this pick any n ≥ 1 and observe

x̄n = ȳn =
3(2n + 1)

2n(2n + 2n+ 2)
=

3(2n + 1)

2nkn
∼ 3

2n
.

Fix δ > 0. For all n so large that δ > 1/(2n) we have

#
(

{(x̄n − δ, x̄n + δ) × (ȳn − δ, ȳn + δ)}⋂Fn
)

#Fn
≥ 2n + 1

2n + 2n+ 2
→ 1, (n→ ∞).

Obviously for this example, m = LS(F ) = 0. However, if mn denotes the slope of the least squares line
through Fn then we show that mn → 1 6= 0 = m. To see this, observe that conventional wisdom yields,

(5.2) mn =

∑

(xi(n),yi(n))∈Fn

(yi(n) − ȳ)(xi(n) − x̄)

∑

(xi(n),yi(n))∈Fn

(xi(n) − x̄)2
.

For the numerator we have,
∑

(xi(n),yi(n))∈Fn

(yi(n) − ȳn)(xi(n) − x̄n) =
∑

(xi(n),yi(n))∈Fn

yi(n)xi(n) − knȳnx̄n

=

2n

∑

j=0

1

n2
(1 +

j

2n
)2 − kn

(3(2n + 1)

2nkn

)2

=
1

n2

(

2n

∑

j=0

(

1 +
2j

2n
+

j2

22n

)

− 9

4kn
(2n + 1)2

)

=
1

n2

(

2 · (2n + 1) +
1

22n

2n

∑

j=0

j2 − 9

4kn
(2n + 1)2

)

and using the identity
∑N

j=1 j
2 = N(N + 1)(N + 1

2 )/3 = N(N + 1)(2N + 1)/6, we get the above equal to

=
1

n2

(

2 · (2n + 1) +
1

22n

2n(2n + 1)(2n + 1
2 )

3
− 9

4kn
(2n + 1)2

)

=
2n + 1

n2

(

2 +
2n + 1

2

3 · 2n − 9

4kn
(2n + 1)

)

∼ kn
12n2

.

For the denominator, we use the calculation already done for the numerator:
∑

(xi(n),yi(n))∈Fn

(xi(n) − x̄n)2 =
∑

(xi(n),yi(n))∈Fn

xi(n)2 − kn(x̄n)2

=

n
∑

i=−n

(
j

n
)2 +

2n

∑

j=0

1

n2
(1 +

j

2n
)2 − kn

(3(2n + 1)

2nkn

)2

=

n
∑

i=−n

(
j

n
)2 +

∑

(xi(n),yi(n))∈Fn

yi(n)xi(n) − knȳnx̄n
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=
2n(n+ 1)(2n+ 1)

6n2
+

kn
12n2

+ o(
kn

12n2
)

= O(n) +
kn

12n2
+ o(

kn
12n2

) ∼ kn
12n2

.

Combining the asymptotic forms for numerator and denominator with (5.2) yields

mn ∼ kn/12n2

kn/12n2
∼ 1, (n→ ∞),

so mn → 1 6= 0 = m, as claimed. �

Proof of Proposition 5.1. For (xi(n), yi(n)) ∈ Fn, we can write

(5.3) yi(n) = mxi(n) + zi(n) 1 ≤ i ≤ kn

We want to show that mn = LS(Fn) → m = LS(F ), as n→ ∞. Fix ǫ > 0. We will provide N such that for
n > N , we have |mn −m| < ǫ.

First of all, condition (5.1) allows us to fix δ > 0 such that

pnδ := pn =
#{(x̄n − δ, x̄n + δ) × (ȳn − δ, ȳn + δ)}⋂Fn

#Fn
→ p < 1.

Choose N1 such that for n > N1, we have pn < 1+p
2 or equivalently that 1 − pn > 1−p

2 . For η > 0 and
F ∈ K2, recall the definition of the η-swelling of F :

(5.4) F η = {x : d(x, y) < η for some y ∈ F}.
Since D(Fn, F ) → 0 in K2, we can choose N2 such that for all n > N2 we have Fn ⊂ F ǫ1 where

ǫ1 :=
2δǫ(1 − p)

4
√

1 +m2(2 + 2m+ ǫ(1 − p))
= δ1ǫ

(1 − p)

4
√

1 +m2

and we have set

δ1 :=
δ

1 +m+ 1
2ǫ(1 − p)

< δ.

The choice of δ1 is designed to ensure that if for some (xi(n), yi(n)), we have |xi(n) − x̄n| < δ1, then

(xi(n), yi(n)) ∈ (x̄n − δ, x̄n + δ) × (ȳn − δ, ȳn + δ).

This follows because

|xi(n) − x̄n|∨|yi(n) − ȳn| < δ1 +mδ1 + 2ǫ1
√

1 +m2.

See Figure 2; from the definition of ǫ1 we have this equal to

= δ1 +mδ1 + 2
δ1ǫ(1 − p)

4
√

1 +m2

√

1 +m2 = δ1(1 +m+
ǫ(1 − p)

2
) = δ.(5.5)

Let N = N1 ∨ N2 and restrict attention to n > N . Since Fn ⊂ F ǫ1 , we have for all 1 ≤ i ≤ kn that
(xi(n), yi(n)) ∈ F ǫ1 . By convexity of F ǫ1 , (x̄, ȳ) ∈ F ǫ1 . Therefore, referring to Figure 1, we have

|zi(n) − z̄n| ≤|yi(n) −mxi(n)| + |ȳn −mx̄n|
≤ǫ1

√

1 +m2 + ǫ1
√

1 +m2 = 2ǫ1
√

1 +m2.(5.6)

Using the representation (5.3) we get,

(5.7) mn =

kn
∑

i=1

(yi(n) − ȳn)(xi(n) − x̄n)

kn
∑

i=1

(xi(n) − x̄n)2
= m+

kn
∑

i=1

(zi(n) − z̄n)(xi(n) − x̄n)

kn
∑

i=1

(xi(n) − x̄n)2
.
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ǫ1

F

x

y

0

ǫ1
√

1 +m2

tan−1(m)

Figure 1. The geometry of the neighborhood of the line F .

Therefore,

|mn −m| =

∣

∣

∣

∣

∣

kn
∑

i=1

(zi(n) − z̄n)(xi(n) − x̄n)

kn
∑

i=1

(xi(n) − x̄n)2

∣

∣

∣

∣

∣

≤

kn
∑

i=1

|zi(n) − z̄n||xi(n) − x̄n|
kn
∑

i=1

(xi(n) − x̄n)2
≤ 2ǫ1

√

1 +m2

kn
∑

i=1

|xi(n) − x̄n|
kn
∑

i=1

(xi(n) − x̄n)2

where the last inequality follows from (5.6).
For convenience, define the following notation:

|S(x)|<ρ :=
∑

|xi(n)−x̄n|<ρ

|xi(n) − x̄n|, |S(x)|≥ρ :=
∑

|xi(n)−x̄n|≥ρ

|xi(n) − x̄n|,

S2(x)<ρ :=
∑

|xi(n)−x̄n|<ρ

(xi(n) − x̄n)
2, S2(x)≥ρ :=

∑

|xi(n)−x̄n|≥ρ

(xi(n) − x̄n)
2,

B
(

(x, y), δ
)

:= (x− δ, x+ δ) × (y − δ, y + δ).

Therefore

kn
∑

i=1

|xi(n) − x̄n|
kn
∑

i=1

(xi(n) − x̄n)2
=

|S(x)|<δ1 + |S(x)|≥δ1
S2(x)<δ1 + S2(x)≥δ1

=
(|S(x)|<δ1 + |S(x)|≥δ1)/S2(x)≥δ1

(S2(x)<δ1/S
2(x)≥δ1 + 1)

≤ (|S(x)|<δ1 + |S(x)|≥δ1)
S2(x)≥δ1

≤ 1

δ1

( |S(x/δ1)|<1

S2(x/δ1)≥1
+ 1

)

≤ 1

δ1

(

#{(xi(n), yi(n)) ∈ Fn : |xi(n) − x̄n| < δ1}
#{(xi(n), yi(n)) ∈ Fn : |xi(n) − x̄n| ≥ δ1}

+ 1

)

≤ 1

δ1

(

#{(xi(n), yi(n)) ∈ Fn : (xi(n), yi(n)) ∈ B((x̄n, ȳn), δ)}
#{(xi(n), yi(n)) ∈ Fn : (xi(n), yi(n)) /∈ B((x̄n, ȳn), δ)}

+ 1

)
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(x̄n, ·)

δ1

mδ1

2ǫ1
√

1 +m2

ǫ1

F

x

y

0

Figure 2. The geometry of a neighborhood of the line; support for (5.5).

The choice of δ1 justifies the previous step by (5.5). The previous expression is bounded by

≤ 1

δ1
(

pn
1 − pn

+ 1) ≤ 1

δ1
(
1 + p

1 − p
+ 1) =

2

δ1(1 − p)
,

and we recall p < 1.
Consequently

|mn −m| =2ǫ1
√

1 +m2

kn
∑

i=1

|xi(n) − x̄n|
kn
∑

i=1

(xi(n) − x̄n)2
≤ 2ǫ1

√

1 +m2 × 2

δ1(1 − p)

=2ǫδ1
1 − p

4
√

1 +m2

√

1 +m2 × 2

δ1(1 − p)
= ǫ

This completes the proof that mn → m under condition (5.1). �

Corollary 5.2. If x̄n → µx < ∞ and ȳn → µy < ∞, as n → ∞, then Proposition 5.1 holds if we replace
(x̄n, ȳn) in (5.1) by (µx, µy).

Proof. In place of condition (5.1) we are assuming

∃ δ > 0 such that pnδ =
#{(µx − δ, µx + δ) × (µy − δ, µy + δ)}⋂Fn

#Fn
→ pδ ∈ [0, 1).(5.8)

Let us fix δ > 0 such that

p∗n :=
#{(µx − 2δ, µx + 2δ) × (µy − 2δ, µy + 2δ)}⋂Fn

#Fn
→ p ∈ [0, 1).

Since x̄n → µx < ∞ and ȳn → µy < ∞, there exists N∗ such that n > N∗ implies that (x̄n, ȳn) ∈
(µx − δ, µx + δ) × (µy − δ, µy + δ). Hence for n > N∗

pn :=
#{(x̄n − δ, x̄n + δ) × (ȳn − δ, ȳn + δ)}⋂Fn

#Fn

≤ #{(µx − 2δ, µx + 2δ) × (µy − 2δ, µy + 2δ)}⋂Fn
#Fn

= p∗n → p ∈ [0, 1).
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Now choose N1 ≥ N∗ such that for all n > N1, we have pn <
1+p
2 . This also means that 1 − pn >

1−p
2 .

The rest of the proof is the same as that of Proposition 5.1. �

6. Slope of the LS line as a tail index estimator

For heavy tailed distributions, the slope of the least squares line through the QQ plot made by the upper
kn largest order statistics is a consistent estimator of 1/α. See Beirlant et al. (1996), Kratz and Resnick
(1996) and Resnick (2006, Section 4.6). We connect the ideas of the previous section with this result.

Proposition 6.1. Consider non-negative random variables X1, X2, . . . , Xn which are iid with common dis-
tribution F where F̄ ∈ RV−α and X(1) ≥ X(2) ≥ . . . ≥ X(n) are the order statistics in decreasing order. The

sets Sn and Tn were defined in Proposition 4.1 where we proved dF (Sn, Tn)
P→ 0, assuming k = k(n) → ∞

and k/n→ 0 as n→ ∞. For convenience we defined S ′

n = Sn+an and T = Tn+an where an was a random
point. Write

S ′

n = {(− log
j

kn
, log

X(j)

X(k)
; j = 1, . . . , kn} = {(xj(n), yj(n)); j = 1, . . . , kn} ( say) and T = {(x, x

α
);x ≥ 0}.

Then,

LS(S ′

n) = LS(Sn)
P→ 1

α
= LS(Tn) = LS(T ),(6.1)

as k := kn → ∞ and kn/n→ 0 as n→ ∞.

The result is believable based on the fact that dF (Sn, Tn)
P→ 0. However, since neither Tn nor T are K2

sets, some sort of truncation to compact regions of R
2 is necessary in order to capitalize on Proposition 5.1.

For some integer M > 2, define

KM = [0,M ] × [0,
2M

α
],

and let

S ′

n

M
= S ′

n ∩KM and T M = T ∩KM .

Proof. Some preliminary observations. Clearly, LS(Sn) = LS(S ′

n + an) = LS(S ′

n) and with xj(n), yj(n)
defined in the statement of the Proposition,

LS(S ′

n) =
S̄XY − S̄X S̄Y
S̄XX − (S̄X)2

,

where, as usual,

S̄X =
1

kn

∑

(xj(n),yj(n))∈S′
n

xj(n), S̄Y =
1

kn

∑

(xj(n),yj(n))∈S′
n

yj(n),

S̄XY =
1

kn

∑

(xj(n),yj(n))∈S′
n

xj(n)yj(n), S̄XX =
1

kn

∑

(xj(n),xj(n))∈S′
n

(xj(n))2.

We need similar quantities S̄MX , S̄
M
Y , S̄MXY corresponding to averages of points restricted toKM , so for instance

S̄MX =
1

kM

∑

(xj(n),yj(n))∈S′
n

M

xj(n)

and kM = #S ′

n

M
. A simple calculation given in Resnick (2006, page 109) yields as k → ∞,

(6.2) S̄X =
1

k

k
∑

i=1

(− log
i

k
) ∼

∫ 1

0

(− log x)dx = 1, S̄XX =
1

k

k
∑

i=1

(− log
i

k
)2 ∼

∫ 1

0

(− log x)2dx = 2,
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while for S̄Y we have

(6.3) S̄Y =
1

k

k
∑

i=1

(− log
X(i)

X(k)
)
P→ 1

α

since S̄Y is the Hill estimator and is consistent for 1/α (Csörgő et al., 1985, Mason, 1982, Mason and Turova,
1994, Resnick, 2006).

We need the corresponding limits for S̄MX , S̄
M
XX , S̄

M
Y . These calculations and subsequent calculations are

simplified by the following facts:

(1) The ratios of order statistics process converges, as k → ∞, k/n→ 0,

(6.4)
X(⌈kt⌉)

X(k)

P→ t−1/α,

in Dl(0,∞] (Resnick, 2006, page 82).
(2) Define the random measure

ν̂n(·) =
1

k

n
∑

i=1

ǫX(i)/X(k)
(·)

on (0,∞], which puts mass 1/k at the points {X(i)/X(k), 1 ≤ i ≤ n}. Then

(6.5) ν̂n
P→ να,

in the space of Radon measures on (0,∞], where να(x,∞] = x−α, x > 0 (Resnick, 2006, page 83).

(3) The number of points kM in S ′

n

M
satisfies, as n→ ∞, k → ∞, k/n→ 0,

(6.6) kM/k
P→ 1 − e−M .

To see this, observe

kM/k =
1

k
#{j ≤ k : k ≥ j ≥ ke−M and

X(j)

X(k)
≤ e2M/α}

=
1

k
#{j ≤ k : 1 ≤ X(j)

X(k)
≤ X(⌈ke−M ⌉)

X(k)
∧ e2M/α}

=ν̂n

(

1,
X(⌈ke−M ⌉)

X(k)
∧ e2M/α

]

P→ 1 −
(

(e−M )−1/α ∧ e2M/α
)−α

= 1 − e−M .

We continue using these three facts. For S̄MX we have

S̄Mx =
1

kM

∑

(

xi(n),yi(n)
)

∈S′
n

M

xi(n) =
1

kM

∑

j:k≥j≥ke−M

0<logX(j)/X(k)≤2M/α

− log
j

k
.

Set
(

S̄MX

)∗

:=
1

kM

∑

j:k≥j≥ke−M

− log
j

k
=

k

kM
1

k

∑

j:k≥j≥ke−M

− log
j

k

∼ 1

1 − e−M

∫ 1

e−M

− logxdx =
1

1 − e−M

∫ M

0

ye−ydy

=:1 + ǫX(M),
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where ǫX(M) → 0 as M → ∞. Also, S̄MX and
(

S̄MX

)∗

are close asymptotically since

P [S̄MX 6=
(

S̄MX

)∗

] =P
{

⋃

k≥j≥k−M

[log
X(j)

X(k)
> 2M/α]

}

=P [log
X(⌈ke−M ⌉)

X(k)
> 2M/α] → 0,

since
X(⌈ke−M ⌉)

X(k)

P→ eM/α < e2M/α.

We conclude

(6.7) S̄MX
P→ 1 + ǫX(M) := µMX ,

with ǫX(M) → 0 as M → ∞, and in a similar way we can derive that

(6.8) S̄MXX
P→ 2 + ǫXX(M),

where ǫXX(M) → 0 as M → ∞. For S̄MY we have

S̄MY =
1

kM

∑

j:k≥j≥ke−M

0<logX(j)/X(k)≤2α−1M

log
X(j)

X(k)

=
1

kM

∑

j:0<logX(j)/X(k)≤2α−1M∧logX(⌈ke−M ⌉)/X(j)

log
X(j)

X(k)

=
k

kM

∫ 2α−1M∧logX(⌈ke−M ⌉)/X(j)

1

log y ν̂n(dy)

P→ 1

1 − e−M

∫ 2α−1M∧α−1M

1

log y να(dy)

=
1

1 − e−M

∫ M/α

0

se−αsds =: µMY ,

where µMY → 1
α as M → ∞. We conclude

(6.9) S̄MY
P→ µMY .

To prove (6.1), we follow the following outline of steps.

• Step 1: Prove S ′

n

M P→ T M .
• Step 2: Verify that Corollary 5.2 is applicable by showing that the analogue of (5.1) holds. This

permits the conclusion that

LS(S ′

n

M
)
P→ 1/α.

Coupled with (6.7), (6.8) and (6.9), this yields

(6.10) S̄MXY =
2

α
+ ǫXY (M) + op(1),

where limM→∞ ǫXY (M) = 0 and op(1)
P→ 0 as n→ ∞.

• Step 3: Compare S̄XY and S̄MXY and Check that

(6.11) lim
M→∞

lim sup
n→∞

P [|S̄MXY − S̄XY | > η] = 0, ∀η > 0.

This gives S̄XY
P→ 2/α which coupled with (6.2) and (6.3) implies (6.1).
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We may check Step 1 using a very minor modification of Lemma 2.3, following the pattern of proof used
for Proposition 4.1. For Step 2, the challenge is to verify condition (5.1) holds and we defer this to the end
of the proof. Thus we turn to Step 3.

First of all, we observe that S̄MXY and S̄XY average, respectively kM and k terms but there is no need to
differentiate: For any η > 0,

P [
∣

∣

∣

1

kM

∑

(xj(n),yj(n))∈S′
n

M

xi(n)yi(n)−1

k

∑

(xj(n),yj(n))∈S′
n

M

xi(n)yi(n)
∣

∣

∣
> η]

=P [
∣

∣

∣

1

kM
− 1

k

∣

∣

∣

∑

(xj(n),yj(n))∈S′
n

M

xi(n)yi(n) > η]

and dividing the sum by kM yields

=P
[

S̄MXY

∣

∣

∣
1 − kM

k

∣

∣

∣
> η

]

.

Since S̄MXY is convergent in probability, it is stochastically bounded and since, as n→ ∞,

∣

∣

∣
1 − kM

k

∣

∣

∣

P→ 1 − (1 − e−M ) = e−M
M→∞→ 0,

we conclude

(6.12) lim
M→∞

lim sup
n→∞

P
[∣

∣

∣

1

kM

∑

(xj(n),yj(n))∈S′
n

M

xi(n)yi(n) − 1

k

∑

(xj(n),yj(n))∈S′
n

M

xi(n)yi(n)
∣

∣

∣
> η

]

= 0.

Next observe for η > 0,

P [
∣

∣

∣

1

k

∑

(xj(n),yj(n))∈S′
n

M

xj(n)yj(n)− 1

k

∑

k≥j≥ke−M

xj(n)yj(n)
∣

∣

∣
> η] ≤ P{

⋃

k≥j≥ke−M

[
X(j)

X(k)
> e2M/α]}

≤P [
X(⌈ke−M ⌉)

X(k)
> e2M/α] → 0, (n → ∞).(6.13)

Note that by the Cauchy-Schwartz inequality,

(

|S̄XY − 1

k

∑

k≥j≥ke−M

xj(n)yj(n)|
)2 ≤

(1

k

∑

1≤j≤ke−M

xj(n)yj(n)
)2 ≤ 1

k

∑

1≤j≤ke−M

xj(n)2 · 1

k

∑

1≤j≤ke−M

yj(n)2.

Furthermore

1

k

∑

1≤j≤ke−M

yj(n)2 =

∫ ∞

logX
(⌈ke−M ⌉)

/X(k)

(log y)2ν̂n(dy)

and using (6.4), we have for some c > 0, all large n and some M that the above is bounded by
∫ ∞

cM

(log y)2ν̂n(dy) + op(1).(6.14)

Assessing (6.12), (6.13) and (6.14), we see that (6.11) will be proved if we show

(6.15) lim
M→∞

lim sup
n→∞

P
[

∫ ∞

M

(log y)2ν̂n(dy) > η
]

= 0, (∀η > 0).

This treatment is similar to the stochastic version of Karamata’s theorem (Feigin and Resnick (1997), Resnick
(2006, page 207). For 0 < ζ < 1 ∧ α and large M , the integrand (log y)2 is dominated by yζ . Bound the
integral by

∫ ∞

M

ν̂n(y,∞] ζyζ−1dy +M ζ ν̂n(M,∞].
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If we let first n→ ∞ and then M → ∞, for the second piece we have

M ζ ν̂n(M,∞]
P→M ζνα(M,∞] = M ζ−α → 0.

Now we deal with the integral. Set b(t) = (1/(1− F ))←(t) so that X(k)/b(n/k)
P→ 1 (Resnick, 2006, page

81). For γ > 0,

P [

∫ ∞

M

ν̂n(y,∞] ζyζ−1dy > η] =P [

∫ ∞

M

ν̂n(y,∞] ζyζ−1dy > η, 1 − γ < X(k)/b(n/k) < 1 + γ] + o(1)

≤P [

∫ ∞

M

1

k

n
∑

i=1

ǫXi/b(n/k)((1 − γ)y,∞]ζyζ−1dy > η] + o(1).

Ignore the term o(1). Markov’s inequality gives a bound

≤(const)

∫ ∞

M

E
(1

k

n
∑

i=1

P [Xi ≥ b(n/k)(1 − γ)y]
)

ζyζ−1dy

=(const)

∫ ∞

M

n

k
F̄ (b(n/k)(1 − γ)y])ζyζ−1dy.

and applying Karamata’s theorem (Bingham et al., 1987, de Haan, 1970, Geluk and de Haan, 1987, Resnick,
2006), we have as n→ ∞ that this converges to

=(const)

∫ ∞

M

(

(1 − γ)y)−αζyζ−1dy
M→∞→ 0,

as required. This finishes Step 3 and completes the proof modulo the verification that (5.8) can be proven
for this problem.

The remaining task of checking (5.8) proceeds as follows. Recall µMX and µMY from (6.7) and (6.9). Fix
M . Then for pnδ in (5.8), we have

1

kM
#{j : µMX − δ < − log

j

k
< µMX + δ, 0 < − log

j

k
≤M ;µMY − δ < log

X(j)

X(k)
< µMY + δ, 0 ≤ log

X(j)

X(k)
≤ 2M

α
}.

Since µMX ≈ 1 and µMY ≈ 1/α, we get for large M

pnδ :=
1

kM
#
{

j : µMX − δ < − log
j

k
< µMX + δ; µMY − δ < log

X(j)

X(k)
< µMY + δ

}

=
1

kM
#
{

j :
X(⌈k exp{−(µM

X
−δ)}⌉)

X(k)
∨ eµM

Y −δ <
X(j)

X(k)
<
X(⌈k exp{−(µM

X
+δ)}⌉)

X(k)
∧ eµM

Y +δ
}

=
k

kM
ν̂n

(

X(⌈k exp{−(µM
X
−δ)}⌉)

X(k)
∨ eµM

Y −δ,
X(⌈k exp{−(µM

X
+δ)}⌉)

X(k)
∧ eµM

Y +δ

)

.

Apply (6.4) and (6.5) and we find

pnδ
P→ 1

1 − e−M
να

(

e(µ
M
X −δ)/α ∨ eµM

Y −δ, e(µ
M
X +δ)/α ∧ eµM

Y +δ
)

.

Since µMX ≈ 1 and µMY ≈ 1/α, by picking M large and δ small, the right side can be made to be less than 1.
This completes the proof. �
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