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Abstract

Equity default-swaps pay the holder a fixed amount of money when the
underlying spot level touches a (far-down) barrier during the life of the instru-
ment. While most pricing models give reasonable results when the barrier lies
within the range of liquidly traded strikes of plain-vanilla option prices, the sit-
uation is more involved for extremely out-of-the money barriers. In this paper
we discuss a model-insensitive approach for the determination of first hitting
times that does not rely on the full a priori knowledge of the stochastic process
for the price dynamics. Hence more robust pricing and hedging results are ex-
pected as a result of this analysis. In contrast to stochastic volatility-models
our approach is well suited for the conservative pricing of equity default-swaps.
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1 Introduction

An American Digital Put (Am-DIP) with (lower) barrier B pays the amount of 1
EUR at maturity 7" in case that the underlying spot level S; has touched the barrier
during the life of the contract, e.g.

Am — DIP(T, Sy, B,T) = 1,1 (1)

where Am — DIP(t,S;, B,T) denotes the price of the Am-DIP at time ¢ and 75
denotes the stopping time of the price process S; related to the barrier B. Standard
option pricing theory assumes the existence of an equivalent martingale measure.
This implies that the fair value of payoff (1) is given by an expectation under the
forward adjusted probability measure Q7 !.e.g.

Am — DIP(t,S,,B,T) = Df E°T(1,, 7| F,) (2)

where, as usual, D f denotes the discount factor to maturity and F; is the filtration
in the probability triple (€2, P, F).

In order to evaluate (2), standard modeling procedure requires the prior knowledge
of the full dynamics of the spot process S;. For example, in the case of a continuously
trading economy where the filtration is generated by two Brownian motions W;, W,
a common class of processes have the following form

ds

—L = u(t, o) dt + o dW,

t

d0t2 = T](t, O't)dt + V(t, O't)th (3)
where the correlation p between the two Brownian motions is given by
< dW,, dW, >=p dt (4)

Siyo0,pw(o..),m(...),v(...) denote the spot, volatility, drift of the spot, drift of the
volatility and vol-of-vol respectively.

For example, if one sets 7(t, ;) = k(0 — ¢2) and v(t, 0y) = \/o2w for some level of
the mean-reversion speed x and mean-reversion level © as well as a vol-of-vol param-
eter w, one obtains the Heston model of stochastic volatility in this case. Note that
the dynamics defined in (3) does not necessarily lead to an equivalent martingale

!Throughout this paper interest rates are assumed non-stochastic so that the forward-adjusted
and risk-neutral measure are used interchangeably in the sequel



measure. Without specifying the conditions in detail, for the purpose of this paper,
we restrict the functions defined in (3) such that the Novikov condition is fulfilled
for the variance process at all times.

As far as the pricing of Am-DIP is concerned, (3),(4) can readily be integrated
to obtain the expectation value of (2). However even after a successful completion
of this task the following questions remain:

i How does the pricing of the American-DIP depend on the particular choice
of the dynamics in (3)? If there were to exist two different models that both
are consistent with the market prices for plain-vanilla options, which model
should one prefer in practice and how can one specify the model-sensitivity
more generally for the Am-DIP?

ii How can one establish confidence in the parameterization of (3) in situations
where the barrier level B is below the traded strike range of the plain vanilla
option market and hence no direct calibration of the parameters is possible?

iii How can a conservative price be constructed in the pricing framework of (3)
and how can the hedges be best constructed and interpreted?

In this paper we pursue an alternative pricing methodology for the American dig-
ital put option. Our approach utilizes a well-known intuitive relationship between
American and European digital puts options in the Black-Scholes world and gener-
alizes the latter to a situation where a volatility skew is present.

Hence our approach is primarily driven by hedging intuition of the American digital
put and is, in this sense, conceptually different to the approach outlined above. In
this paper we argue that the full knowledge of the dynamics is not required in order to
solve the pricing problem of (2). Hence our approach relies on fewer specific assump-
tions and can be viewed as a framework that simultaneously describes a wide range
of different stochastic processes. This is in contrast to the standard option pricing
philosophy of (3) which requires the full a-priori knowledge of the stochastic process.

Note that the idea of relating the valuation of knock-out options directly to the
hedge is not a new idea. Under the special assumptions of driftless spot processes
and symmetric distributions Carr et al [1] describe how barrier options can be writ-
ten as a portfolio of plain-vanilla options. In a later paper Carr and Lee generalize
Put-Call Symmetry to a wider class of processes [2]. However two different pricing



models that are both consistent with the plain-vanilla market will generally yield
different values for knock-out options if these assumptions are relaxed. Hence knock-
outs exhibit ”‘exotic risk”” that cannot be hedged into plain-vanilla instruments. As
will be discussed in the paper such valuation differences can arise due to different
dividend assumptions. In addition forward distributions for the spot are not uniquely
determined by the plain-vanilla space either. As will be discussed in a later chap-
ter this will lead to different unwinding costs of the hedge at the barrier which in
turn will affect the price of the American digital put and hence give rise to model-risk.

The paper is outlined as follows:

Chapter 2 recaps a well-known approximate relationship between American and dig-
ital puts in the case of a Black-Scholes world.

Chapter 3 derives an integral-equation for the stopping time density in the pres-
ence of a volatility skew.

Chapter 4 compares a specific instantaneous pricing model to our approach. We
show how prices can be reconciled with our methodology once the forward volatility
skew as well as the dividend assumptions are known at the barrier. Hence as a result
one can think of our approach as a ”pricing framework” that simultaneous comprises
a large class of different pricing models.

Chapter 5 discusses the skew sensitivity of an American Digital puts.

Chapter 6 discusses an example for the conservative pricing of an equity default
swap.



2 A ”handy” relationship between American Dig-
ital Puts and European Digital Puts in a Black-
Scholes world

In contrast to an Am-DIP, European digital puts (Eur-DIP) pay an amount of 1
Euro in the case that the terminal spot price is below a barrier B at the time of
maturity, e.g

Fur — DIP(T, ST, B,T) == ]-ST<B (5)

where Fur — DIP(t,S;, B, T) denotes the price of a Eur-DIP at time ¢ with strike
B. Hence
Eur — DIP(t,S,, B,T) = Df E°T(1g,-p|F)

Hence Eur-DIP are "non-exotic” as its price is a direct consequence of the plain-
vanilla European option market. The relationship is given by

dPut(t,T, K = B)

Eur — DIP(t,S, B,T) =

where Put(t, T, K) denotes the value of a plain-vanilla European put of strike K and
is given by the Black-Scholes equation

Put(t,T,K) = Df (KN (~dy) — FN'(—dy)) (7)

where
In(£) £+ $0%(T — 1)

di o —
1/2 oV —t

In the particular case of a Black-Scholes world, the volatility does not depend on the
strike and the rhs of (6) simplifies to

dPut(t,T, K = B)

=) = Df N(~dy) )

Here F, B, o, T denote the forward, strike, volatility and maturity respectively.

Eq. (6) states that the price of Eur-DIP is model-independent, given the deriva-
tive of the European Puts with respect to the strike.

Eq. (8) allows one to derive an approximate relationship between the Am-DIP and
the Eur-DIP in a Black-Scholes world. In order to see this we note that at the time



7p of hitting the barrier B, the forward price and the barrier price is approximately
the same, e.g
F.

™B

(T)=S,(1+A)=B(1+A)

with a small correction A. Hence the value of a Eur-DIP at the barrier is given by

log(1+A) 1
Eur — DIP B,B,T — =D ————=+ —oy1T —
ur (TBa y 2 TB) fN( Um + 20 TB)
log(14+A)

In most cases one observes for sufficiently small values for T' — 75 that —ovi—s T
%cr\/T — 75 ~ 0 and hence

1
Eur — DIP(15,B,B,T — 7p) %Dfé (9)

On the other hand, at the time of hitting the barrier, the price of the Am-DIP put
equals the discount factor to maturity so that the following approximate relationship
is obtained

Am — DIP(t,S,,B,T) ~ 2 Eur — DIP(t, S, B,T) (10)

In order to interpret (10) intuitively, assume that one goes short an American Digital
Put of notional N at time 0. As a hedge (10) suggests to go long a European Digital
Put option of notional 2N at the same time.

The following two scenarios are of relevance:

1 The spot never touches the barrier prior to maturity

In this case neither the American nor the European Digital Put are paying
out. Hence one breaks even in this case.

2 The spot touches the barrier prior to maturity

The American Put is paying out the notional N at maturity in this case.
The European-Digital-Put on the other hand is at the money when the barrier
is touched. This implies that the hedge is worth approximately 50% of the
notional 2N at that time (see (9)). Hence the money made by liquidation of
the hedge at the time of touching the barrier finances the Am-DIP position in
this case.



Hence the hedging argument presented above intuitively ”explains” (10).

However, the precise relationship between Am-DIP and Eur-DIP depends on the
exact value of N/ (—% + %a\/ T — 1) which does not equal % even in a Black-
Scholes world.

In reality also the price of a forward contract at time 75 is of relevance in addi-
tion to the level of Black-Scholes volatility at that time.

In addition, when a volatility skew is present, Eq. (6) implies an additional vega
term such that (6) can be written as

Eur — DIP(t,S;, B,T) = Df N(—dz) + vega ¢'(B) (11)

where ¢'(B) denotes the slope of the Black-Scholes implied volatility at the barrier
B. Eq.(11) also states that the price of the Eur-DIP decreases with the volatility-
skew increasing. This observation will prove important in later sections.

The vega term in (11) describes the contribution of the volatility skew to the price
of the Eur-DIP. It becomes particularly important when the barrier is hit and the
Eur-DIP hedge must be unwound. The vega term affects the price of the portfolio
at that time and quantifies the price impact that is due to the deviation from log-
normality. It is instructive to attach some numbers to a specific example in order to
get a better understanding for the impact of the volatility skew.

Consider a one month European Put spread struck at the money. The European
Put spread prices at 50.5% if the vega term is ignored in (11). The correct value
that includes the vega contribution is 44.7%. Hence on a notional of 800 Mio USD
the pricing difference will be 46 Mio USD.

Hence one concludes that, in the presence of a forward-volatility skew, an addi-

tional deviation from the "unwind-factor” % occurs that is due to the at-the-money
slope of the forward volatility skew at the time of hitting.



3 Pricing methodology

The valuation of a Am-DIP requires the knowledge of the stopping time density
p(T)dr which is the probability of first hitting the barrier between the time 7 and
T+dr.

However, the knowledge of p(7)dr also allows to relate Eur-DIP at different val-
uation times: From

Eur — DIP(0, Sy, B,T) = E°[1g,5|Fo] = E’[1s,<pls,<r|Fo]

T
= / dr Eﬁ[].TBedT‘fo]E’g[lgT<B’TB e dr, .Fo]
0
where E”|...] denotes the expectation under the risk-neutral measure. Without loss

of generality >we have set the discount factors to one in order not to unnecessarily
complicate the equations. It follows that

T

Eur — DIP(0,5y,B,T) = / drp(t) EurDIP(F.(T),B,T — T,6p+1—r, kBt T—r)
0

(12)

The variables 6 ; 7—, describe the "forward - volatility” at the stopping time 7 of an
option with maturity 7" when the spot price is first at the level B. Similarly Ap -7+
describes the ”forward-at-the-money-volatility-slope” at time 7.

Eq. (12) defines the stopping time density

dr p(1) = E°[Lr,e4:| o)
and

EurDIP(F.(T), B, T — 7,6 p+7-7,kpsr-r) = E°[15,<p|T € dr, Fo] (13)

where the explicit form of the lhs of (13) follows from (11) and (7).

Eq.(12) defines an integral equation for the unknown stopping time p(7). It will
play a crucial role in our methodology.

2Note that throughout this paper interest rates are assumed non-stochastic



For a given complete set of plain vanilla option prices, the lhs of (12) is fully speci-
fied. On the rhs, the value of Eur — DIP(...) only depends on the forward volatility
0B, 7—r, and the forward-at-the-money volatility slope Ap .7, in conjunction with
the forward price F,.(T). In the case where these quantities are specified Eq.(12) can
be solved for p(7) without the explicit knowledge of the stochastic process. This is
the strategy followed in this paper.

Putting it another way, two different pricing models of the type outlined in (3)
that reproduce identical prices for the vanilla options, have different stopping time
densities if at least one of the following statements is correct:

i The models disagree on the level of forward volatility of an at-the-money call
at the time when the barrier is hit 65 7+

ii The at-the-money slope of the forward volatility surface is different at the time
of hlttlng ’I%B7T7T—T'

iii The forward price F,(T) is different at the time of touching the barriers.

Note that case (iii) typically occurs when two models have different dividend assump-
tions despite the fact that Fy(7T) is the same in both cases: A proportional dividend
model will generally exhibit a higher value for F(T'); 7 > 0 compared to a model
where dividend amounts are assumed to be independent of spot.

From this discussion it follows that, for the purpose of pricing Am-DIPs, details
of the stochastic process only matter to the extent that they produce differences in
at least one of the quantities above. Should continuous pricing models produce the
same values for 65 . 7_-,kp,7—-,Fr(T) in addition to identical plain vanilla market
prices, they also agree on the price of Am-DIP as well.

In order to solve (12) we discretise the equation according to

T, = nAT



where Ty = T and Ty = 0 with the result
EurDIP(Sy, B, Ty11,0B,0T0.1>KB,0Ths1)
= /Tn drp(t) EurDIP(B,B,T,, — 7,68+ 1)1, KB Tp—)
+ AOT,O(Tn) EurDIP(B, B,AT,6pr1, AT, kBT, AT) (14)

forn=0,...,N — 1.

Eq. (14) states the main result of this paper. It defines a recursive equation for
p(.) which can easily be solved numerically provided that the quantities outlined in
(1),(ii),(iil) are known.

Note that (14) relates the stopping time density directly to Eur-DIP-prices as well
as the forward-vol and forward-vol-slope at the time of hitting. In the case where
these values are provided, (14) allows the calculation of p(.) without the explicit
prior knowledge of the full stochastic process for S;. Even though the quanti-
ties opr71—7,kBr -7 are not explicitly traded, they represent "market-variables”
3. Hence a trader should have good intuition about these values together with (con-
servative) bounds for them.

In the remaining chapters of this paper we will apply (14) explicitly and discuss
consequences.

Once the stopping time densities have been found, the American digital put can
be valued according to

T
Am — DIP(B) = Df(T) / drp(T) (15)
0
In cases where the payment is made at the time of hitting the price is given by
T
Am — DIP(B) = / drp(r)Df(7)
0

where D f(t) denotes the discount factor at time ¢.

3as opposed to model parameters



4 Relationship with standard Pricing models

Eq.(14) and Eq.(15) state that the stopping time densities can be determined if the
cost of unwinding the hedge can be calculated. This is the case if the level and
the slope of volatility is known at the time the barrier is first hit. This means that
our pricing methodology in effect describes a whole class of specific diffusion models
simultaneously.

In order to demonstrate this more explicitly let us price a one year Am-DIP on
STOXX50E struck at 90% of spot.

The Black Scholes Barrier Price is 64% whereas the local vol price turns out to
be 54.9%.

If one pre-calculates at-the-barrier-forward-volatilities together with its slope in the
local-volatility model and subsequently uses these values in Eq.(14) we obtain a value
of 54.8% in our approach.

Hence our pricing methodology coincides with local vol if one chooses the barrier
vol as well as barrier vol slope obtained in this model.

The crux of our pricing methodology is the observation that different models can
give rise to pricing differences only to the extent that their volatility slope or divi-
dend treatment differ upon touching the barrier.

This offers a new way to stress the assumptions of a given model by bumping the
vol and slope at the barrier calculated by the model.

It is well known that the local vol model underestimates the level of forward skew

substantially. Our approach on the other hand allows the tuning of future skews
explicitly in a realistic way.

10



5 Skew Risk in American Digital Puts

It is very instructive to discuss some details of the skew risk in the American DIP
explicitly.

In the following we graph the price of a 6 month Am-DIP struck at 90% of spot
as a function of the barrier-skew at inception (spot-skew). The skew factor denotes
the skew in units of the market volatility slope at the time of pricing. It shows that
the price of an Am-DIP decreases with a steepening of the volatility skew.

Price of a 6 month Am-DIF as a function of spot-skew
50% T T T T T T

—4— Am-DIP

45%

40%

Price

35%

30%

50 1 1 1 1 1 1 1
(IR [INa] s 0.8 s 1 1.1 12 1.3

skewfactor

”¢

Figure 1: Price of an Am-DIP as a function of spot-skew. A ”‘skewfactor”’ of
1 corresponds to the current market level of the vol-slope. The graph
shows that Am-DIPs are short spot-skew.

As outlined in the introduction Am-DIP options can be approximately replicated by
a EUR-DIP position with twice the notional of the Am-DIP (see (10)). Hence the
flatter the spot skew the more expensive the costs of putting on the initial hedge
(see also Eq. (11)) and therefore the higher the fair value of the Am-DIP. This is
reflected in Fig.1.

Graph Fig.2 displays the dependence on the forward skew for a 6 month Am-DIP
with barrier of 60%:
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Price of a 6 month Am-DIF as a function of forward-skew
f5% T T T T T T T

50%

45%

40%

Price

35%

30%,

25% 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8

FwdSkewFactor

Figure 2: Am-DIP sensitivity to the forward skew at the time of first hitting. A
FwdSkewFactor of 1 corresponds to the spot-skew. The graph shows
that Am-DIPs are long forward skew

One observes that, in contrast to the short spot-skew behavior, Am-DIP are long
forward-skew instead. Intuitively this is obvious: the steeper the volatility-skew at
the time of unwinding the hedge the less money is retrieved which results in a higher
price of the AM-DIP in this case.

Hence we summarize that the price of an AM-DIP is short spot-skew but long
forward-skew at the barrier. It is questionable whether, for the purpose of determin-
ing a conservative price for the Am-DIP, the stochastic class of models outlined in (3)
allows one to ”‘tune”’ spot-skew and forward-volatility skew in opposite direction.
This is in contrast to our approach where spot-skew, forward-skew and forward vol
can be tuned independently such that a conservative price can be obtained.

Fig.3 shows the result of an explicit calculation of the hitting time using Eq.(14)
for different assumptions of the forward-skew. The steeper the forward-skew, the
higher the price of the Am-DIP and hence the higher the cumulative hitting proba-
bility that is obtained from (14).
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Cummulative hitting-probabilty as a function for different forward-skews
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Figure 3: Cumulative hitting probability for different assumption of the forward-
skew as a function of time.

6 A pricing example for an Equity-default swap

In this section we discuss the pricing of a 6 month Equity default swap (EDS) on
Commerzbank with a barrier of 70% down as of the 15 Dec 2009. As the share price
at the time traded at 5.945 Furos this implies that the Equity default swap pays out if
at any time between 15-Dec-2009 and 15-Jun-2010 the price drops below 1.78 Euros.
This price drop of 70% may not result into default necessarily but would most likely
result in serious distress of the company. The at-the-money vol traded roughly at
52% whereas our estimates for the vol at the barrier is about 80%. The spot barrier
slope could be around -11% according to our estimates. If one were to assume the vol
and slope upon touching to be the same one obtains a price of 165 basis points for the
price of the EDS. However it is impossible to obtain plain-vanilla option quotes at
strikes near the barrier level. As one is short spot skew, for the purpose of obtaining
a conservative price estimate, we take 80% of our best estimate for this quantity and
obtain a value of 180 basis points instead. In the case of the forward volatility skew
we increase the original value by a factor of 2 in order to obtain a new estimate of
187 basis points. Similarly one can correct the price further if one bumps the best
estimate for the spot barrier-vol up further to 86% while bumping the forward vol
at the barrier down by 5%. In this case we obtain the conservative price of 281
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basis-points. In a similar way different dividend assumptions can be tested upon
hitting the barrier in order to incorporate conservative dividend assumptions into
the pricing. Note that even if the pricing was done more aggressively our approach
is ideally suited for calculating reserves for this trade. Finally we remark that due
to liquidity issues as well as jump risk it may not be possible to unwind the trade at
exactly the barrier level. An additional shifting of the barrier towards higher levels
could take these effects into account.
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