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Abstract

The impact of default events on the loss distribution of a credit portfolio can be assessed
by determining the loss distribution conditional on these events. While it is conceptually easy
to estimate loss distributions conditional on default events by means of Monte Carlo simula-
tion, it becomes impractical for two or more simultaneous defaults as the conditioning event
is extremely rare. We provide an analytical approach to the calculation of the conditional
loss distribution for the CreditRisk+ portfolio model with independent random loss given
default distributions. The analytical solution for this case can be used to study the properties
of the conditional loss distributions and to discuss how they relate to the identification of
risk concentrations.

1 Introduction

Loss distributions conditional on default of one or more obligors are promising means to identify
vulnerabilities of banks. Default of a large obligor not only has a direct impact on the profit and
loss of a bank and potentially also on its capital basis. Due to mutual dependence of default events
the default of one or more obligors can have a significant impact on the loss distribution of the
remaining portfolio, too. Determination of loss distributions conditional on defaults, therefore,
can be considered a special stress testing technique. Such analysis, in particular, can help to
decide whether a large exposure to a certain obligor is just a risk concentration for its size or,
even worse, also significant part of a sector or industry risk concentration.

It is conceptually easy to determine the impact of the default of one or more obligors via a
Monte Carlo simulation approach: Just eliminate all simulation iterations from the sample in
which the obligor(s) on whose default(s) conditioning is to be conducted have not defaulted.
This, however, is feasible in practice for one default, but becoming impracticable for two or
more defaults.

Tasche (2004, equation (3.31)) showed how the loss distribution conditional on one default can
be calculated analytically in the CreditRisk+ model with random loss severities. In this note
the related formulas for the case of two defaults are provided. Formulas for the cases of three or
more defaults can be readily derived in the same way as the formula for the case of two default
is derived. As a consequence of the likely lack of practical relevance of cases of three or more
defaults, we do not provide the results for these cases here.

∗The opinions expressed in this note are those of the author and do not necessarily reflect views of Lloyds
Banking Group.
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This note is focused on the theoretical derivation of the result and its interpretation. The
question of practical numerical implementation is not considered. The reader is referred to
Gundlach and Lehrbass (2004) or Schmock (2008) for detailed discussions of this topic.

The plan of this note is as follows:

• As background and for introducing the notation, Section 2 provides a description of the
CreditRisk+ model as presented in CSFB (1997) or Gundlach (2004). The CreditRisk+

model described here is enhanced to allow for random loss severities1.

• In Section 3 the results are presented and their application is discussed. To derive the
results we revisit the approach used in Tasche (2004) to develop analytical representations
of the Value-at-Risk and Expected Shortfall contributions of single obligors in CreditRisk+.

• The note concludes with some comments in Section 4.

2 An analytical credit portfolio model with random loss sever-

ities

The approach to the CreditRisk+ loss distribution in CSFB (1997) or Gundlach (2004) is driven
by analytical considerations and – to some extent – hides the way in which the Poisson ap-
proximation is used to smooth the loss distribution. While preserving the notation of Gundlach
(2004), therefore we review in this section the steps that lead to the formula for the generating
function of the loss distribution in CSFB (1997) and Gundlach (2004). When doing so, we slightly
generalize the methodology to the case of stochastic exposures – thus allowing for random loss
severities – that are independent of the default events and the random factors expressing the
dependence on sectors or industries. This generalization can be afforded at no extra cost as
the result is again a generating function in the shape as presented in Gundlach (2004, equation
(2.19)), the only difference being that the sector polynomials are composed another way.

Write 1A for the default indicator of obligor A, i.e. 1A = 0 if A does not default in the observation
period and 1A = 1 if A defaults. In CSFB (1997) and Gundlach (2004), an approximation is
derived for the distribution of the portfolio loss variable X =

∑
A 1A νA with the νA denoting

deterministic potential losses. A careful inspection of the beginning of Section 5 of Gundlach
(2004) reveals that the main step in the approximation procedure is to replace the {0, 1}-valued
indicators 1A by integer-valued random variables DA with the same expected values. These
variables DA are conditionally Poisson distributed given the random factors S1, . . . , SN .

Here, we want to study the distribution of the more general loss variable X =
∑

A 1A EA, where
EA denotes the random outstanding exposure of obligor A. We assume that EA takes on positive
integer values. However, just replacing 1A by DA as in the case of deterministic potential losses
does not yield a nice generating function – “nice” in the sense that the CreditRisk+ algorithms
for extracting the loss distribution can be applied. We instead consider the approximate loss
variable

X =
∑

A

DA∑

i=1

EA,i, (2.1a)

1Schmock (2008) describes a further generalisation of the model to include connected groups of obligors.
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where EA,1, EA,2, . . . are independent copies of EA. Thus, we approximate the terms 1A EA by
conditionally compound Poisson sums. For the sake of brevity, we write

YA =

DA∑

i=1

EA,i (2.1b)

for the loss suffered due to obligor A. A careful inspection of the arguments presented to derive
Gundlach (2004, equation (2.19)) now yields the following result on the generating function of
the distribution of X.

Theorem 2.1 Define the “loss” variable X by (2.1a) and specify the distribution of X by the
following assumptions:

(i) The approximate default indicators DA are conditionally independent given a set of “eco-
nomic” factors S = (S0, S1, . . . , SN ). The conditional distribution of DA given S is Poisson
with intensity pSA = pA

∑N
k=0wAk Sk where pA ≥ 0 denotes the “probability of default” of

obligor A and 0 ≤ wAk ≤ 1 are “factor loadings” such that
∑N

k=0wAk = 1 for each obligor
A.

(ii) The idiosyncratic factor S0 is a constant and equals 1. The factors S1, . . . , SN are indepen-
dent and Gamma-distributed with unit expectations E[Sk] = 1 and parameters2 (αk, βk) =
(αk, 1/αk) for k = 1, . . . , N .

(iii) The random variables EA,1, EA,2, . . . are independent copies of a non-negative integer-valued
random variable EA and, additionally, are also independent of the DA and S. The distri-
bution of EA is given through its generating function

HA(z) = E
[
zEA
]
. (2.2a)

Define for k = 0, 1, . . . , N the sector polynomial Qk by

Qk(z) =
1

µk

∑

A

wAk pAHA(z), (2.2b)

where the sector default intensities µk are given by

µk =
∑

A

wAk pA. (2.2c)

Then the generating function GX of the loss variable X can be represented as

GX(z) = eµ0 (Q0(z)−1)
N∏

k=1

(
1− δk

1− δk Qk(z)

)αk

, (2.2d)

where the constants δk are defined as δk = µk/(µk + αk).

2βk = 1/αk is implied by the assumption that Sk has unit expectation.
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Remark 2.2

1) The case of deterministic severities can be regained from Theorem 2.1 by choosing the
exposures constant, e.g. EA = νA. Then the generating functions of the exposures turn out
to be just monomials, namely HA(z) = zνA.

2) Representation (2.2d) of the generating function of the portfolio loss distribution im-
plies that the portfolio loss distribution can be interpreted as the distribution of a sum
of N + 1 independent sector loss distributions that correspond to the economic factors
(S0, S1, . . . , SN ).
The term eµ0 (Q0(z)−1) is the generating function of a random variable with a compound3

Poisson distribution that can be realised as
∑T0

i=1 η0,i where T0, η0,1, η0,2, . . . are indepen-
dent, T0 is Poisson-distributed with intensity µ0, and η0,1, η0,2, . . . are i.i.d. with generating
function Q0(s).

The terms
(

1−δk
1−δk Qk(z)

)αk

, k = 1, . . . , N , are the generating functions of random vari-

ables with compound negative binomial distributions that can be realised as
∑Tk

i=1 ηk,i where
Tk, ηk,1, ηk,2, . . . are independent, Tk is negative binomially distributed4 with failure prob-
ability δk and success number parameter αk, and ηk,1, ηk,2, . . . are i.i.d. with generating
function Qk(s).
With this representation of the portfolio loss distribution as the convolution of compound
Poisson and negative binomial distributions, the sector polynomials Qk(s) can be inter-
preted as the generating functions of typical loss severities in the respective sectors.

By means of Theorem 2.1 the loss distribution of the generalized model (2.1a) can be calculated
in principle with the same algorithms as in the case of the original CreditRisk+ model. Once
the probabilities P[X = x], x non-negative integer, are known, it is an easy task to calculate the
loss quantiles qθ(X) as defined by

qθ(X) = min{x ≥ 0 : P[X ≤ x] ≥ θ}, (2.3)

or related risk measures like Value-at-Risk or Expected Shortfall.

When working with Theorem 2.1, one has to decide whether random exposures shall be taken
into account, and in case of a decision in favor of doing so, how the exposure distributions are
to be modeled. Tasche (2004, Example 1) and Schmock (2008) present some possible choices of
discrete exposure distributions. Gordy (2004) discusses an approximative but similar approach
to random severities with continuous distributions.

3 Loss distributions conditional on defaults

The purpose of this section is to provide formulas for the portfolio loss distribution conditional on
defaults that can be represented in similar terms as the unconditional loss distribution and hence
be evaluated with the known CreditRisk+ algorithms. The following theorem – a modification
of Tasche (2004, Lemma 1) – yields the foundation of the results. Denote by I(E) the indicator
variable of the event E, i.e. I(E;m) = 1 if m ∈ E and I(E;m) = 0 if m /∈ E.

3See, e.g., Rolski et al. (1999) for background information on compound distributions and generating functions.
4If the success number parameter of a negative binomial distribution is a positive integer a then the distribution

can be interpreted as the distribution of the number of failures in a series of independent identical experiments
before the a-th success is observed.
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Theorem 3.1 Define the approximate default indicators DA as in Theorem 2.1. Assume that
A(1), . . . , A(r) are obligors such that A(i) 6= A(j) for i 6= j. Under the assumptions and with the
notation of Theorem 2.1 then we have

E

[
I(X = x)

r∏

i=1

DA(i)

]
= E

[
I
(
X = x−

r∑

j=1

EA(j)

) r∏

i=1

pSA(i)

]
(3.1)

for any non-negative integer x. The random variables X and EA(1,), . . . , EA(r) on the right-hand
side of (3.1) are independent.

Proof. We provide the proof only for the case r = 2 as the proof for general r is not much
different but the notation would be more cumbersome. Hence assume that two obligors A(1) 6=
A(2) have been selected. The assumptions on independence and conditional independence from
Theorem 2.1 then imply

E
[
DA(1) DA(2) I(X = x)

]

=

∞∑

k1=1

∞∑

k2=1

k1 k2 P
[
DA(1) = k1, DA(2) = k2,

∑

B 6=A(1),
B 6=A(2)

YB +

k1∑

i=1

EA(1),i +

k2∑

j=1

EA(2),j = x
]

=

∞∑

k1=1

∞∑

k2=1

k1 k2 E

[(pS
A(1))

k1

k1!
e
−pS

A(1)
(pS

A(2))
k2

k2!
e
−pS

A(2)

×P

[ ∑

B 6=A(1),
B 6=A(2)

YB +

k1∑

i=1

EA(1),i +

k2∑

j=1

EA(2),j = x |S
]]

=
∞∑

k1=0

∞∑

k2=0

E

[
pSA(1) p

S
A(2)

×P

[
DA(1) = k1, DA(2) = k2,

∑

B 6=A(1),
B 6=A(2)

YB +

k1+1∑

i=1

EA(1),i +

k2+1∑

j=1

EA(2),j = x |S
]]

= E

[
I
(
X = x− EA(1) − EA(2)

)
pSA(1) p

S
A(2)

]

as stated in (3.1). q.e.d.

As the variable DA approximates obligor A’s default indicator the conditional expectation
E[DA |X = x] can be interpreted as an approximation of the conditional probability of obligor
A’s default given that the portfolio loss X assumes the value x. Tasche (2004, Corollary 1)
observed the following result for E[DA |X = x]. It can be readily derived from Theorem 3.1.

Notation. For any positive integers i ≤ n define the n-dimensional i-th unit vector e
(n)
i by

e
(n)
i = (0, . . . , 0︸ ︷︷ ︸

i−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i times

). (3.2)

Where the dimension is known from the context we write ei = e
(n)
i for short.
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Corollary 3.2 (Probability of default conditional on portfolio loss)
Adopt the setting and the notation of Theorem 2.1 and Theorem 3.1. Write Pα[X ∈ · ] for
P[X ∈ · ] in order to express the dependence5of the portfolio loss distribution upon the exponents
α = (α1, . . . , αN ) in (2.2d). Assume that x is an integer such that Pα[X = x] > 0. Then, in the
CreditRisk+ framework, the conditional probability of obligor A’s default given that the portfolio
loss X assumes the value x can be approximated by

E[DA |X = x] = pA Pα[X = x]−1

×
(
wA0 Pα[X = x− ẼA] +

N∑

j=1

wAj Pα+ej [X = x− ẼA]
)
, (3.3)

where ẼA stands for a random variable that has the same distribution as EA but is independent
of X.

Intuitively, one might think that P[DA > 0 |X = x] would be a better approximation of the
conditional probability of default of obligor A than E[DA |X = x]. However, there is no such
relatively simple representation of P[DA > 0 |X = x] as (3.3) is for E[DA |X = x]. Moreover, by
the assumption on the conditional Poisson distribution of DA we have

E
[
P[DA > 0 |X]

]
= P[DA > 0] < pA = E

[
E[DA |X]

]
. (3.4)

Hence the bias of P[DA > 0 |X = x] with respect to P[A defaults |X = x] is likely to be greater
than the bias of E[DA |X = x].

The probabilities in the numerator of the right-hand side of (3.3) must be calculated by con-
volution if the loss severities EA are non-deterministic. In any case, Corollary 3.2 can be used
for constructing the portfolio loss distribution conditional on the default of an obligor. Observe
that by the very definition of conditional probabilities we have

P[X = x |A defaults] = P[A defaults |X = x]
P[X = x]

pA
. (3.5)

Since by Corollary 3.2 an approximation for P[A defaults |X = x] is provided, the term-wise
comparison of (3.3) and (3.5) yields

Pα[X = x |A defaults] ≈ wA0 Pα[X = x− ẼA] +

N∑

j=1

wAj Pα+ej [X = x− ẼA]. (3.6)

Note that according to (3.6), the conditional distribution Pα[X = · |A defaults] of the portfolio
loss X given that A defaults may be computed as a weighted mean of stressed portfolio loss
distributions. The stresses are expressed by the exponents αj + 1 in the generating functions
of Pα+ej [X = · ], j = 1, . . . , N . In actuarial terms, incrementing the success number parameter
of a negative binomial claim number distribution (cf. Remark 2.2) means to give the claim
number distribution a heavier tail. Hence, this way the number of claims (sector-related defaults
in CreditRisk+ terms) tends to be larger after the stress was applied. No change due to stress,
however, occurs to the sector loss severity distributions as characterised by the sector polynomials
Qj . This is no surprise as the loss severities in the setting of this note are assumed to be
independent of the economic factors that define the sectors.

5Of course, the distribution also depends on µ0, Q0, . . . ,QN , and δ1, . . . , δN . However, these input parameters
are considered constant in Corollary 3.2.
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Remark 3.3

(i) By (3.6) stressed portfolio loss distributions can be evaluated, conditional on the scenarios
that single obligors have defaulted. If, for instance, the portfolio Value-at-Risk changes
dramatically when obligor A’s default is assumed, then one may find that the portfolio
depends too strongly upon A’s condition.

(ii) Equation (3.6) reflects a write-off or special provision due to obligor A’s default. This is
a consequence of the fact that on the right-hand side of the equation loss distributions of
the shape X + ẼA appear, thus implying that losses X are added to a loss socket ẼA caused
by obligor A’s first default. However, usually in banks occurred losses are not taken into
account for the determination of risk metrics (like quantiles as defined by (2.3)) but are
deducted from the banks available capital buffer. In that sense (3.6) does not appropriately
reflect banks’ practice.

(iii) To deal with the issue observed in (ii), note that Theorem 2.1 and Corollary 3.2 also can
be applied to the case EA = 0. In particular, dependencies within the portfolio are then
still adequately reflected by obligor A’s conditional default intensity pSA. With EA = 0, then
(3.6) still holds, but the sector default intensities µk and the sector polynomials Qk are
slightly different to the case of obligor A not being in default.

While Theorem 3.1 can be used to study the portfolio loss distributions conditional on any
number of defaults, we confine ourselves in the following corollary and its consequences to
considering only the case of two defaults as we already did in the proof of Theorem 3.1. The
formulas for conditioning on three or more defaults can be derived in the same way as the formula
for the case of two defaults. The cases of three or more defaults, however, are notationally and
computationally much more inconvenient, presumably much less relevant for practice, and do
not add much more theoretical insight compared to the case of two defaults.

Corollary 3.4 (Joint probability of default conditional on portfolio loss)
Adopt the setting and the notation of Corollary 3.2. Let A(1) 6= A(2) denote two obligors who
have been selected in advance. Assume that x is an integer such that Pα[X = x] > 0. Then, in
the CreditRisk+ framework, the conditional joint probability of obligor A(1)’s and obligor A(2)’s
default given that the portfolio loss X assumes the value x may be approximated by

E[DA(1) DA(2) |X = x] = pA(1) pA(2) Pα[X = x]−1 (3.7)

×
(
wA(1)0 wA(2)0 Pα[X = x− ẼA(1) − ẼA(2)]

+

N∑

j=1

(
wA(1)0 wA(2)j + wA(1)j wA(2)0

)
Pα+ej [X = x− ẼA(1) − ẼA(2)]

+

N∑

j=1

wA(1)j wA(2)j
αj + 1

αj
Pα+2ej [X = x− ẼA(1) − ẼA(2)]

+
N∑

i=1

N∑

j=1,j 6=i

wA(1)i wA(2)j Pα+ei+ej [X = x− ẼA(1) − ẼA(2)]
)

where ẼA stands for a random variable that has the same distribution as EA but is independent
of X.
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While (3.7) in general looks like a straight-forward extension to (3.3), there is a subtle difference
in the terms involving Pα+2ej [X = x − ẼA(1) − ẼA(2)] which reflect double stress in the same

sector. This double stress is enforced by the additional factors
αj+1
αj

> 1.

Proof of Corollary 3.4. We will derive (3.7) by comparing the coefficients of two power series.
The first one will be E[DA(1) DA(2) z

X ] =
∑∞

k=0 E[DA(1)DA(2) I(X = k)] zk, the second one will

be an expression that is equivalent to E[DA(1)DA(2) z
X ] but involves generating functions similar

to (2.2d).

Recall that we denote the generating function of EA by HA(z). By means of Theorem 3.1 and
the independence of the random exposures, we can compute

E[DA(1) DA(2) z
X ] =

∞∑

k=0

E[pSA(1) p
S
A(2) I(X + EA(1) + EA(2) = k)] zk

= E[pSA(1) p
S
A(2) z

X+EA(1)+EA(2) ]

= E[pSA(1) p
S
A(2) z

X ]E[zEA(1) ]E[zEA(2) ]

= E[pSA(1) p
S
A(2) z

X ]HA(1)(z)HA(2)(z). (3.8a)

Recall the definitions of the intensities pSA, the sector default intensities µk and the sector poly-
nomials Qk from Theorem 2.1. By making use of the fact that the scalar factors (S1, . . . , SN )
are Gamma-distributed with parameters (αk, 1/αk), k = 1, . . . , N , and that S0 = 1 we obtain
for E[pS

A(1) p
S
A(2) z

X ] (cf. the proof of (3.25c) in Tasche (2004))

E[pSA(1) p
S
A(2) z

X ] = E
[
pSA(1) p

S
A(2) E[z

X |S]
]

(3.8b)

= pA(1) pA(2)

N∑

i=0

N∑

j=0

wA(1)i wA(2)j E
[
Si Sj

N∏

k=0

exp
(
Sk µk (Qk(z) − 1)

)]
.

Denote by

G
(α)
X (z) =

∞∑

k=0

Pα[X = k] zk (3.9)

the generating function of X according to (2.2d) as a function of the exponents α = (α1, . . . , αN )
on the right-hand side of the equation as has been explained in Corollary 3.2. Observe then that

E
[
S2
0

N∏

k=0

exp
(
Sk µk (Qk(z)− 1)

)]
= G

(α)
X (z)

E
[
S0 Sj

N∏

k=0

exp
(
Sk µk (Qk(z)− 1)

)]
= G

(α+ej)
X (z), j ≥ 1

E
[
Si Sj

N∏

k=0

exp
(
Sk µk (Qk(z)− 1)

)]
= G

(α+ei+ej)
X (z), i 6= j

E
[
S2
j

N∏

k=0

exp
(
Sk µk (Qk(z)− 1)

)]
=

αj + 1

αj
G

(α+2 ej)
X (z), j ≥ 1.

(3.10)
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Note that G
(α)
X (z) HA(1)(z)HA(2)(z) is the generating function of the sequence Pα[X + ẼA(1) +

ẼA(2) = 0],Pα[X+ ẼA(1)+ ẼA(2) = 1], . . . (i.e. of the distribution of X+ ẼA(1)+ ẼA(2)). Combining
this observation with (3.8a), (3.8b), and (3.10) implies (3.7) by power series comparison. q.e.d.

As Corollary 3.2 can be used for constructing the portfolio loss distribution conditional on the
default of an obligor, Corollary 3.4 can be used for the portfolio loss distribution conditional on
the joint default of two obligors. Again by the definition of conditional probabilities we have

P[X = x |A(1) and A(2) default] =

P[A(1) and A(2) default |X = x]
P[X = x]

P[A(1) and A(2) default]
. (3.11)

Since by Corollary 3.4 an approximation for P[AA(1) and A(2) default |X = x] is provided, the
term-wise comparison of (3.7) and (3.11) yields

Pα[X = x |A(1) and A(2) default]

≈
pA(1) pA(2)

P[A(1) and A(2) default]
(3.12a)

×
(
wA(1)0 wA(2)0 Pα[X = x− ẼA(1) − ẼA(2)]

+
N∑

j=1

(
wA(1)0 wA(2)j + wA(1)j wA(2)0

)
Pα+ej [X = x− ẼA(1) − ẼA(2)]

+

N∑

j=1

wA(1)j wA(2)j
αj + 1

αj
Pα+2ej [X = x− ẼA(1) − ẼA(2)]

+

N∑

i=1

N∑

j=1,j 6=i

wA(1)i wA(2)j Pα+ei+ej [X = x− ẼA(1) − ẼA(2)]
)

Making use of the well-known result (see Gundlach, 2004, Section 2.3)

E[DA(1) DA(2)] = pA(1) pA(2)

(
1 +

N∑

k=1

wA(1)k wA(2)k

αk

)
, A(1) 6= A(2), (3.12b)

(3.12a) can be slightly simplified to

Pα[X = x |A(1) and A(2) default]

≈
1

1 +
∑N

k=1
wA(1)k wA(2)k

αk

(3.12c)

×
(
wA(1)0 wA(2)0 Pα[X = x− ẼA(1) − ẼA(2)]

+

N∑

j=1

(
wA(1)0 wA(2)j + wA(1)j wA(2)0

)
Pα+ej [X = x− ẼA(1) − ẼA(2)]

+

N∑

j=1

wA(1)j wA(2)j
αj + 1

αj
Pα+2ej [X = x− ẼA(1) − ẼA(2)]

+
N∑

i=1

N∑

j=1,j 6=i

wA(1)i wA(2)j Pα+ei+ej [X = x− ẼA(1) − ẼA(2)]
)

9



Comments similar to the comments on (3.6) also apply to (3.12c). The conditional distribution
Pα[X = x |A(1) and A(2) default] of the portfolio loss X given that obligors A(1) and A(2)
default can be computed as a weighted mean of stressed or double-stressed portfolio loss dis-
tributions. The stresses, however, are not only expressed by the exponents αj + 1 and αj + 2
in the generating functions of Pα+ej [X = · ] and Pα+ei+ej [X = · ], i, j = 1, . . . , N , but also by

the factors
αj+1
αj

> 1 appearing on the right-hand side of (3.12c). Obviously, as a consequence

of the (N + 1)2 terms on the right-hand side of (3.12c) instead of the only N + 1 terms of the
right-hand side of (3.6), it is much more expensive to calculate the loss distributions conditional
on double defaults than to calculate the loss distributions conditional on simple defaults.

Observe that Remark 3.3 also applies to (3.12c). Hence it could make sense to do the calculations
for (3.12c) with loss severities EA(1) = 0 and EA(2) = 0 to reflect the risk management attitude
not to take account of occurred losses for the determination of living portfolio risk metrics.

4 Conclusions

We have studied the way in which defaults impact a credit portfolio loss distribution in an
enhanced CreditRisk+ model, by looking at the loss distribution conditional on a number –
one or two in this note – of defaults. While the derived formulas are not necessarily easy to
implement, they provide nonetheless insight in the details of how the default scenarios impact
the conditional portfolio loss distribution.

The results of this note can be used for specific stress scenario analyses that are intended
to identify whether large credit exposures besides having an obvious size impact additionally
contribute to sector risk concentrations. Another more indirect application of the results would
be to use them to check the accuracy of alternative approaches to such default scenario analyses.
One potential alternative approach is Monte Carlo portfolio simulation which would suffer from
rare event effects when deployed for estimating loss distributions conditional on two or more
defaults.

Another potential alternative could be to calculate for each obligor the probability of default
conditional on the joint default of a fixed set of obligors and then to use these conditional prob-
abilities of default as input parameters to a portfolio model. This “stressed input parameters”
approach ignores the exact dependence between the default events of the obligors considered
defaulted under the scenario and the economic factors commonly used for modeling dependence
in credit portfolio models. Therefore, the approach is principally biased. If the bias were not too
big, the approach nonetheless would be useful for its conceptual simplicity.

A study on the numerical comparison of the three different approaches – analytical as described
in this note, Monte Carlo Simulation, and stressed input parameters – within the CreditRisk+

framework would help to establish their relative reliability.
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