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CONVERGENCE OF HESTON TO SVI

JIM GATHERAL AND ANTOINE JACQUIER

Abstract. In this short note, we prove by an appropriate change of variables that the SVI implied volatility
parameterization presented in [2] and the large-time asymptotic of the Heston implied volatility derived in [1]
agree algebraically, thus confirming a conjecture from [2] as well as providing a simpler expression for the
asymptotic implied volatility in the Heston model. We show how this result can help in interpreting SVI
parameters.

1. Introduction

The stochastic volatility inspired or SVI parameterization of the implied volatility surface was originally
devised at Merrill Lynch in 1999. This parameterization has two key properties that have led to its subsequent
popularity with practitioners:

• For a fixed time to expiry T , the implied Black-Scholes variance σ2
BS(k, T ) is linear in the log-strike k

as |k| → ∞ consistent with Roger Lee’s moment formula [4].
• It is relatively easy to fit listed option prices whilst ensuring no calendar spread arbitrage.1

The result we prove in this note shows that SVI is an exact solution for the implied variance in the Heston
model in the limit T → ∞ thus providing a direct interpretation of the SVI parameters in terms of the parameters
of the Heston model.

In Section 2, we present our notation. In Section 3, we motivate the conjecture which we prove in Section 4.
We conclude in Section 5 by showing how our result can help us interpret SVI parameters resulting from an
SVI fit to an empirically observed volatility smile.

2. Notations

From [2], recall that the SVI parameterization for the implied variance reads

(1) σ2
SV I (x) =

ω1

2

(

1 + ω2ρx+

√

(ω2x+ ρ)
2
+ 1− ρ2

)

, for all x ∈ R,

where x represents the time-scaled log-moneyness, and consider the Heston model where the stock price process
(St)t≥0 satisfies the following stochastic differential equation:

dSt =
√
vtStdWt, S0 ∈ R

∗
+

dvt = κ (θ − vt) dt+ σ
√
vtdZt, v0 ∈ R

∗
+

d〈W,Z〉t = ρ dt,

with ρ ∈ [−1, 1], κ, θ, σ and v0 are strictly positive real numbers satisfying 2κθ ≥ σ2 (this is the Feller condition
ensuring that the process (vt)t≥0 never reaches zero almost surely). We further make the following assumption

as in [1], under which the Heston asymptotic implied volatility is derived.

Assumption 1. κ− ρσ > 0.

Note that this assumption is usually assumed in the literature, either explicitly or implicitly when assuming
a negative correlation ρ < 0 between the spot and the volatility as observed in equity markets. When this
condition is not satisfied, the stock price process is still a true martingale, but moments greater than one will
cease to exist after a certain amount of time, as pointed out in [6], which refers to this special case as the

The authors would like to thank Aleksandar Mijatović for useful discussions.
1It is seemingly impossible to eliminate the possibility of butterfly arbitrage but this is rarely a problem in practice.
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large correlation regime. Let us now consider the following choice of SVI parameters in terms of the Heston
parameters,

(2) ω1 :=
4κθ

σ2 (1− ρ2)

(

√

(2κ− ρσ)
2
+ σ2 (1− ρ2)− (2κ− ρσ)

)

, and ω2 :=
σ

κθ
.

Now we know from [1] that the implied variance in the Heston model in the large time limit T → ∞ takes
the following form:

(3) σ2
∞ (x) = 2

(

2V ∗(x)− x+ 2
(

11x∈(−θ/2,θ̄/2) − 11x∈R\(−θ/2,θ̄/2)

)

√

V ∗(x)2 − xV ∗(x)
)

, for all x ∈ R,

where θ̄ := κθ/ (κ− ρσ), and the function V ∗ : R → R+ is defined by

(4) V ∗(x) := p∗ (x) x− V (p∗ (x)) , for all x ∈ R,

where

V (p) :=
κθ

σ2

(

κ− ρσp− d(p)
)

, for all p ∈ (p−, p+) ,

d(p) :=

√

(κ− ρσp)
2
+ σ2p (1− p2), for all p ∈ (p−, p+) ,

p∗ (x) :=
σ − 2κρ+ (κθρ+ xσ) η

(

x2σ2 + 2xκθρσ + κ2θ2
)−1/2

2σρ̄2
, for all x ∈ R,

η :=
√

4κ2 + σ2 − 4κρσ, p± :=
(

−2κρ+ σ ±
√

σ2 + 4κ2 − 4κρσ
)

/
(

2σρ̄2
)

, and ρ̄ :=
√

1− ρ2.

Note that in this asymptotic Heston form for the implied volatility, x corresponds to a time-scaled log-moneyness,
i.e. the implied volatility corresponds to call/put options with strike S0 exp (xT ), where T ≥ 0 represents the
maturity of the option.

3. The saddle-point condition

In this section, we give a non-rigorous motivation for the conjecture in [2] that the T → ∞ limit of the Heston
volatility smile should be SVI.

Consider equation (5.7) on page 60 of [3] which relates the implied volatility σBS(k, T ) at log-strike k and
expiration T to the characteristic function φT (·) of the log-stock price. We rewrite this equation in the form

(5)

∫ ∞

−∞

du

u2 + 1
4

e−iu kφT (u− i/2) =

∫ ∞

−∞

du

u2 + 1
4

e−iu k e−
1

2 (u
2+ 1

4 )σ
2

BS
(k,T )T .

In the limit T → ∞, the Heston characteristic function has the form

φT (u− i/2) ∼ e−ψ(u)T .

Then, as pointed out on page 186 of [5], we may apply the saddle-point method to both sides in equation (5)
to obtain

(6) e−i k ũ e−ψ(ũ)T

ũ2 + 1
4

√

2 π

ψ′′(ũ)T
∼ 4 exp

{

−v T
8

− k2

2 v T

}

√

2 π

v T
,

where v is short-form notation for σ2
BS(k, T )T and ũ is such that

ψ′(ũ) = −i
k

T
,

so that ũ (which is in general a function of k) is a saddle-point, which in the Heston model at least, may be
computed explicitly as in Lemma 5.3 of [1].

Defining k := xT and equating the arguments of the exponentials in equation (6), the dependence on T
cancels and we obtain

(7)
v(x)

8
+

x2

2 v(x)
= ψ(ũ(x)) + i x ũ(x),

where we have reinstated explicit dependence on x for emphasis.
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With the help of e.g. Mathematica, one can verify that in the T → ∞ limit of the Heston model and with
the choice (2) of SVI parameters, expression (1) exactly solves the saddle-point condition (7):

σ2
SV I(x)

8
+

x2

2 σ2
SV I(x)

= ψ(ũ(x)) + i x ũ(x).

We are thus led to conjecture that σ2
SV I (x) = σ2

∞ (x) so that the T → ∞ limit of implied variance in the Heston
model is SVI.

4. Main result and proof

We now state and prove the main result of this note,

Proposition 1. Under Assumption 1 and the choice of SVI parameters (2), σ2
SV I (x) = σ2

∞ (x) for all x ∈ R.

Proof. Let us now introduce the following notations: ∆(x) :=
√

σ2x2 + 2κθρσx+ κ2θ2, where η and ρ̄ are
defined in Section 2. Under the change of variables (2), the SVI implied variance takes the form

(8) σ2
SV I (x) =

2

σ2ρ̄2

(

η − (2κ− ρσ)
)(

κθ + ρσx+∆(x)
)

, for all x ∈ R.

We now move on to simplify the expression for σ2
∞ as written in (3). We first start by the expression for V ∗(x)

appearing in (3). We have

V ∗(x) =
A (x)∆ (x) +B(x)η

2σ2ρ̄2∆(x)
,

with

A(x) := xσ2 − 2xκρσ − 2κ2θ + κθρσ, and B(x) := 2xσκθρ+ x2σ2 + κ2θ2ρ2 + κ2θ2ρ̄2.

Note that B(x) = ∆2 (x), so that V ∗ (x) = (A(x) + ∆(x)η) /
(

2σ2ρ̄2
)

. We further have

(9) 2V ∗ (x)− x =
A (x) + ∆ (x) η − xσ2ρ̄2

σ2ρ̄2
=

∆(x) η − (2κ− ρσ) (κθ + xρσ)

σ2ρ̄2
,

where we use the factorisation A (x)− xσ2ρ̄2 = − (2κ− ρσ) (κθ + xρσ).
Now, back to (3), where we denote Φ (x) := V ∗(x)2 − xV ∗(x). We have

Φ (x) =

(

∆(x)η

2σ2ρ̄2

)2

+ α (x)∆ (x) + β (x) ,

where

α (x) := −η (2κ− ρσ) (κθ + xρσ)

2σ4ρ̄4
, and β (x) :=

1

4σ4ρ̄4

{

(2κ− ρσ)
2
(κθ + xρσ)

2 − x2σ4ρ̄4
}

.

We now use the following factorisations:

(10) ∆2 (x) = (κθ + xρσ)
2
+ x2σ2ρ̄2, and η2 = (2κ− ρσ)

2
+ σ2ρ̄2,

so that we can write β (x) =
(

4σ4ρ̄4
)−1

(

(2κ− ρσ)
2
∆2 (x)− x2σ2ρ̄2η2

)

and hence

Φ (x) =
1

4σ4ρ̄4

{[

(2κ− ρσ)
2
+ σ2ρ̄2

]

∆2 (x) + a (x)∆ (x) +
(

η2 − σ2ρ̄2
) (

∆2 (x)− x2σ2ρ̄2
)

− x2σ4ρ̄4
}

=
1

4σ4ρ̄4

{

(2κ− ρσ)
2
∆2 (x) + a (x)∆ (x) + η2 (κθ + xρσ)

2
}

=
1

4σ4ρ̄4

{

η (κθ + xρσ) − (2κ− ρσ)∆ (x)
}2

,(11)

where, for convenience, we denote a (x) := 4σ4ρ̄4α (x). To complete the proof, we need to take the square root
of Φ (x), i.e. we need to study the sign of the expression under the square in (11). Using again (10), we have

η (κθ + xρσ) − (2κ− ρσ)∆ (x)

= (κθ + xρσ)

√

(2κ− ρσ)
2
+ σ2ρ̄2 − (2κ− ρσ)

√

(κθ + xρσ)
2
+ x2σ2ρ̄2

=

√

γ (x) + σ2ρ̄2 (κθ + xρσ)
2 −

√

γ (x) + x2σ2ρ̄2 (2κ− ρσ)
2
,
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where γ (x) := (2κ− ρσ)2 (κθ + xρσ)2. Now, because γ (x) ≥ 0 for all x ∈ R, then the sign of this whole

expression is simply given by the sign of the difference ψ (x) := σ2ρ̄2 (κθ + xρσ)
2 − x2σ2ρ̄2 (2κ− ρσ)

2
. Note

further that we actually have ψ (x) = κσ2ρ̄2 (2x+ θ) (2xρσ + κθ − 2κx), that this polynomial has exactly two
real roots −θ/2 and θ̄/2, and that its second-order coefficient reads −4κσ2ρ̄2 (κ− ρσ) < 0 under Assumption 1.
So, plugging (9) and (11) into (3), we exactly obtain (8) and the proposition follows. �

5. Interpretation of SVI parameters

In this section, we use our result in Proposition 1 to help interpret the SVI parameters. From [2], the standard
SVI parameterization in terms of the log-strike k reads

(12) σ2
SV I(k) = a+ b

{

ρ̃ (k −m) +
√

(k −m)2 + σ̃2
}

.

Equating (12) with (1) and with the parameter choice (2):

ω1 :=
4κθ

σ2 (1− ρ2)

(
√

(2κ− ρσ)
2
+ σ2 (1− ρ2)− (2κ− ρσ)

)

, and ω2 :=
σ

κθ
,

we find the following correspondence between SVI parameters and Heston parameters;

a =
ω1

2
(1 − ρ2),

b =
ω1 ω2

2T
,

ρ̃ = ρ,

m = −ρ T
ω2

,

σ̃ =

√

1− ρ2 T

ω2
.(13)

For concreteness, imagine that we are given an SVI fit to the implied volatility smile generated from the Heston
model with T very large so that we have the SVI parameters a, b, ρ̃, m and σ̃. Our first observation is that
the SVI parameter ρ̃ is exactly the correlation ρ between changes in instantaneous variance v and changes in
the underlying S in the Heston process. That is, we can read off correlation directly from the orientation of the
volatility smile. In particular, the smile is symmetric when ρ = 0.

The parameter b gives the angle between the asymptotes of the implied variance smile. We see from (12)
and (13) that the angle between the asymptotes of the total variance smile σ2

SV I(k)T is constant for large T
but that the overall level increases with T .

From equation (1), ω1 is the at-the-money implied variance σ2
SV I(0, T ). From (2), in the limit σ ≪ κ , we

have

ω1 = θ

{

1 +
ρ σ

κ
+O

(

(σ

κ

)2
)}

,

so that the at-the-money volatility is given directly by θ when the volatility of volatility is small. In the limit
σ ≫ κ , we have

ω1 =
4 κ θ

σ (1 − ρ)

{

1− 2
κ

σ
+O

(

(κ

σ

)2
)}

,

showing that at-the-money volatility decreases as the volatility-of-volatility increases and as the volatility be-
comes less correlated with the underlying.

Finally, the minimum of the variance smile is attained at x = −2 ρ/ω2, providing a simple interpretation of
the parameter ω2. In particular, if ρ = 0, the minimum is exactly the at-the-money point. The minimum shifts
to the upside x > 0 if ρ < 0 and to the downside x < 0 if ρ > 0.
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