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Optimal investment with bounded VaR for
power utility functions *

Bénamar Chouaf and Serguei Pergamenchtchikov

Abstract We consider the optimal investment problem for Black-Sekdype fi-
nancial market with bounded VaR measure on the whole invargtimterval[0, T].
The explicit form for the optimal strategies is found.
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1 Introduction

We consider an investment problem aiming at optimal terinirgalth at maturity
T. The classical approach to this problem goes back to Meft@hdnd involves
utility functions, more precisely, the expected utilityges as the functional which
has to be optimized.

We adapt this classical utility maximization approach tevadays industry prac-
tice: investment firms customarily impose limits on the rifkrading portfolios.
These limits are specified in terms of downside Value-akR¥aR) risk measures.

As Jorion [5], p. 379 points out, VaR creates a common denatoirfor the
comparison of different risk activities. Traditionallypgition limits of traders are
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set in terms of notional exposure, which may not be direatisnparable across
treasuries with different maturities. In contrast, VaRydes a common denomina-
tor to compare various asset classes and business unitpopliarity of VaR as a

risk measure has been endorsed by regulators, in partitidaBasel Committee on
Banking Supervision, which resulted in mandatory regataiworldwide.

Our approach combines the classical utility maximizatiathwisk limits in
terms of VaR. This leads to control problems under restrstion uniform versions
of VaR, where the risk bound is supposed to be intact througti® duration of
the investment. To our knowledge such problems have onlyg bessidered in dy-
namic settings, which reduce intrinsically to static peshs. Emmer, Kluppelberg
and Korn [4] consider a dynamic market, but maximize only ékpected wealth
at maturity under a downside risk bound at maturity. Basak Simapiro([2] solve
the utility optimization problem for complete markets wiibunded VaR at matu-
rity. Gabih, Gretsch and Wunderlichl [3] solve the utilitytiopization problem for
constant coefficients markets with bounded ES at maturitipjpelberg and Perga-
menshchikovl[[B]{[9] considered the optimisation problerith bounded Var and
ES risk measure on the whole time interval in the class of thr@andom finan-
cial stratedies. In this paper we consider the optimal itmeat problem with the
bounded VaR uniformly on whole time intervil, T] for all admissible financial
strategies (nonrandom or random). It should be noted tligtritmpossible to cal-
culate the explicit form of the VaR risk measure for the randimancial strategies.
This is the main difficulty in such problems. In this paper wepgmse some method
to overcome this difficulty by applying optimisations medisdan the Hilbert spaces.
We find the explicit form for the optimal strategies.

Our paper is organised as follows. In Secfidon 2 we formulaeRiack-Scholes
model for the price processes. In Secfidn 3 all optimizapimblems and their so-
lutions are given. All proofs are summarized in Secfibn Awlite technical lemma
postponed to the Appendix 5.

2 The model

We consider a Black-Scholes type financial market congigifroneriskless bond
and severatisky stocks Their respective price€)(t));>o and (§(t));>o for i =
1,...,d evolve according to the equations:

dS(t) = ry S(t)dt, $(0) =1,
(2.1)
dS(t) = St pt)dt + St 39, 6 () Wi (t), §(0) = s >0,

HereW, = (W, (t),...,Wy(t)) is a standard-dimensional Brownian motiom; € R
is theriskless interest ratey, = (U (t), ..., uy(t))’ € RY is the vector ofstock-
appreciation ratesand g; = (j; (t))1<i j<q iS the matrix ofstock-volatilities We
assume that the coefficients 1, and g, are deterministic functions, which are
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right continuous with left limits (cadlag). We also assuthat the matrig; is non-
singular for Lebesgue-almost al> 0.

We denote by# = o{W,,s<t},t > 0, the filtration generated by the Brownian
motion (augmented by the null sets). Furthermorgdenotes the Euclidean norm
for vectors and the corresponding matrix norm for matrices.

Fort > 0 let@ € R denote the amount of investment into bond and

9 = ($1(1),.... Bg(t)) € R

the amount of investment into risky assets. We recall thisading strategyis an
Rd”—valued(ﬂ«})tzo—progressively measurable proceégs ¢;);-o and that

d

X = ‘RS)(U"‘Z $;t)S (), t>0,

=1

is called thewealth process
The trading strategy(@, ¢;) );>o is calledself-financingif the wealth process
satisfies the following equation

Xt:x+/t%d50(u)+%/th-(u)dS-(u) t>0 (2.2)
o & o j (VARG :

wherex > 0 is the initial endowment.
In this paper we work with relative quantities, i.e., we defiarj =1,...,d

m(t) = ¢j(t()ij ® , t>0.
ASO+37; HOSEO
Thenrg = (mg(t),..., my(t))’, t > 0, is called theportfolio processand we assume

throughoutthat itis.7; ), o-progressively measurable. We assume that for the fixed
investment horizo > 0

T
Imi3 = [ imPdt < as.

We also define with = (1,...,1) € RY the quantities
Y=o and =0 ‘(—rl), t>0, (2.3)

where it suffices that these quantities are defined for Lales¢most allt > 0.
Taking these definitions into account we rewrite equafioB)(®r X, as

dX =X (rp + Y, 6)dt + Xy dW, Xq=x>0. (2.4)

This implies in particular that any optimal investment &gy is equal to
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=0,

wherey; is the optimal control process for equatign {2.4). We alspuire for the
investment horizo > 0

T
16]12 =/0 162t < oo (2.5)

We assume thd¥, ) o iS any(.# )o<1<7 - adapted a.s. square integrated process,
i.e.

T
Iy = /O ot < @ as.,

such that the stochastic equatifn {2.4) has a unique staotion. We denote by
% the class of all such processes: (y; )o<i<7- Note that for every € #/, through
Itd’s formula, we represent the equatién (2.4) in the fellny form (to emphasize
that the wealth process corresponds to some control prgeessvrite XY)

X = et Ohg(y), (2.6)

whereR, = [gr,du, (y,0); = [y, 6,duand the process (y))o;7 is the stochas-
tic exponent fowy, i.e.

50 =exo( [ Vi, 2 [ iwlau).

Therefore, for every € % the proces$XY ), is a.s. positive and continuous.
For initial endowmenx > 0 and a control process= (V;)i>g in ¢/, we introduce
the cost function -
J(xy) ==E, (XY)Y, (2.7)

whereE, is the expectation operator Conditional)égﬁz X.

For 0< y < 1 the utility functionU(z) = 2 is concave and is called a power
(or HARA) utility function. We include the case of = 1, which corresponds to
simply optimizing expected consumption and terminal wedh combination with
a downside risk bound this allows us in principle to dispevihk the utility function,
where in practise one has to choose the paranyeter

3 Optimisation problems

3.1 The Unconstrained Problem

We consider two regimes with cost functiohs{2.7) for ¢ < 1 and fory = 1.
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maxJ(x,y). (3.1)
yew

First we consider Problem3.1 forfy < 1. The following result can be found in
Example 6.7 on page 106 in Karatzas and Shieve [7]; it's pghaok is based by the
martingale method.

Theorem 1.Consider Probleni 3]1 fod < y < 1. The optimal value of (k,y) is
given by

70 = maxdoey) = Ixy') = X exp{yRr + 5t 0]

2(1-y)
where the optimal control’y= (y; )o<i<7 is forall0 <t <T of the form
_ 8 _ (a0) H(p —1i1)
=1y m= Ty . (3.2)

The optimal wealth proces$X;")o<t<T is given by

2 o/
o = (e )l gox @9

Let nowy=1.

Theorem 2.[B] Consider the problem3]1 witly = 1. Assume a riskless interest
rater, > Oforallt € [0, T]. If ||6]]y > Othen

maxJ(X,y) = .
ma (%,Y)

If ||6||+ = 0then a solution exists and the optimal value 6£,§) is given by

maxJ(x,y) = J(x,y") = x&r
ye¥

corresponding to arbitrary deterministic square integi@unction (y;)o<t<7. In
this case the optimal wealth proces§")o<i<T Satisfies the following equation

X =Xt + Xy AW, X = X (3.4)

3.2 The Constrained Problem

As risk measures we use modifications of the Value-at-Rigktesduced in Emmer,
Kluppelberg and Korr [4]. They can be summarized under timn of Capital-at-

Risk as they reflect the required capital reserve. To avoitnetevant cases we
consider only < a < 1/2. We use here the definition as fin [8]-[9].
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Definition 1. [Value-at-Risk (VaR)]
Define for initial endowment > 0, a control procesg € ¢ and 0< a < 1/2 the
Value-at-Risk (VaR)y

VaRt(vava) ::X&_Qta tZOa

whereQ, = Q(x,y,a) is the(F)) = a{ys,0 < s <t} measurable random variable
such that

N y
o quantile of the ratio X[y: % isequalto 1 (3.5)
t

inf{z>0:P(XY <2 >a}=1.

Remark 1Note that for the nonrandom financial stratedig$o 1 the proces€
is the usuabr- quantile for the processY. To define the “random* quantile for the

processKY we consider the ratio procegg’ for which thea- quantile is equal to 1.

Corollary 1. For every ye % with ||y||; > O the process Qdefined in Definitiofill,
is given by

1
Q —xexp(R -+ (0} - Iyl ) . 120,

wheret, = 1,(a,y) is thea-quantile of the normalized stochastic integral

1t
=—— [ yadw
Et(y) Hy”t /0 }/U (VR

T, =inf{z> —w:P(&(y) <2)>a}. (3.6)
Itis clear that for any nonrandom functioy )o; - the random variable
Et ~ ‘/V(Oa 1) )

i.e. inthis casa;, = —|z,|, wherez, is thea-quantile of the standard normal distri-
bution.

Indeed, to obtain the explicit form for the optimal solutsdn this paper we work
with a upper bound for VaR risk measure, i.e. we consider the

VaR' (x,y,a) :=xe* —Qf, t>0, (3.7)
where
. 1 . . . .
Q: =xexp(R+ (10~ IyIE+ T Iyl ) with % = minz,.T).

Obviously,
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VaR (x,y,a) < VaR'(x,y,q).

We define thdevel risk functiorfor some coefficient & ¢ < 1 as
L) =Ixeék, te0,T]. (3.8)

We consider only controlge % for which the Value-at-Risk is a.s. bounded by this
level function over the intervdD, T]; i.e. we require

VaR' (x,y, o
sup M <1 as. (3.9)
0<t<T +(X)
The optimisation problemis
maxJ(x,y) subjectto supw <1 as. (3.10)

yew 0<t<T G (x)

To describe the optimal strategies we need the followingtion
g(a) :=+/2a+2 -7, (3.11)
with
Zy=|z|—[6ly and O0<a<apy:=—In(1-7).

Moreover, we set
16112

T 21-yp2

S 116]lx
T,

(3.12)

Theorem 3.Consider the problerB.10)for 0 < y < 1. Assume thag, | > 2||6]|+.
Then the optimal value for the cost function is given by

J(x,y") = XY e/Rr+Ye(g) (3.13)
where Gg) = g|| 6]/t + (1 - v)g%/2, g" = g(a*) with
a’ =min(ag, amay) , (3.14)

and the optimal control*yis for all 0 <t < T of the form

g*
% = oy, & Luei>0p- (3.15)
Moreover, if|| 8|1 > 0then the optimal wealth proce§X)o<t<T IS given by

* 2 *k
X’ = X’ <|rt + g” E'ﬁ‘l > dt+)(t*”g—HT QAW with X =x;  (3.16)
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and if 6|y =0then X' = xe¥ for0<t <T.

Theorem 4.Consider the probler8.10)for y= 1. Assume thdt, | > 2||0||+. Then
the optimal value for the cost function is given by

J(x,y") = x el F9@ma)lllir (3.17)
where and the optimal controfys for all 0 <t < T of the form

g
Y = f%”f‘)l% Ljelr>0) - (3.18)

Moreover, if|| 8] > 0then the optimal wealth proce§X*)o<t<T IS given by

X = X’ (rt+%am67w)dt+>¢g(am> g with X =x; (3.19)
1611 161l

and if 6]y =O0then X' = x&¥ for0<t <T.

4 Proofs

4.1 Proof of Theorem[3

Let now 0< y < 1. By (2.8) we represent thepower of the wealth process as

where 1
-y
Frly) = (97Y)T—THY||$- (4.1)
Moreover, we introduce the measure (generally non proibgidily the following
Radon-Nikodym density _
dP
Frei Er(vy)-
By denotingﬁ the expectation with respect to this measure we get that
E(XY)Y =xVeRrEeFr ) (4.2)
Note that, if|| 6|t = 0 then

E(X)Y = x/eRr Ee 22 VA
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Taking into account that for any procesom %
Ecr(yy) <1

we get for any € &
E(X-|¥)V < xY eVRr

with the equality if and only if; = O.

Therefore, in the sequel we assume th@t > 0. Now we shall consider the
almost sure optimisation problem for the functigy(-). First, we consider this con-
trained the last time momeh&T, i.e.

Va a
supF;(y) subjectto M

1 4.3
o' Lo St @S (4-3)

This constraint is equivalent to

1 *
SIVIE =T ¥y = (6.)r < —IN(1—8) = Bay.

By fixing the the quantile as; = — 3 for some > |z, | and denoting

1
Kr(y) = §||YH$ +BlIyll+ — (8,y)1

we will consider more general problem thdn {4.3), i.e. wd fiild the optimal
solution in the Hilbert spacke,[0,T], i.e.

sup Fr(y) subjectto Ki(Y) < amax-
yeL,[0,2]

To resolve this problem we have to resolve the following one

sup Fr(y) subjectto Ki(y)=a (4.4)
yeL,[0,T]

for some parameter € a < a,,,,, We use the Lagrange multiplicators method, i.e.
we pass to the Lagrange cost functidp(y) = Fr(y) — AK;(y) and we have to
resolve the optimisation problem for this function, i.e.

H . 4.5
yana A(Y) (4.5)
In this case
A+1-
M) = = V2 + (24 A)(0.9) = ABIylr

whereA is Lagrange multiplicator. It is clear that> y— 1. Since the probleni{4.5)
has no finite solution foh <y—1, i.e.
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max H = .
e A (Y) = +oo

to this end we calculate the Gateau derivative, i.e.

H, (y+ 8h) —H,(y)
5 .

D, (y,h)=1i
A(yv ) (SILnO
It is easy to check directly that for any functigfirom L,[0, T] with |ly||; >0
T
D, (eh) = [ ((L+A)8— (1= v+ A)y ~ ABy,

with . = y;/|lyll+- Moreover, if|ly|| = 0, then

T
D, ()= (1+2) | "Wt~ ABIhij.
It is clear thatD, (y, h) # 0 for h, = —sign(A)6,. Therefore, to resolve the equation
D, (y;h)=0 (4.6)
forall h e L,[0,T] we assume thdly||x > 0. This implies

(1+2)8 —(1-y+A)y, —ABY, =0,

ie.

___(xMlyle g

COAB+ (A=Yl
Therefore,

@A) : 16l +A([6lr—B)
The coefficienty must be positive, i.e.
161+
YV—1<A< —-f—o. (4.8)
(B—16ll)+

Now we have to verify that the solution of the equation](4i6gg the maximum
solution for the problen{4]5). To end this for any functipfrom L,[0,T] with
llyll+ > O we set

Ay (y,h) =H, (y+h) —H,(y) =D, (y;h).

Moreover, by putting

3(y,h) = lly+hlls = [I¥ll+ = (h,y)+, (4.9)



Optimal investment with bounded VAR 11

we obtain o
ti-vy
———[InlIF = AB3(y.h),
Now Lemmd_1 implies that the functiaf(y,h) < 0 for all h € L,[0, T]. Therefore
the solution of the equatioh (4.6) gives the solution forpghablem [4.5).
Now we chose the lagrange multiplicatotto satisfy the condition i .(414), i.e.

A)\ (yv h) ==

KT(Y'\) =a,
i.e.
WA +29(A)(B—6]1) =
ie.
P(a)=y(A(a)) =/2a+(B—0]lr)>— (B—16lr)
with

2a+(B—1|6]l7)

One can check directly that the functidria) satisfies the conditioi (4.8) for any
a> 0. This means that the solution for the problém](4.4) is glwethe function

—-1+y.

(a)
== HGII .

Now to chose the parameterOa < a,,in (4.4) we have to maximize the function
@), i.e.
max Fr(¥?%).

0<a<apx

Note that

2
Fr(¥) =G(@(a)) with G(y) =]y —(1- V)%-

Moreover, note that for ang > 0 andf > |z,|

P(a) <9(a),
where the functiowy is defined in[(3.111). Therefore,

max Fr(%) < max G(g(a)) = G(g(a*)),

0<a<aax 0<a<anax
wherea* is defined in[(3.14). To obtain here the equality we tak&if)(8.= |z, |.
Thus, the function[(3.15) is the solution of the problém)4Now to pass to the

problem [[3:1D) we have to check the conditibn(3.9) for thecfion [3.15). To this
end note that

I 2+ 2l I~ (0.3) = [ wtgds
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where

92 gz~ 216]9
:ez(m) +QUQ| s).
%= 18" 182 T 2160

taking into account here the conditigry | > ||0||+ we obtainay > 0, i.e.

212+ zal Iyl — (6.5

< IV + 2l = (0.¥)r
—a'<-In(1-Q).

This implies immediately that the functidn (3115) is a siotof the problem(3.70).
(I

4.2 Proof of Theorem[d

Let nowy = 1. Note that in this case we can obtain the following uppemigou
EX{ < x&¥r gl bl Vit &r(y).

Obviously, that if||6||+ = 0 than we obtain here equality if and onlyyit= 0. Let
now || 6|t > 0. Note that the condition

KT (Y) < Amax (4-10)

implies|ly|lt < g(amay- Thus, for any functiorfy, o7 Satisfying the condition
we have
EX{ < xeRrT9@maxd[10lr |

Moreover, the functiori(3.18) transforms this inequalitytie equality. By the same
way as in the proof of Theoreld 4 we check that the function8Bshtisfies the

condition [3.9).
O
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5 Appendix

A.1 Properties of the function (4.9)

Lemma 1. Assume that ¥ L,[0, T] with ||y||; > 0. Then for every k& L,[0,T] the
function(@.9)is positive, i.ed(y,h) > 0.

Proof. Obviously, ifh=ayforsomeacR, thend(y,h) = (|1+a]—1—a)|y|l; >O.
Let now the functioné andy be linearly independent. Then

_IhlE = 307 (7.h)r +8(y,h)

2(y.hr +hlz
= T u (yvh)T_ h
ly+hll +[lyll+

lly+hllr vl

It is clear that for alh

o(y,h)

ly+hllx +lIylls + (¥.h)r =0

with equality if and only ith = ayfor somea < —1.
Therefore, if the functionk andy are linearly independent, then

0 ly+hle+ivliy + ) T
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