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Abstract

The forgetting of the initial distribution for discrete Hidden Markov Models (HMM)

is addressed: a new set of conditions is proposed, to establish the forgetting property

of the filter, at a polynomial and geometric rate. Both a pathwise-type convergence

of the total variation distance of the filter started from two different initial distribu-

tions, and a convergence in expectation are considered. The results are illustrated

using different HMM of interest: the dynamic tobit model, the non-linear state space

model and the stochastic volatility model.
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1 Definition and notations

A Hidden Markov Model (HMM) is a doubly stochastic process with an underlying Markov

chain that is not directly observable. More specifically, let X and Y be two spaces equipped

with a countably generated σ-fields X and Y ; denote by Q and G respectively, a Markov

transition kernel on (X,X ) and a transition kernel from (X,X ) to (Y,Y). Consider the

Markov transition kernel defined for any (x, y) ∈ X × Y and C ∈ X ⊗ Y by

T [(x, y), C]
def
= Q ⊗ G[(x, y), C] =

∫∫

Q(x, dx′) G(x′, dy′)1C(x′, y′) . (1)

We consider {Xk, Yk}k≥0 the Markov chain with transition kernel T and initial distribution

ν ⊗ G(C)
def
=
∫∫

ν(dx)G(x, dy)1C(x, y), where ν is a probability measure on (X,X ). We

assume that the chain {Xk}k≥0 is not observable (hence the name hidden). The model

is said to be partially dominated if there exists a measure µ on (Y,Y) such that for all

x ∈ X, G(x, ·) is absolutely continuous with respect to µ: in such case, the joint transition

kernel T can be written as

T [(x, y), C] =
∫∫

Q(x, dx′)g(x′, y′)1C(x′, y′)µ(dy′) , C ∈ X ⊗ Y , (2)

where g(x, ·) = dG(x,·)
dµ

denotes the Radon-Nikodym derivative of G(x, ·) with respect to

µ. To follow the usage in the filtering literature, g(x, ·) is referred to as the likelihood

of the observation. An example of such type of dependence is Xk+1 = a(Xk, ζk+1) and

Yk = b(Xk, εk), where {ζk}k≥0 and {εk}k≥0 are i.i.d. sequences of random variables, and

{ζk}k≥0, {εk}k≥0 and X0 are independent. The most elementary example is the so-called

linear Gaussian state space model (LGSSM) where a and b are linear and {ζk, εk}k≥0 are
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i.i.d. standard Gaussian. We denote by φν,n[y0:n] the distribution of the hidden state Xn

conditionally on the observations y0:n
def
= [y0, . . . , yn], which is given by

φν,n[y0:n](A)
def
=

ν [g(·, y0)Qg(·, y1)Q . . .Qg(·, yn)1A]

ν [g(·, y0)Qg(·, y1)Q . . .Qg(·, yn)]

=

∫

Xn+1 ν(dx0)g(x0, y1)
∏n

i=1 Q(xi−1, dxi)g(xi, yi)1A(xn)
∫

Xn+1 ν(dx0)g(x0, y1)
∏n

i=1 Q(xi−1, dxi)g(xi, yi)
, (3)

where Qf(x) = Q(x, f)
def
=
∫

Q(x, dx′)f(x′), for any function f ∈ B+(X) the set of non-

negative functions f : X → R, such that f is X /B(R) measurable, with B(R) the Borel

σ-algebra.

In practice the model is rarely known exactly and so suboptimal filters are constructed

by replacing the unknown transition kernel, likelihood function and initial distribution by

suitable approximations.

The choice of these quantities plays a key role both when studying the convergence of

sequential Monte Carlo methods or when analysing the asymptotic behaviour of the max-

imum likelihood estimator (see e.g. (8) or (5) and the references therein).

The simplest problem assumes that the transitions are known, so that the only error in

the filter is due to a wrong initial condition. A typical question is to ask whether φν,n[y0:n]

and φν′,n[y0:n] are close (in some sense) for large values of n, and two different choices of

the initial distribution ν and ν ′.

The forgetting property of the initial condition of the optimal filter in nonlinear state

space models has attracted many research efforts and it would be a formidable task to

give credit to every contributors. The purpose of the short presentation of the existing

results below is mainly to allow comparison of assumptions and results presented in this

contributions with respect to those previously reported in the literature. The first result

in this direction has been obtained by (21), who established Lp-type convergence of the
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optimal filter initialised with the wrong initial condition to the filter initialised with the

true initial distribution (assuming that the transition kernels are known); however, their

proof does not provide a rate of convergence. A new approach based on the Hilbert

projective metric has later been introduced in (2) to obtain the exponential stability of

the optimal filter with respect to its initial condition. However their results were based

on stringent mixing conditions for the transition kernels; these conditions state that there

exist positive constants ǫ− and ǫ+ and a probability measure λ on (X,X ) such that for

f ∈ B+(X),

ǫ−λ(f) ≤ Q(x, f) ≤ ǫ+λ(f) , for any x ∈ X . (4)

This condition in particular implies that the chain is uniformly geometrically ergodic.

Similar results were obtained independently by (9) using the Dobrushin ergodicity coeffi-

cient (see (11) for further refinements under this assumption). The mixing condition has

later been weakened by (6), under the assumption that the kernel Q is positive recurrent

and is dominated by some reference measure λ:

sup
(x,x′)∈X×X

q(x, x′) < ∞ and
∫

essinfq(x, x′)π(x)λ(dx) > 0 ,

where q(x, ·) = dQ(x,·)
dλ

, essinf is the essential infimum with respect to λ and πdλ is the

stationary distribution of the chain Q . If the upper bound is reasonable, the lower bound

is restrictive in many applications and fails to be satisfied e.g. for the linear state space

Gaussian model.

In (18), the stability of the optimal filter is studied for a class of kernels referred to as

pseudo-mixing. The definition of pseudo-mixing kernel is adapted to the case where the

state space is X = R
d, equipped with the Borel sigma-field X . A kernel Q on (X,X )

is pseudo-mixing if for any compact set C with a diameter d large enough, there exist

positive constants ǫ−(d) > 0 and ǫ+(d) > 0 and a measure λC (which may be chosen to
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be finite without loss of generality) such that

ǫ−(d)λC(A) ≤ Q(x, A) ≤ ǫ+(d)λC(A) , for any x ∈ C, A ∈ X (5)

This condition implies that for any (x′, x′′) ∈ C × C,

ǫ−(d)

ǫ+(d)
< essinfx∈Xq(x′, x)/q(x′′, x) ≤ esssupx∈Xq(x′, x)/q(x′′, x) ≤

ǫ+(d)

ǫ−(d)
,

where q(x, ·)
def
= dQ(x, ·)/dλC, and esssup and essinf denote the essential supremum and

infimum with respect to λC. This condition is obviously more general than (4), but still

it is not satisfied in the linear Gaussian case (see (18, Example 4.3)).

Several attempts have been made to establish the stability conditions under the so-called

small noise condition. The first result in this direction has been obtained by (2) (in contin-

uous time) who considered an ergodic diffusion process with constant diffusion coefficient

and linear observations: when the variance of the observation noise is sufficiently small,

(2) established that the filter is exponentially stable. Small noise conditions also appeared

(in a discrete time setting) in (4) and (22). These results do not allow to consider the

linear Gaussian state space model with arbitrary noise variance.

A very significant step has been achieved by (16), who considered the filtering problem

of Markov chain {Xk}k≥0 with values in X = R
d filtered from observations {Yk}k≥0 in

Y = R
ℓ,























Xk+1 = Xk + b(Xk) + σ(Xk)ζk ,

Yk = h(Xk) + βεk .

(6)

Here {(ζk, εk)}k≥0 is a i.i.d. sequence of standard Gaussian random vectors in R
d+ℓ, b(·)

is a d-dimensional vector function, σ(·) a d × d-matrix function, h(·) is a ℓ-dimensional

vector-function and β > 0. The author established, under appropriate conditions on b, h

and σ, that the optimal filter forgets the initial conditions; these conditions cover (with

some restrictions) the linear Gaussian state space model.
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In this contribution, we will propose a new set of conditions to establish the forgetting

property of the filter, which are more general than those proposed in (16). In theorem

1, a pathwise-type convergence of the total variation distance of the filter started from

two different initial distributions is established, which is shown to hold almost surely

w.r.t. the probability distribution of the observation process {Yk}k. Then, in Theorem 3,

the convergence of the expectation of this total variation distance is shown, under more

stringent conditions. The results are shown to hold under rather weak conditions on the

observation process {Yk}k which do not necessarily entail that the observations are from

an HMM.

The paper is organised as followed. In section 2, we introduce the assumptions and state

the main results. In section 3, we give sufficient conditions for Theorems 1 and 3 to hold,

when {Yk}k is an HMM process, assuming that the transition kernel and the likelihood

function might be different from those used in the definition of the filter. In section 4, we

illustrate the use of our assumptions on several examples with unbounded state spaces.

The proofs are given in sections 5 and 6.

2 Assumptions and Main results

We say that a set C ∈ X satisfies the local Doeblin property (for short, C is a LD-set), if

there exists a measure λC and constants ǫ−
C

> 0 and ǫ+
C

> 0 such that, λC(C) > 0 and for

any A ∈ X ,

ǫ−
C
λC(A ∩ C) ≤ Q(x, A ∩ C) ≤ ǫ+

C
λC(A ∩ C) , for all x ∈ C . (7)

Locally Doeblin sets share some similarities with 1-small set in the theory of Markov

chains over general state spaces (see (20, chapter 5)). Recall that a set C is 1-small if

there exists a measure λ̃C and ǫ̃C > 0, such that λ̃C(C) > 0, and for all x ∈ C and A ∈ X ,
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Q(x, A ∩ C) ≥ ǫ̃Cλ̃C(A ∩ C). In particular, a locally Doeblin set is 1-small with ǫ̃C = ǫ−
C

and λ̃C = λC. The main difference stems from the fact that we impose both a lower and

an upper bound, and we impose that the minorizing and the majorizing measure are the

same.

Compared to the pseudo-mixing condition (5), the local Doeblin property involves the

trace of the Markov kernel Q on C and thus happens to be much less restrictive. In

particular, on the contrary to the pseudo-mixing condition, it can be easily checked that

for the kernel associated to the linear Gaussian state space model, every bounded Borel

set C is locally Doeblin.

Let V be a positive function V : X → [1,∞) and A ∈ X be a set. Define:

ΥA(y)
def
= sup

x∈A

g(x, y)QV (x)/V (x) . (8)

Consider the following assumptions:

(H1) For any (x, y) ∈ X × Y, g(x, y) > 0.

(H2) There exist a set K ⊆ Y and a function V : X → [1,∞) such that for any η > 0, one

may choose a LD-set C ∈ X satisfying

ΥCc(y) ≤ η ΥX(y) , for all y ∈ K.

Assumption (H1) can be relaxed, but this assumption simplifies the statements of the

results and the proofs. The case where the likelihood may vanish will be considered in a

companion paper. Assumption (H2) involves both the likelihood function and the drift

function. It is satisfied for example if there exists a set K such that for all η > 0, one can

choose a LD-set C so that

sup
x∈Cc

g(x, y) < η sup
x∈X

g(x, y) , for all y ∈ K, (9)

in which case the previous assumption is satisfied with V ≡ 1. When X = R
d, this situation
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occurs for example when the compact sets are locally Doeblin and lim|x|→∞ supy∈K g(x, y) =

0. As a simple illustration, this last property is satisfied for Yk = h(Xk) + ǫk with

lim|x|→∞ |h(x)| = ∞ and {ǫk}k are i.i.d.random variables (independent of {Xk}k) with

a density g which satisfies lim|x|→∞ g(x) = 0. More complex models satisfying (H2) are

considered in Section 4.

When (9) is not satisfied, assumption (H2) can still be fulfilled if for all y ∈ Y, supx∈X g(x, y) <

∞, supX QV/V < ∞ for some function V : X → [1,∞), and for all η > 0, there exists

a LD-set C such that supCc QV/V ≤ η. As a simple illustration, this situation occurs for

example with Xk+1 = φXk + σζk where |φ| < 1, σ > 0 and {ζk}k a family of iid standard

Gaussian vectors. More details are provided in Section 4.

For any LD-set D and ν a probability measure on (X,X ) define:

Φν,D(y0, y1)
def
= ν[g(·, y0)Qg(·, y1)1D] , (10)

ΨD(y)
def
= λD(g(·, y)1D) . (11)

We denote by (Ω,A) a measurable space, and we let {Yk}k≥0 be a stochastic process on

(Ω,A) which takes values in (Y,Y) but which is not necessarily the observation of an

HMM. For any probability measure ν and any n ∈ N, the filtering distribution φν,n[Y0:n]

(defined in (3)) is a measure-valued random variable on (Ω,A).

Theorem 1 Assume (H1-2) and let P⋆ be a probability measure on (Ω,A). Assume in

addition that for some LD-set D and some constants M > 0 and γ ∈ (0, 1),

lim inf
n→∞

n−1
n
∑

i=0

1K(Yi) ≥ (1 + γ)/2 , P⋆ − a.s. (12)

lim sup
n→∞

n−1
n
∑

i=0

log ΥX(Yi) < M , P⋆ − a.s. (13)

lim inf
n→∞

n−1
n
∑

i=2

log ΨD(Yi) > −M , P⋆ − a.s. (14)
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where ΥX and ΨD are defined in (8) and (11), respectively. Then, for any initial distribu-

tions ν and ν ′ on (X,X ) such that ν(V ) + ν ′(V ) < ∞, νQ1D > 0 and ν ′Q1D > 0, there

exists a positive constant c such that,

lim sup
n→∞

n−1 log ‖φν,n[Y0:n] − φν′,n[Y0:n]‖TV < −c , P⋆ − a.s. (15)

Remark 2 We stress that it is not necessary to assume that {Yk}k≥0 is the observation

of an HMM {Xk, Yk}k≥0. Conditions (13) and (14) can be verified for example under a

variety of weak dependence conditions, the only requirement being basically to be able to

prove a LLN (see for example (7)). This is of interest because in many applications, the

HMM model is not correctly specified, but it is still of interest to establish the forgetting

properties of the filtering distribution with respect to the initial distribution.

We will now state a statement allowing to control the expectation of the total variation

distance.

Theorem 3 Assume (H2). Let D be a LD-set. Then, for any Mi > 0, i = 0, 1, 2, and

γ ∈ (0, 1), there exist β ∈ (0, 1) such that, for any given initial distributions ν and ν ′ on

(X,X ) and all n,

E⋆

(

‖φν,n[Y0:n] − φν′,n[Y0:n]‖TV

)

≤ βn [1 + ν(V )ν ′(V )] + r0(ν, n) + r0(ν
′, n) +

3
∑

i=1

ri(n) (16)

where the sequences {r0(ν, n)}n≥0 and {ri(n)}n≥0, i = 1, 2, 3 are defined by

r0(ν, n)
def
= P⋆ (log Φν,D(Y0, Y1) ≤ −M0n) , (17)

r1(n)
def
= P⋆

(

n
∑

i=0

log ΥX(Yi) ≥ M1n

)

, (18)

r2(n)
def
= P⋆

(

n
∑

i=0

log ΨD(Yi) ≤ −M2n

)

, (19)

r3(n)
def
= P⋆

(

n−1
n
∑

i=1

1K(Yi) ≤ (1 + γ)/2

)

. (20)
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3 Applications to HMM

We will now discuss conditions upon which (13) and (14) hold (Propositions 4 to 6) and

upon which the right hand side in (16) vanishes (Proposition 7 to Corollary 11). To that

goal, we assume that {Yk}k≥0 is the observation of an HMM {Xk, Yk}k≥0 with Markov

kernel T⋆ = Q⋆ ⊗G⋆, where Q⋆ is a transition kernel on (X,X ) and G⋆ is a Markov kernel

from (X,X ) to (Y,Y), and initial distribution ν⋆ on (X,X ).

Recall that a kernel P on a general state space (Z,Z) is phi-irreducible and (strongly)

aperiodic if there exists a σ-finite measure ϕ on (Z,Z), such that, for any A ∈ Z satisfying

ϕ(A) > 0 and any initial condition x, P n(x; A) > 0, for all n sufficiently large. A set C ∈ Z

is called petite for the Markov kernel P if for some probability measure m on N, with finite

mean sampling time (which can always be done without loss of generality (20, Proposition

5.5.6))
∞
∑

n=0

m(n)P n(x, A) ≥ ǫ−
C
λC(A) , for all x ∈ C, A ∈ Z,

where λC is a measure on (Z,Z) satisfying λC(C) > 0 and ǫ−
C

> 0. We denote by P
P
ν and

E
P
ν the probability distribution and the expectation on the canonical probability space

(ZN,Z⊗N) associated to the Markov chain with transition kernel P and initial distribution

ν.

We first state sufficient conditions for T⋆ to be an aperiodic positive Harris chain (see

definitions and main properties in (20, Chapters 10 & 13) and (5, Chapter 14)) and for

the law of large numbers to hold for the Markov chain with kernel T⋆.

Proposition 4 Assume that Q⋆ is an aperiodic, positive Harris Markov kernel with sta-

tionary distribution π⋆. Then, the kernel T⋆ defined by

T⋆[(x, y), A]
def
=
∫∫

Q⋆(x, dx′)G⋆(x
′, dy′)1A(x′, y′) , A ∈ X ⊗ Y ,

10



is an aperiodic positive Harris Markov kernel with stationary distribution π⋆ ⊗ G⋆. In

addition, for any initial distribution ν⋆ on (X,X ), and any function ϕ ∈ B+(X × Y)

satisfying π⋆ ⊗ G⋆(ϕ) < ∞,

n−1
n
∑

i=0

ϕ(Xi, Yi) → π⋆ ⊗ G⋆(ϕ) P
T⋆

ν⋆⊗G⋆
− a.s. (21)

Corollary 5 If π⋆ ⊗ G⋆ (log ΥX)+ < ∞ (resp. π⋆ ⊗ G⋆ (log ΨD)− < ∞), then, condition

(13) (resp. (14)) is satisfied with P⋆
def
= P

T⋆

ν⋆⊗G⋆
.

In many problems of interest, it is not straightforward to establish that the chain is positive

Harris; in addition, the distribution π⋆ is not known explicitly making the conditions of

Corollary 5 difficult to check. It is often interesting to apply the following result which

is a direct consequence of the f -norm ergodic theorem and the law of large numbers for

positive Harris chain (see for example (20, Theorems 14.0.1, 17.0.1)).

Proposition 6 Let f⋆ ≥ 1 be a function on X. Assume that Q⋆ is a phi-irreducible Markov

kernel and that there exist a petite set C⋆, a function V⋆ : X → [1,∞), and a constant b⋆

satisfying

Q⋆V⋆(x) ≤ V⋆(x) − f⋆(x) + b⋆1C⋆
(x) . (22)

Then, the kernel Q⋆ is positive Harris with invariant probability π⋆ and π⋆(f⋆) < +∞. Let

ϕ ∈ B+(X × Y) be a function such that

sup
x∈X

f−1
⋆ (x)G⋆ (x, ϕ(x, ·)) < ∞, (23)

Then, π⋆ ⊗ G⋆(ϕ) < ∞.

We now derive conditions to compute a bound for {r0(ν, n)}n≥0.

Proposition 7 Assume (H1-2) and that the drift function V defined in (H2) satisfies

supX V −1QV < ∞.

11



(i) If for some p ≥ 1,

sup
i=0,1

sup
X

V −1
E⋆[log g(·, Yi)]

p
− < ∞ , (24)

then, there exists a constant C such that, for any initial probability measure ν on

(X,X ) such that νQ1D > 0 and all n ≥ 0, r0(ν, n) ≤ Cn−pν(V ).

(ii) If for some positive λ,

sup
i=0,1

sup
X

V −1
E⋆ (exp(λ[log g(·, Yi)]−)) < ∞ , (25)

then there exist positive constants C, δ > 0, such that for any initial probability

measure ν on (X,X ) such that νQ1D > 0, and all n ≥ 0, r0(ν, n) ≤ Ce−δnν(V ).

To determine the rate of convergence of the sequences {ri(n)}n≥0 to zero, i = 1, 2, 3, it is

required to use deviation inequalities for partial sums of the observations {Yk}k≥0. There

are a variety of techniques to prove such results, depending on the type of assumptions

which are available. If polynomial rates are enough, then one can apply the standard

Markov inequality together with the Marcinkiewicz-Siegmund inequality; see for example

(7) or (12).

Proposition 8 Assume that

(i) Q⋆ is aperiodic and positive Harris Markov kernel with stationary distribution π⋆.

(ii) There exist a petite set C⋆ and functions U⋆, V⋆, W⋆ : X → [1,∞) and a constant b⋆

satisfying π⋆(W⋆) < ∞ and

Q⋆V⋆ ≤ V⋆ − U⋆ + b⋆1C⋆
,

Q⋆W⋆ ≤ W⋆ − V⋆ + b⋆1C⋆

Let p ≥ 1. There exists a constant C < ∞ such that for any function ϕ on (Y,Y)

satisfying supX U−1
⋆ G⋆(·, |ϕ|

p) < ∞ and supX U−1
⋆ V

1−1/p
⋆ G⋆(·, |ϕ|) < ∞, and for any

12



initial probability distribution ν⋆ on (X,X ), and any δ > 0,

P
T⋆

ν⋆⊗G⋆

[

n
∑

i=1

{ϕ(Yi) − π⋆ ⊗ G⋆(ϕ)} ≥ δn

]

≤ Cδ−pn−(p/2∨1)ν⋆(W⋆) ,

Corollary 9 If there exists p ≥ 1 such that

sup
X

f−1
⋆ G⋆(·, | logΥX|

p) < ∞ , sup
X

f−1
⋆ V 1−1/p

⋆ G⋆(·, | logΥX|) < ∞ ,

and

sup
X

f−1
⋆ G⋆(·, | logΨD|

p) < ∞ , sup
X

f−1
⋆ V 1−1/p

⋆ G⋆(·, | logΨD|) < ∞ ,

then there exist finite constants C, Mi, i = 1, 2, 3 such that

ri(n) ≤ Cn−(p/2∨1)ν⋆(W⋆) .

If we wish to establish that the sequences {ri(n)}n≥0 decreases to zero exponentially fast,

we might for example use the multiplicative ergodic theorem (17, Theorem 1.2) to bound

an exponential moment of the partial sum, and then use the Markov inequality. This will

require to check the multiplicative analog of the additive drift condition (22).

Some additional definitions are needed. Let W : X → (0,∞) be a function. We say that

the function W is unbounded if supX W = +∞. We define by GW the set of functions

whose growth at infinity is lower than W , i.e. F belongs to GW if and only if

sup
X

(|F | − W ) < ∞ . (26)

Proposition 10 Let W⋆ be an unbounded function W⋆ : X → (0,∞) and that the level

sets {W⋆ ≤ r} are petite. Assume that Q⋆ is phi-irreducible and that there exist a function

V⋆ : X → [1,∞), and constant b⋆ < ∞ such that

log
(

V −1
⋆ Q⋆V⋆

)

≤ −W⋆ + b⋆ . (27)

Then, Q⋆ is positive Harris with a unique invariant probability distribution π⋆, satisfying
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π⋆(V⋆) < ∞. Let ϕ be a non-negative function. If for some λ⋆ > 0,

log
[

G⋆

(

·, eλ⋆ϕ
)]

∈ GW⋆
, (28)

there exists a constant M > 0 such that, for any initial distribution ν⋆ satisfying ν⋆ (V⋆) <

∞,

lim sup
n→∞

n−1 log P
T⋆

ν⋆⊗G⋆

(

n
∑

i=0

ϕ(Yi) ≥ Mn

)

< 0 . (29)

Corollary 11 Assume that for some λ⋆ > 0,

log
[

G⋆

(

·, eλ⋆[log ΥX]+
)]

∈ GW⋆
log

[

G⋆

(

·, eλ⋆[log ΨD]−
)]

∈ GW⋆
.

Then, there exist constants Mi, i = 1, 2 such that lim supn→∞ n−1 log ri(n) < 0, where

{ri(n)}n≥0 are defined in (18) and (19).

4 Examples

In this section, we illustrate our results using different models of interest.

4.1 The dynamic tobit model

The tobit model is simply the time series extension of the standard univariate tobit model

and so the univariate hidden process is only observed when it is positive ((19) and (1)):























Xk+1 = φXk + σζk ,

Yk = max(Xk + βεk, 0) ,

(30)

where {(ζk, εk)}k≥0 is a sequence of i.i.d. standard Gaussian vectors, and |φ| < 1, σ > 0

and β > 0. Here X = R, Y = R+ and X and Y are the corresponding Borel σ-algebra. The

model is partially dominated (see (2)) with respect to the dominating measure δ0 + λLeb,
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where λLeb is the Lebesgue measure and δ0 is the Dirac mass at zero. The transition

kernels Qφ,σ and the likelihood gβ are respectively given by:

Qφ,σ(x, A) =
(

2πσ2
)−1/2

∫

exp
[

−(1/2σ2)(x′ − φx)2
]1A(x′)λLeb(dx′) , (31)

gβ(x, y) = 1{y = 0}(2πβ2)−1/2
∫ ∞

x
exp

[

−(1/2β2)v2
]

λLeb(dv)

+ 1{y > 0}(2πβ2)−1/2 exp
[

−(1/2β2)(y − x)2
]

. (32)

We denote Q = Qφ,σ and g = gβ.

We assume that {Yk}k≥0 are the observations of a tobit model (30) with initial distribution

ν⋆ and ’parameters’ φ⋆, σ⋆, β⋆ (which may be different from φ, σ, β) satisfying |φ⋆| < 1,

σ⋆ > 0 and β⋆ > 0. We denote by Q⋆ = Qφ⋆,σ⋆
, G⋆(x, ·) = gβ⋆

(x, ·)λLeb and E⋆ = E
T⋆

ν⋆⊗G⋆
,

where T⋆ = Q⋆ ⊗ G⋆.

4.1.1 Assumptions H1 and H2

It is easily seen that any bounded Borel set C ⊂ {x, 0 ≤ |x| ≤ C} satisfies the local Doeblin

property (7), with λC(·) = (2C)−1λLeb (1C·). Assumption (H1) is trivially satisfied. To

check (H2), we set K = Y and V (x) = ec|x| for some c > 0. The function V −1QV is locally

bounded and lim|x|→∞ V −1(x)QV (x) = 0. Therefore, since supX×Y g(x, y) ≤ 1∨(2πβ2)−1/2,

for any η > 0 one may choose a constant C > 0 large enough so that ΥCc(y) ≤ ηΥX(y),

where C
def
= {0 ≤ |x| ≤ C} and ΥA is defined in (8). Therefore, (H2) is satisfied.

4.1.2 Application of Theorem 1

We now check conditions (12) to (14) of Theorem 1. Conditions (12) and (13) are obvious

since K = Y and supY ΥX < ∞. We now check (14) with D = {0 ≤ |x| ≤ D} and λD(·) =

(2D)−1λLeb (1D·) where the constant D is an arbitrary positive constant. Q⋆(x, dy) is a

Gaussian density with mean φ⋆x and standard deviation σ⋆. Using standard arguments,
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Q⋆ is aperiodic, positive Harris with invariant distribution π⋆ which is a centered gaussian

distribution with variance σ2
⋆/(1 − φ2

⋆), and any compact set is petite. By the Jensen

inequality, log λD(g(·, y)1D) = log λD(g(·, y)) ≥ λD (log g(·, y)), which implies

log ΨD(y) = log λD(g(·, y)) ≥ 1{y = 0} log
{

(2πβ2)−1/2
∫ ∞

D
e−v2/2β2

λLeb(dv)
}

+ 1{y > 0}
{

−(1/2) log(2πβ2) − (12Dβ2)−1
(

(D + y)3 + (D − y)3
)}

, (33)

so that π⋆ ⊗ G⋆([log ΨD]−) < ∞. Corollary 5 implies (14). Combining the results above,

Theorem 1 therefore applies showing that (15) holds for any probability ν and ν ′ such

that
∫

ν(dx)ec|x| +
∫

ν ′(dx)ec|x| < ∞ for some c > 0.

4.1.3 Application of Theorem 3

We now consider the convergence of the expectation of the total variation distance at a

polynomial rate. For all p ≥ 1, there exists a constant C such that, for any i ∈ {0, 1},

E⋆[Y
2p
i ] ≤ C(1 + E⋆[X

2p
i ]) which is finite since {Xi} is Gaussian. Therefore,

sup
X

(1 + |x|2)−p
E⋆ [log g(x, Yi)]

p
− < ∞ , (34)

which implies (24) since V (x) = exp(c|x|). By Proposition 7, there exists a constant C

such that for any probability measure ν such that ν(V ) < ∞, r0(ν, n) ≤ Cn−pν(V ).

Since supY ΥX < ∞, we may choose M1 > 0 such that M1 > supY log ΥX; for this choice,

r1(n) ≡ 0, where {r1(n)}n≥0 is defined in (18). Since K = Y, r3(n) ≡ 0, where {r3(n)}n≥0

is defined in (20). We now consider {r2(n)}n≥0 and apply Proposition 8. To that goal, we

further assume that there exists p⋆ ≥ 1 such that ν⋆(|x|
3p⋆+1) < ∞. It is easily seen that

the drift condition (22) is satisfied with V⋆(x) = 1 + |x|3p⋆ and f⋆ ∼ |x|3p⋆−1; furthermore,

upon noting that [log ΨD(y)]− ∼ |y|2, we have

sup
X

f−1
⋆ G⋆(·, [log ΨD(y)]p⋆

− ) < ∞, sup
X

f−1
⋆ V 1−1/p⋆

⋆ G⋆(·, [log ΨD(y)]−) < ∞ ,
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thus proving lim supn→∞ n−(p⋆/2∨1)r2(n) = 0. Therefore, by Theorem 3, the expectation

E⋆

(

‖φν,n[Y0:n] − φν′,n[Y0:n]‖TV

)

goes to zero at the rate np⋆/2∨1 for any initial distributions

ν, ν ′ such that
∫

{ν(dx) + ν ′(dx)} exp(c|x|) < +∞.

The exponential decay can be proved similarly under the assumption that for some c > 0,

∫

ν⋆(dx) exp(c|x|) < +∞; details are omitted.

4.2 Non-linear State-Space models

We consider the model (6) borrowed from (16). Assume that β > 0,

NLG(b, h) The functions b and h are locally bounded and

lim
|x|→∞

(|x + b(x)| − |x|) = −∞ . (35)

NLG(σ) The noise variance is non-degenerated,

0 < inf
x∈Rd

inf
{λ∈Rd,|λ|=1}

λT σ(x)σT (x)λ ≤ sup
x∈Rd

sup
{λ∈Rd,|λ|=1}

λT σ(x)σT (x)λ < ∞ . (36)

The model is partially dominated with respect to the Lebesgue measure. The transition

kernel Qb,σ and the likelihood gh,β are respectively given by

Qb,σ(x, A) = (2π)−d/2|σ(x)|−1
∫

exp
(

−(1/2)|x′ − x − b(x)|2σ(x)

)1A(x′)λLeb(dx′) , (37)

gh,β(x, y) = (2πβ2)−ℓ/2 exp(−|y − h(x)|2/2β2) , (38)

where |u|2σ(x) = uT [σ(x)σT (x)]−1u. As above, we set Q = Qb,σ and g = gh,β.

Assume that {Yk}k≥0 are the observations of a non-linear Gaussian state space (6) with

initial distribution ν⋆ and ’parameters’ b⋆, h⋆, σ⋆ and β⋆. We assume that β⋆ > 0 and that

the functions b⋆, h⋆ and σ⋆ satisfy NLG(b⋆, h⋆)-NLG(σ⋆), respectively, and

lim sup
|x|→∞

|x|−1 log |h⋆(x)| < ∞ . (39)
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We denote by Q⋆ = Qb⋆,σ⋆
, G⋆ = gh⋆,β⋆

λLeb and E⋆ = E
T⋆

ν⋆⊗G⋆
where T⋆ = Q⋆ ⊗ G⋆.

4.2.1 Assumptions H1 and H2

Under NLG(b, h)-NLG(σ), every bounded Borel set in R
d is locally Doeblin in the sense

given by (7). (H1) is trivial. Set V (x) = exp(c|x|), where c is a positive constant. The

likelihood g is bounded by (2πβ2)−ℓ/2 and under NLG(σ), there exists a constant M <

∞ such that V −1(x)QV (x) ≤ M exp [c(|x + b(x)| − |x|)]. Therefore, under NLG(b, h)-

NLG(σ), for any η > 0, we may choose a constant C large enough such that ΥCc(y) ≤

ηΥX(y) for any y ∈ Y where C = {x ∈ R
d, |x| ≤ C}. Hence, assumption (H2) is satisfied

with K = Y.

4.2.2 Application of Theorem 1

Condition (12) is trivial since K = Y. Condition (13) is obvious too since ΥX is everywhere

bounded. For (14), let us apply Corollary 5 and Proposition 6. Q⋆ is aperiodic, phi-

irreducible and compact sets are petite. Set D = {x ∈ R
d, |x| ≤ D}, where D > 0 and

define λD(·) = λLeb(1D·)/λ
Leb(D). Noting that |y − h(x)|2 ≤ 2(|y|2 + |h(x)|2),

[log g(x, y)]− ≤ β−2|y|2 + β−2|h(x)|2 + (ℓ/2)
[

log(2πβ2)
]

+
. (40)

Since the function h is locally bounded, supD |h|2 < ∞ and (40) implies that

[log ΨD(y)]− ≤ λD([log g(·, y)]−) ≤ β−2|y|2 + β−2 sup
D

|h|2 + (ℓ/2)
[

log(2πβ2)
]

+
. (41)

We set V⋆(x) = ec⋆|x| we may find a compact (and thus petite) set C⋆ and constants λ⋆ ∈

(0, 1) and s⋆ such that Q⋆V⋆ ≤ λ⋆V⋆ + s⋆1C⋆
, so that (22) is satisfied with f⋆ = (1−λ⋆)V⋆.

Hence Q⋆ is positive Harris-recurrent and π⋆(V⋆) < +∞. Furthermore, Eq. (41) implies
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that there exists a constant C < ∞ such that

G⋆

(

x, [log ΨD]−

)

≤ C
(

1 + |h⋆(x)|2
)

≤ C

(

1 + V⋆(x) sup
X

V −1
⋆ |h⋆|

2

)

. (42)

The RHS is finite, provided c⋆ ≥ 2 lim sup|x|→∞ |x|−1 log |h⋆(x)| which we assume hereafter.

Therefore, by Corollary 5 and Proposition 6, 1 applies: (15) holds for any initial probability

measure such that
∫

ec|x|ν(dx) +
∫

ec|x|ν ′(dx) < +∞ for some c > 0.

4.2.3 Application of Theorem 3

We are willing to establish geometric rate of convergence and for that purpose we will use

Proposition 7 and Proposition 10. We set W (x) = c{|x| − |x + b(x)|} ∨ 1 and W⋆(x) =

c⋆{|x| − |x + b⋆(x)|} ∨ 1 and assume that

|h|2 ∈ GW and |h⋆|
2 ∈ GW⋆

. (43)

W⋆ is unbounded and the level sets are petite for Q⋆. Furthermore, V⋆(x) = ec⋆|x| where

c⋆ > 0 satisfies the multiplicative drift condition (27). Let λ < β2(2 ∧ β−2
⋆ )/4. Since

λβ−2 < β−2
⋆ /4, Eq. (40) implies that there exists a constant C < ∞ such that for any

integer i,

E⋆

[

eλ[log g(x,Yi)]−
]

≤ CE⋆

[

e2λβ−2|h⋆(Xi)|
2
]

eλβ−2|h(x)|2 .

Since λ ≤ β2/2, Lemma 18 shows that supi E⋆

[

e2λβ−2|h⋆(Xi)|
2
]

< ∞ provided ν⋆(V⋆) < +∞

which is henceforth assumed. Therefore, Proposition 7 applies, showing that there ex-

ists δ > 0 such that for any probability measure ν such that ν(V ) < ∞, r0(ν, n) ≤

Ce−δnν(V ). As in Section 4.1, because ΥX is bounded, we may choose M1 large enough

so that r1(n) ≡ 0 (see (18)); similarly, since K = Y, r3(n) ≡ 0. Eq. (41) implies

that, for any λ⋆ small enough, log G⋆

(

·, eλ⋆[log ΨD]
−

)

∈ GW⋆
. Proposition 10 shows that

lim supn→∞ n−1 log r2(n) < 0. Hence Theorem 3 applies: for any initial distribution ν, ν ′

such that
∫

{ν(dx)+ν ′(dx)} exp(c|x|) < +∞, E⋆

(

‖φν,n[Y0:n] − φν′,n[Y0:n]‖TV

)

goes to zero
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at a geometric rate.

4.3 Stochastic Volatility Model

As a final example, we consider the stochastic volatility (SV) model. In the canonical

model in SV for discrete-time data (14; 15), the observations {Yk}k≥0 are the compounded

returns and {Xk}k≥0 is the log-volatility, which is assumed to follow a stationary auto-

regression of order 1, i.e.






















Xk+1 = φXk + σζk ,

Yk = β exp(Xk/2)εk ,

(44)

where {(ζk, εk)}k≥0 is a i.i.d. sequence of standard Gaussian vectors, |φ| < 1, σ > 0 and

β > 0. Here X = Y = R and X and Y are the Borel sigma-fields. The model is partially

dominated with respect to the Lebesgue measure. The transition kernel Qφ,σ and the

likelihood gβ are respectively given by

Qφ,σ(x, A) = (2πσ2)−1/2
∫

exp(−1/(2σ2)(x′ − φx)21A(x′)λLeb(dx′) , (45)

gβ(x, y) = (2πβ2)−1/2 exp
(

−y2 exp(−x)/2β2 − x/2
)

. (46)

We denote Q = Qφ,σ and g = gβ.

We assume that {Yk}k≥0 are the observations of the stochastic volatility model (44) with

initial distribution ν⋆ and parameters |φ⋆| < 1, σ⋆ > 0, and β⋆ > 0. We denote as above

Q⋆ = Qφ⋆,σ⋆
, G⋆ = gβ⋆

λLeb, T⋆ = Q⋆ ⊗ G⋆ and E⋆ = E
T⋆

ν⋆⊗G⋆
.

4.3.1 Assumptions H1 and H2

As in example 4.1, every bounded Borel set is locally Doeblin in the sense of (7). As-

sumption (H1) is satisfied but the likelihood is not uniformly bounded over X × Y; nev-

ertheless it is easily seen that supx∈X g(x, y) ≤ (2πe)−1/2|y|−1. We set K = R and put

20



V (x) = ec|x| where c is positive; as in Example 4.1, QV (·)/V (·) is locally bounded and

lim|x|→∞ QV (x)/V (x) = 0, showing that assumption (H2) is fulfilled.

4.3.2 Application of Theorem 1

The Markov kernel Q⋆ is positive recurrent, geometrically ergodic and its stationary dis-

tribution π⋆ is Gaussian with mean 0 and variance σ2
⋆/(1 − φ2

⋆). Note that there ex-

ists a constant C < ∞ such that for all y ∈ Y, [log ΥX(y)]+ ≤ C |log |y||, which im-

plies that G⋆(x, [log ΥX]+) < C + |x|/2 for some constant C < ∞. This implies that

π⋆ ⊗G⋆([log ΥX]+) < ∞ and Corollary 5 implies (13). Set D = {x, |x| ≤ D} where D > 0

and let λD(·) = λLeb(1D·)/λ
Leb(D). By the Jensen inequality,

log ΨD(y) ≥ λD(log g(·, y)) = −(1/2) log(2πβ2) − y2 sh(D)/[2β2D] ,

showing that there exists a constant C < ∞ such that [log ΨD(y)]− ≤ C(1+y2). Therefore,

G⋆(x, [log ΨD]−) ≤ C(1 + β2ex). The conditions of Corollary 5 are satisfied, showing

that (14) holds. As a result, (15) holds for any initial distributions ν and ν ′ such that

∫

ν(dx) exp(c|x|) +
∫

ν ′(dx) exp(c|x|) < ∞.

The problem of computing the convergence rates can be addressed as in the other exam-

ples.

5 Proof of Theorems 1 and 3

Before proving the main results, some additional definitions are needed. A function f̄

defined on X̄
def
= X×X is said to be symmetric if for all (x, x′) ∈ X̄, f(x, x′) = f(x′, x). An

unnormalised transition kernel P on (X̄, X̄ ), where X̄ = X ⊗ X is said to be symmetric

if for all (x, x′) in X̄ and any positive symmetric function f , P [(x, x′), f ] = P [(x′, x), f ].
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For P a Markov kernel on (X,X ), we denote by P̄ the transition kernel on (X̄, X̄ ) defined,

for any (x, x′) ∈ X̄ and A, A′ ∈ X , by

P̄ [(x, x′), A × A′] = P (x, A)P (x′, A′) . (47)

For any A ∈ X , and ν and ν ′ two probability distributions on (X,X ) the difference

φν,n[y0:n](A) − φν′,n[y0:n](A) may be expressed as

φν,n[y0:n](A) − φν′,n[y0:n](A) (48)

=
E

Q
ν [
∏n

i=0 g(Xi, yi)1A(Xn)]

E
Q
ν [
∏n

i=0 g(Xi, yi)]
−

E
Q
ν′ [
∏n

i=0 g(Xi, yi)1A(Xn)]

E
Q
ν′ [
∏n

i=0 g(Xi, yi)]

=
E

Q̄
ν⊗ν′ [

∏n
i=0 ḡ(Xi, X

′
i, yi)1A(Xn)] − E

Q̄
ν′⊗ν [

∏n
i=0 ḡ(Xi, X

′
i, yi)1A(Xn)]

E
Q
ν [
∏n

i=0 g(Xi, yi)] E
Q
ν′ [
∏n

i=0 g(Xi, yi)]
,

where ḡ(x, x′, y) = g(x, y)g(x′, y). The idea of writing the difference using a pair of inde-

pendent processes has been apparently introduced in (3); this approach is central in the

work of (16). We consider separately the numerator and the denominator of Eq. (48). For

the numerator, the path of the independent processes is decomposed along the successive

visits to C × C as done in (16).

Proposition 12 Let C be a LD-set and ν and ν ′ be two probability distributions on (X,X ).

For any integer n and functions gi ∈ B+(X), i = 0, . . . , n, such that E
Q
ν [
∏n

i=0 gi(Xi)] < ∞

and E
Q
ν′ [
∏n

i=0 gi(Xi)] < ∞, define

∆n(ν, ν ′, {gi}
n
i=0) (49)

= sup
A∈X

∣

∣

∣

∣

∣

E
Q̄
ν⊗ν′

[

n
∏

i=0

ḡi(Xi, X
′
i)1A(Xn)

]

− E
Q̄
ν′⊗ν

[

n
∏

i=0

ḡi(Xi, X
′
i)1A(Xn)

]
∣

∣

∣

∣

∣

,

where ḡi(x, x′) = gi(x)gi(x
′). Then,

∆n(ν, ν ′, {gi}
n
i=1) ≤ E

Q̄
ν⊗ν′

[

n
∏

i=0

ḡi(Xi, X
′
i)ρ

NC,n

C

]

, (50)

22



where Q̄ is defined as in (47) and

NC,n
def
=

n−1
∑

i=0

1C×C(Xi, X
′
i)1C×C(Xi+1, X

′
i+1) , (51)

ρC

def
= 1 −

(

ǫ−
C
/ǫ+

C

)2
. (52)

PROOF. Put x̄ = (x, x′), ḡi(x̄) = gi(x)gi(x
′), C̄

def
= C × C, and λ̄C̄

def
= λC ⊗ λC. We stress

that the kernels that will be defined along this proof may be unnormalized. Since C is a

locally Doeblin set, we have for any measurable positive function f̄ on (X̄, X̄ ),

(ǫ−
C
)2λ̄C̄(1C̄f̄) ≤ Q̄(x̄,1C̄f̄) ≤ (ǫ+

C
)2λ̄C̄(1C̄f̄) , for all x̄ ∈ C̄ . (53)

Define the unnormalised kernel Q̄0 and Q̄1 by

Q̄0(x̄, f̄)
def
= 1C̄(x̄)(ǫ−

C
)2λ̄C̄(1C̄f̄) (54)

Q̄1(x̄, f̄)
def
= Q̄(x̄, f̄) − 1C̄(x̄)(ǫ−

C
)2λ̄C̄(1C̄f̄) = Q̄(x̄, f̄) − Q̄0(x̄, f̄) . (55)

Eq. (53) implies that, for all x̄ ∈ C̄, 0 ≤ Q̄1(x̄,1C̄f̄) ≤ ρCQ̄(x̄,1C̄f̄). It then follows using

straightforward algebra that,

Q̄1(x̄, f̄) = 1C̄(x̄)Q̄1(x̄,1C̄f̄) + 1C̄(x̄)Q̄1(x̄,1C̄c f̄) + 1C̄c(x̄)Q̄1(x̄, f̄) (56)

≤ ρC1C̄(x̄)Q̄(x̄,1C̄f̄) + 1C̄(x̄)Q̄(x̄,1C̄c f̄) + 1C̄c(x̄)Q̄(x̄, f̄)

≤ Q̄(x̄, ρ
1

C̄
(x̄)1

C̄

C
f̄) .

We write ∆n(ν, ν ′, {gi}
n
i=0) = supA∈X |∆n(A)| where

∆n(A)
def
= ν ⊗ ν ′

(

ḡ0Q̄ḡ1 · · · ḡn−1Q̄ḡn1A×X

)

− ν ′ ⊗ ν
(

ḡ0Q̄ḡ1 · · · ḡn−1Q̄ḡn1A×X

)

. (57)
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Note that ∆n(A) may be decomposed as ∆n(A) =
∑

t0:n−1∈{0,1}n ∆(A, t0:n−1) where

∆n(A, t0:n−1)
def
= ν ⊗ ν ′

(

ḡ0Q̄t0 ḡ1 · · · ḡn−1Q̄tn−1
ḡn1A×X

)

− ν ′ ⊗ ν
(

ḡ0Q̄t0 ḡ1 · · · ḡn−1Q̄tn−1
ḡn1A×X

)

.

Note that, for any t0:n−1 ∈ {0, 1}n and any sets A, B ∈ X ,

ν ′ ⊗ ν
(

ḡ0Q̄t0 ḡ1 · · · ḡn−1Q̄tn−1
ḡn1A×B

)

= ν ⊗ ν ′
(

ḡ0Q̄t0 ḡ1 · · · ḡn−1Q̄tn−1
ḡn1B×A

)

. (58)

First assume that there exists an index i ≥ 0 such that ti = 0 then,

ν ⊗ ν ′
(

ḡ0Q̄t0 ḡ1 · · · ḡn−1Q̄tn−1
ḡn1A×X

)

= ν ⊗ ν ′
(

ḡ0Q̄t0 ḡ1 · · · Q̄ti−1
ḡi1C̄

)

× (ǫ−
C
)2λ̄C̄

(1C̄ḡi+1Q̄ti+1
. . . ḡn−1Q̄tn−1

ḡn1A×X

)

= ν ′ ⊗ ν
(

ḡ0Q̄t0 ḡ1 · · · Q̄ti−1
ḡi1C̄

)

× (ǫ−
C
)2λ̄C̄

(1C̄ḡi+1Q̄ti+1
. . . ḡn−1Q̄tn−1

ḡn1A×X

)

by (58). Thus, ∆n(A, t0:n−1) is equal to 0 except if for all i, ti = 1, and (58) finally implies

∆n(A) = ν ⊗ ν ′
[

ḡ0Q̄1ḡ1 · · · ḡn−1Q̄1ḡn(1A×X − 1X×A)
]

.

Using (56), we have

∆n(ν, ν ′, {gi}
n
i=0) ≤ ν ⊗ ν ′

(

ḡ0Q̄1ḡ1 · · · ḡn−1Q̄1ḡn

)

≤ E
Q̄
ν⊗ν′

[

n
∏

i=0

ḡi(X̄i)ρ
∑n−1

i=0
1

C̄
(X̄i)1C̄

(X̄i+1)

C

]

,

where the last equality is straightforward to establish by induction on n. The proof is

completed.

Remark 13 If the whole state space X is a locally Doeblin, then one may take C = X in

the previous expression. Since NX,n = n, (48) and the previous proposition therefore imply

the uniform ergodicity of the filtering distribution, for any initial distribution ν and ν ′,
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and any sequence y0:n, ‖φν,n[y0:n] − φν′,n[y0:n]‖TV ≤ ρn
X

where ρX

def
= 1 − (ǫ−

X
/ǫ+

X
)2; see (2)

and (10).

We consider now the denominator of (48). A lower bound for the denominator has been

computed in (4, Lemma 2.2). This is obtained by using a change of measure ideas. We

use here a more straightforward argument.

Proposition 14 For any LD-set C ∈ X , n ≥ 1 and any functions gi ∈ B+(X), i =

0, . . . , n,

E
Q
ν

[

n
∏

i=0

gi(Xi)

]

≥ (ǫ−
C
)n−1ν(g0Qg11C)

n
∏

i=2

λC(gi1C) .

PROOF. The proof follows immediately from

E
Q
ν

[

n
∏

i=0

gi(Xi)

]

≥ E
Q
ν

[

g0(X0)
n
∏

i=1

gi(Xi)1C(Xi)

]

,

and the minorization condition (7).

By combining Propositions 12 and 14, we can obtain an explicit bound for the total

variation distance ‖φν,n[y0:n] − φν′,n[y0:n]‖TV.

Lemma 15 Let β ∈ (0, 1). Then, for any LD-sets C ⊆ X and D ⊆ X, any initial proba-

bility measures ν and ν ′, any function V : X → [1,∞),

‖φν,n[y0:n] − φν′,n[y0:n]‖TV ≤ ρβn
C

+

∏n
i=0 ΥX(yi) maxI⊂{0,...,n},|I|=an

∏

i∈I ΥCc(yi)
∏

i6∈I ΥX(yi)

(ǫ−
D
)2(n−1)Φν,D(y0, y1) Φν′,D(y0, y1)

∏n
i=2 Ψ2

D
(yi)

ν(V )ν ′(V ) ,

where an
def
= ⌊n(1 − β)/2⌋, |I| is the cardinal of the set I and the functions Φν,D and ΨD

are defined in (10) and (11), respectively.
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PROOF. Eq. (50) implies that for any β ∈ (0, 1),

∆n(ν, ν̃, {gi}
n
i=0) ≤ E

Q̄
ν⊗ν′

[

n
∏

i=0

ḡ(X̄i, yi)ρ
NC,n

C
1{NC,n ≥ βn}

]

+ E
Q̄
ν⊗ν′

[

n
∏

i=0

ḡ(X̄i, yi)ρ
NC,n

C
1{NC,n < βn}

]

.

The first term in the RHS is bounded by ρβn
C

E
Q̄
ν⊗ν′

[

∏n
i=0 ḡ(X̄i, yi)

]

. We now consider the

second term. For any set A ∈ X̄ , denote by MA,n the number of visits of {X̄k}k≥0 to the

set A before n. By Lemma 17, the condition NC,n < βn implies that MC̄,n < n(1 + β)/2

and MC̄c,n ≥ an. Note that for any x̄ ∈ X̄ and y ∈ Y,

ḡ(x̄, y)Q̄V̄ (x̄) ≤ [A(y)]1C̄c(x̄)[B(y)]1C̄
(x̄)V̄ (x̄) , (59)

where we have set V̄ (x̄)
def
= V (x)V (x′), A(y)

def
= supx̄∈C̄c ḡ(x̄, y)V̄ −1(x̄)Q̄V̄ (x̄), and B(y)

def
=

supx̄∈X̄ ḡ(x̄, y)V̄ −1(x̄)Q̄V̄ (x̄). Consider the process

V0 = V̄ (X̄0), and Vn
def
=

{

n−1
∏

i=0

ḡ(X̄i, yi)

[A(yi)]1C̄c(X̄i)[B(yi)]1C̄
(X̄i)

}

V̄ (X̄n) , n ≥ 1 , (60)

where by convention we have set 0/0 = 0 (to deal with cases where either A(y) = 0 or

B(y) = 0). The process {Vn}n≥0 is a F -super-martingale, where F = {Fn} is the natural

filtration of the process {X̄k}k≥0, Fn
def
= σ(X̄0, . . . , X̄n). Denote by τan

the an-th return

time to the set C̄c. On the event {MC̄c,n ≥ an}, τan
≤ n, using that A(y) ≤ B(y)

n
∏

i=0

[A(yi)]
1

C̄c(X̄i)[B(yi)]
1

C̄
(X̄i) ≤

τn
∏

i=0

[A(yi)]
1

C̄c(X̄i)[B(yi)]
1

C̄
(X̄i)

n
∏

i=τan+1

B(yi) ≤ C(y0:n)

where C(y0:n)
def
= maxI⊂{0,...,n},|I|=an

∏

i∈I A(yi)
∏

i6∈I B(yi). Therefore,

E
Q̄
ν⊗ν′

[

n
∏

i=0

ḡ(X̄i, yi)1{NC,n < βn}

]

≤ E
Q̄
ν⊗ν′

[

n
∏

i=0

ḡ(X̄i, yi)1{MC̄c,n ≥ an}

]

≤ C(y0:n)E
Q̄
ν⊗ν′

[

n
∏

i=0

ḡ(X̄i, yi)

[A(yi)]1C̄c(X̄i)[B(yi)]1C̄
(X̄i)

V̄ (X̄n+1)

]

= C(y0:n)E
Q̄
ν⊗ν′ [Vn+1] .
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The super-martingale inequality therefore implies

E
Q̄
ν⊗ν′

[

n
∏

i=0

ḡ(X̄i, yi)1{NC,n < βn}

]

≤ C(y0:n)ν(V )ν ′(V ) ,

and the proof follows from (48) and Proposition 14, using that A(y) ≤ ΥX(y)ΥCc(y) and

B(y) = Υ2
X(y), where ΥA(y) is defined in (8).

Corollary 16 Assume (H2). Let D be a LD-set, and γ and β be constants satisfying

γ ∈ (0, 1) and β ∈ (0, γ). Then, for any η ∈ (0, 1) there exists a LD-set C such that,

for any sequence y0:n ∈ Yn+1 satisfying
∑n

i=0 1K(yi) ≥ (1 + γ)n/2, any initial probability

measures ν and ν ′, and any n ≥ 1,

‖φν,n[y0:n] − φν′,n[y0:n]‖TV ≤ ρβn
C

+
η(γ−β)n/2∏n

i=0 Υ2
X
(yi)

(ǫ−
D
)2(n−1)Φν,D(y0, y1) Φν′,D(y0, y1)

∏n
i=2 Ψ2

D
(yi)

ν(V )ν ′(V ) ,

where ρC , Φν,D and ΨD are defined in (52), (10) and (11), respectively.

PROOF. [Proof of Theorem 1] The conditions (13) and (14) imply that

lim sup
n→∞

exp(−2Mn)
n
∏

i=0

Υ2
X
(Yi) ≤ 1 and lim sup

n→∞
exp(−2Mn)

n
∏

i=0

Ψ−2
D

(Yi) ≤ 1 .

Condition (H1) and νQ1D > 0 implies that Φν,D(y0, y1) > 0 for any (y0, y1) ∈ Y2. We then

choose η small enough so that

lim
n→∞

η(γ−β)n/2 exp(4Mn)(ǫ−
D
)−2(n−1) = 0 .

The proof follows from Corollary 16.

PROOF. [Proof of Theorem 3] Note that for any α ∈ (0, 1) and any integer n,

E⋆[‖φν,n[Y0:n] − φν′,n[Y0:n]‖TV] ≤ αn + P⋆[‖φν,n[Y0:n] − φν′,n[Y0:n]‖TV ≥ αn] .
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Consider now the second term in the RHS of the previous equation. Denote Ωn the event

Ωn
def
=
{

log Φν,D(Y0, Y1) > −M0n , log Φν′,D(Y0, Y1) > −M0n ,

n
∑

i=0

log ΥX(Yi) < M1n,
n
∑

i=2

log ΨD(Yi) > −M2n,
n
∑

i=1

1K(Yi) > n(1 + γ)/2
}

.

Clearly, P⋆(Ω
c
n) ≤

∑3
i=1 ri(n) + r0(ν, n) + r0(ν

′, n) where {ri(n)}n≥0 and {r0(ν, n)}n≥0 are

defined in Eqs. (17)-(20). On the event Ωn,

Φ−1
ν,D(Y0, Y1) Φ−1

ν′,D(Y0, Y1)
n
∏

i=2

Ψ−2
D

(Yi)
n
∏

i=0

ΥX(Yi) ≤ e2n
∑2

i=0
Mi .

One may choose η > 0 small enough and ̺ ∈ (0, 1) so that, for any n,

η(γ−β)n/2e2n
∑2

i=0
Mi(ǫ−

D
)−2(n−1) ≤ ̺n .

The proof then follows from Corollary 16.

6 Proof of Propositions 7, 8, and 10

PROOF. [Proof of Proposition 7] By the Jensen inequality with the function u 7→

[log(u)]p−, we obtain that for any p ≥ 1,

[log Φν,D(Y0, Y1) − log (νQ1D)]p−

≤ 2p−1 (νQ1D)−1
∫∫

ν(dx0)Q(x0, dx1)1D(x1)
1
∑

i=0

[log g(xi, Yi)]
p
− , (61)

which implies by the Fubini theorem,

E⋆

{

[log Φν,D(Y0, Y1) − log(νQ1D)]p−

}

≤ 2p−1(νQ1D)−1
∫∫

ν(dx0)Q(x0, dx1)
1
∑

i=0

E⋆[log g(xi, Yi)]
p
− .
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Since supX V −1
E⋆[log g(·, Yi)]

p
− < ∞, and supX V −1QV < ∞,

∫∫

ν(dx0)Q(x0, dx1)
1
∑

i=0

E⋆[log g(xi, Yi)]
p
−

≤ ν(V )

{

sup
i=0,1

sup
X

V −1
E⋆[log g(·, Yi)]

p
−

}

(1 + sup
X

V −1QV ) . (62)

Similarly, for λ > 0, using the Jensen inequality with u 7→ exp [(λ/2)[log u]−] and the

Fubini Theorem, we have

E⋆ [exp ((λ/2)[log Φν,D(Y0, Y1) − log (νQ1D)]−)] ≤ (νQ1D)−1

×
∫∫

ν(dx0)Q(x0, dx1)E
1/2
⋆ [exp(λ[log g(x0, Y0)]−)] E1/2

⋆ [exp(λ[log g(x1, Y1)]−)] ,

and the proof follows since supX V −1/2QV 1/2 < ∞.

PROOF. [Proof of Proposition 8] Let ϕ be a non negative function on Y. Assume that

supX U−1
⋆ G⋆(·, ϕ

p) < ∞. Proposition 6 shows that π⋆ [G⋆(·, ϕ
p)] < ∞. Without loss of

generality, we assume that π⋆ [G⋆(·, ϕ)] = 0. For any p ≥ 1,

E
T⋆

ν⋆⊗G⋆

∣

∣

∣

∣

∣

n
∑

i=0

ϕ(Yi)

∣

∣

∣

∣

∣

p

≤ 2p−1

(

E
T⋆

ν⋆⊗G⋆

∣

∣

∣

∣

∣

n
∑

i=0

{ϕ(Yi) − G⋆(Xi, ϕ)}

∣

∣

∣

∣

∣

p

+ E
T⋆

ν⋆⊗G⋆

∣

∣

∣

∣

∣

n
∑

i=0

G⋆(Xi, ϕ)

∣

∣

∣

∣

∣

p)

. (63)

Since conditionally to X0:n the random variables Y0:n are independent, we may apply the

Marcinkiewicz-Zygmund inequality (13, Inequality 2.6.18 p. 82), showing that there exists

a constant c(p) depending only on p such that

E
T⋆

ν⋆⊗G⋆

∣

∣

∣

∣

∣

n
∑

i=0

{ϕ(Yi) − G⋆(Xi, ϕ)}

∣

∣

∣

∣

∣

p

≤ c(p)ET⋆

ν⋆⊗G⋆

(

n
∑

i=0

|ϕ(Yi) − G⋆(Xi, ϕ)|2
)p/2

.

If 1 ≤ p ≤ 2,

E
T⋆

ν⋆⊗G⋆

∣

∣

∣

∣

∣

n
∑

i=0

{ϕ(Yi) − G⋆(Xi, ϕ)}

∣

∣

∣

∣

∣

p

≤ c(p)
n
∑

i=0

E
T⋆

ν⋆⊗G⋆
[|ϕ(Yi) − G⋆(Xi, ϕ)|p]

≤ 2pc(p)
n
∑

i=0

E
T⋆

ν⋆⊗G⋆
[G⋆(Xi, |ϕ|

p)] .
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If p ≥ 2, the Minkowski inequality yields

E
T⋆

ν⋆⊗G⋆

∣

∣

∣

∣

∣

n
∑

i=0

{ϕ(Yi) − G⋆(Xi, ϕ)}

∣

∣

∣

∣

∣

p

≤ c(p)

(

n
∑

i=0

E
T⋆

ν⋆⊗G⋆
[|ϕ(Yi) − G⋆(Xi, ϕ)|p]2/p

)p/2

≤ 2pc(p)np/2−1
n
∑

i=0

E
T⋆

ν⋆⊗G⋆
[G⋆(Xi, |ϕ|

p)] .

The f -norm ergodic theorem (20, Theorem 14.0.1) implies that there exists a constant

C < ∞, such that for any initial probability measure ν⋆,

n
∑

i=0

E
T⋆

ν⋆⊗G⋆
[G⋆(Xi, |ϕ|

p)] ≤ (n + 1)π⋆ (G⋆ (·, ϕp)) + Cν⋆(V⋆) .

Combining these discussions imply that there exists a finite constant C1 such that

E
T⋆

ν⋆⊗G⋆

∣

∣

∣

∣

∣

n
∑

i=0

{ϕ(Yi) − G⋆(Xi, ϕ)}

∣

∣

∣

∣

∣

p

≤ C1 np/2∨1 ν⋆(V⋆) .

We now consider the second term in (63). Following the same lines as in the proof of (12,

Proposition 12) and applying the Burkholder’s inequality for martingales (13, Theorem

2.10), there exists a constant C2 < ∞ such that

E
T⋆

ν⋆⊗G⋆

∣

∣

∣

∣

∣

n
∑

i=0

G⋆(Xi, ϕ)

∣

∣

∣

∣

∣

p

≤ C2 np/2∨1 ν⋆(W⋆) .

The result follows.

PROOF. [Proof of Proposition 10] The first statement follows from standard results

on phi-irreducible Markov chains satisfying the Foster-Lyapunov drift condition (20). By

Lemma 18, for any x ∈ X and F ∈ GW⋆
,

E
Q⋆

x

[

exp

(

n
∑

k=0

F (Xk)

)]

≤ V⋆(x)e(n+1)(b⋆+supX(F−W⋆)) . (64)

Since under the probability P
T⋆

ν⋆⊗G⋆
the random variables Y0:n are conditionally independent
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given X0:n, and the conditional distribution of Yi given X0:n is G⋆(Xi, ·),

E
T⋆

ν⋆⊗G⋆

[

n
∏

k=0

eλ⋆ϕ(Yk)

]

= E
Q⋆

ν⋆

[

E
T⋆

{

n
∏

k=0

eλ⋆ϕ(Yk)

∣

∣

∣

∣

∣

X0:n

}]

= E
Q⋆

ν⋆

[

n
∏

k=0

G⋆

(

Xk, e
λ⋆ϕ
)

]

≤ E
Q⋆

ν⋆

[

exp

(

n
∑

k=0

∣

∣

∣log G⋆

(

Xk, e
λ⋆ϕ
)
∣

∣

∣

)]

.

By the Jensen inequality, F
def
= log G⋆

(

·, eλ⋆ϕ
)

is non negative and belongs to GW⋆
; we

may thus apply (64) which yields

E
T⋆

ν⋆⊗G⋆

[

n
∏

k=0

eλ⋆ϕ(Yk)

]

≤ ν⋆ (V⋆) e(n+1)(b⋆+supX(F−W⋆)) .

The proof then follows by applying the Markov inequality.

A Technical Results

We have collected in this section the proof of some of the technical results.

Lemma 17 For any integer n ≥ 1, and sequence x
def
= {xi}i≥0 ∈ {0, 1}N, denote by

Mn(x)
def
=
∑n−1

i=0 1{xi = 1} and Nn(x)
def
=
∑n−1

i=0 1{xi = 1, xi+1 = 1}. Then,

Mn(x) ≤
n + 1

2
+

Nn(x)

2
.

PROOF. Denote by τ the shift operator on sequences defined, for any sequence x
def
=

{xi}i≥1, by [τx]k = xk+1. Let x = {xi}i≥0 be a sequence such that xj = 0 for j ≥ n. By

construction, Nn(x) = Mn(xAND τx). The proof then follows from the obvious identity:

n ≥ Mn(xOR τx) = Mn(x) + Mn(τx) − Mn(xAND τx)

≥ 2Mn(x) − 1 − Nn(x) ,

where AND and OR is the componentwise incluse ”AND” and ”OR”.
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Lemma 18 Assume that there exist a function V : X → [1,∞), a function W : X →

(0,∞) and a constant b < ∞ such that

log(V −1QV ) ≤ −W + b . (A.1)

Let n be an integer and Fk, k = 0, . . . , n − 1, be functions belonging to GW , where GW is

defined in (26). Hence, for any x ∈ X,

E
Q
x

[

exp

(

n−1
∑

k=0

|Fk(Xk)|

)]

≤ V (x)ebn+
∑n−1

k=0
supX(|Fk|−W ) . (A.2)

PROOF. The proof is adapted from (17, Theorem 2.1). Set for any integer n,

Mn
def
= V (Xn) exp

(

n−1
∑

k=0

{W (Xk) − b}

)

. (A.3)

The multiplicative drift condition (A.1) implies that {Mn} is a supermartingale. Hence,

for any n ∈ N and x ∈ X,

E
Q
x

[

V (Xn) exp

(

−bn +
n−1
∑

k=0

W (Xk)

)]

≤ V (x) .

The proof follows.
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