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Abstract. We assume that an individual invests in a financial market with one riskless and one risky

asset, with the latter’s price following a diffusion with stochastic volatility. In the current financial market

especially, it is important to include stochastic volatility in the risky asset’s price process. Given the rate

of consumption, we find the optimal investment strategy for the individual who wishes to minimize the

probability of going bankrupt. To solve this minimization problem, we use techniques from stochastic

optimal control.
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1. Introduction

Pension actuaries traditionally have computed the liabilities for defined benefit (DB) pension plans;

however, more and more employees are participating in defined contribution (DC) plans. Indeed, in June

2007, the Employee Benefits Research Institute (EBRI) reported that in 1979, among active workers

participating in retirement plans, the percentages in DB plans only, DC plans only, and both DB and

DC plans were 62%, 16%, and 22%, respectively. The corresponding percentages in 2005 were 10%, 63%,

and 27%, respectively.

In terms of numbers of employees, EBRI reported that in 1980, 30.1 million active workers participated

in DB plans, while 18.9 million workers participated in DC plans. The corresponding numbers in 2004

were 20.6 and 52.2 active workers, respectively. Finally, in terms of numbers of plans in the private sector,

in 1980, there were 148 thousand DB plans and 341 thousand DC plans; the corresponding numbers in

2004 were 47 and 653 thousand plans, respectively.

Therefore, however one measures the change in employee coverage under DB versus DC plans, it is

clear that pension actuaries will need to adapt to the migration from DB to DC plans. One way that they

can adapt is to switch from advising employers about their DB liabilities to providing investment advice

for retirees and employees in DC plans. The purpose of our proposed research is to help train actuaries

for this opportunity under the easy-to-explain goal of an employee or retiree avoiding bankruptcy.

Previous work focused on finding the optimal investment strategy to minimize the probability of

bankruptcy under a variety of situations: (1) allowing the individual to invest in a standard Black-Scholes

financial market with a rate of consumption given by some function of wealth, [14], [2]; (2) incorporating

immediate and deferred annuities in the financial market, [12], [5]; (3) limiting borrowing or requiring
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that borrowing occur at a higher rate than lending, [3]; and (4) modeling consumption as an increasing

function of wealth or as a random process correlated with the price process of the stock, [4], [1], and [6].

Throughout this body of work, the price process of the stock is modeled as a geometric Brownian motion,

which is arguably unrealistic, but has given results that one can consider to be “first approximations.”

Here we extend some of the previous work and allow the stock price to exhibit stochastic volatility.

Additionally, we intend to find easy-to-implement rules that will result in nearly minimal probabilities of

bankruptcy under stochastic volatility.

The rest of the paper is organized as follows: In Section 2, we introduce the financial market and define

the problem of minimizing the probability of lifetime ruin. In Section 3, we prove a verification theorem

for this minimum probability. In Section 4, we present a related optimal controller-stopper problem, and

show that the solution of that problem is the Legendre dual of the minimum probability of lifetime ruin.

By solving the optimal controller-stopper problem, we effectively solve the problem of minimizing the

probability of lifetime ruin. Relying on the results in Section 4, we find an asymptotic approximation of

the the minimum probability of ruin and the optimal strategy in Section 5. On the other hand, in Section

6, relying on the Markov Chain Approximation Method, we construct a numerical algorithm that solves

the original optimal control problem numerically. In Section 7, we present some numerical experiments.

We learn that the optimal investment strategy in the presence of stochastic volatility is not necessarily

to invest less in the risky asset than when volatility is fixed. We also observe that the minimal probability

of ruin can be almost attained by the asymptotic approximation described in Section 5.1. Also, if an

individual uses the investment prescribed by the optimal investment strategy for the constant volatility

environment while updating the volatility variable in this formula according to her observations, it turns

out she can almost achieve the minimum probability of ruin in a stochastic volatility environment.

2. The Financial Market and the Probability of Lifetime Ruin

In this section, we present the financial ingredients that make up the individual’s wealth, namely,

consumption, a riskless asset, and a risky asset. We, then, define the minimum probability of lifetime

ruin.

We assume that the individual invests in a riskless asset whose price at time t, Xt, follows the process

dXt = rXtdt,X0 = x > 0, for some fixed rate of interest r > 0. Also, the individual invests in a risky

asset whose price at time t, St, follows a diffusion given by

dSt = St

(
µdt+ σt dB

(1)
t

)
, S0 = S > 0, (2.1)

in which µ > r and σt is the (random) volatility of the price process at time t. Here, B(1) is a standard

Brownian motion with respect to a filtered probability space (Ω,F ,P,F = {Ft}t≥0). We assume that

the stochastic volatility is given by

σt = f(Yt, Zt), (2.2)

in which f is a smooth positive function that is bounded and bounded away from zero, and Y and Z are

two diffusions. Below, we follow [8] in specifying the dynamics of Y and Z. Note that if f is constant,

then S follows geometric Brownian motion, and that case is considered by [14].



3

The first diffusion Y is a fast mean-reverting Gaussian Ornstein-Uhlenbeck process. Denote by 1/ε the

rate of mean reversion of this process, with 0 < ε� 1 corresponding to the time scale of the process. Y

is an ergodic process, and we assume that its invariant distribution is independent of ε. In particular, the

invariant distribution is Gaussian with mean m and variance ν2. The resulting dynamics of Y are given

by

dYt =
1

ε
(m− Yt) + ν

√
2

ε
dB

(2)
t , Y0 = y ∈ R, (2.3)

in which B(2) is a standard Brownian motion on (Ω,F ,P,F). Suppose B(1) and B(2) are correlated with

(constant) coefficient ρ12 ∈ (−1, 1).

Under its invariant distribution N (m, ν2), the autocorrelation of Y is given by

E [(Yt −m)(Ys −m)] = ν2 e−
|t−s|
ε . (2.4)

Therefore, the process decorrelates exponentially fast on the time scale ε; thus, we refer to Y as the fast

volatility factor.

The second factor Z driving the volatility of the risky asset’s price process is a slowly varying diffusion

process. We obtain this diffusion by applying the time change t→ δ · t to a given diffusion process:

dZ̃t = g(Z̃t) dt+ h(Z̃t) dB̃t, (2.5)

in which 0 < δ � 1 and B̃ is a standard Brownian motion. The coefficients g and h are smooth and at

most linearly growing at infinity, so (2.5) has a unique strong solution. Under the time change t→ δ · t,
define Zt = Z̃δ·t. Then, the dynamics of Z are given by

dZt = δ g(Zt) dt+ h(Zt) dB̃δ·t, Z0 = z ∈ R. (2.6)

In distribution, we can write these dynamics as

dZt = δ g(Zt) dt+
√
δ h(Zt) dB

(3)
t , Z0 = z ∈ R, (2.7)

in which B(3) is a standard Brownian motion on (Ω,F ,P,F). Suppose B(1) and B(3) are correlated

with (constant) coefficient ρ13 ∈ [−1, 1]. Similarly, suppose B(2) and B(3) are correlated with (constant)

coefficient ρ23 ∈ [−1, 1].

Let Wt be the wealth at time t of the individual, and let πt be the amount that the decision maker

invests in the risky asset at that time. It follows that the amount invested in the riskless asset is Wt−πt.
We assume that the individual consumes at a constant rate c > 0. Therefore, the wealth process follows

dWt = [rWt + (µ− r)πt − c] dt+ f(Yt, Zt)πt dB
(1)
t , (2.8)

and we suppose that initial wealth is non-negative; that is, W0 = w ≥ 0.

By lifetime ruin, we mean that the individual’s wealth reaches zero before she dies. Define the cor-

responding hitting time by τ0 := inf{t ≥ 0 : Wt ≤ 0}. Let τd denote the random time of death of the

individual. We assume that τd is exponentially distributed with parameter λ (that is, with expected time

of death equal to 1/λ); this parameter is also known as the hazard rate.

In [13] Moore and Young minimize the probability of lifetime ruin with varying hazard rate and show

that by updating the hazard rate each year and treating it as a constant, the individual can quite
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closely obtain the minimal probability of ruin when the true hazard rate is Gompertz. Specifically, at

the beginning of each year, set λ equal to the inverse of the individual’s life expectancy at that time.

Compute the corresponding optimal investment strategy as given below, and apply that strategy for the

year. According to the work of [13], this scheme results in a probability of ruin close to the minimum

probability of ruin. Therefore, there is no significant loss of generality to assume that the hazard rate is

constant and revise its estimate each year.

Denote the minimum probability of lifetime ruin by ψ(w, y, z), in which the arguments w, y, and z

indicate that one conditions on the individual possessing wealth w at the current time with the two factors

Y and Z taking the values y and z, respectively, then. Thus, ψ is the minimum probability that τ0 < τd,

in which one minimizes with respect to admissible investment strategies π. A strategy π is admissible if

it is Ft-progressively measurable, and if it satisfies the integrability condition
∫ t

0 π
2
s ds <∞ almost surely

for all t ≥ 0. Thus, ψ is formally defined by

ψ(w, y, z) = inf
π

Pw,y,z [τ0 < τd] . (2.9)

Here, Pw,y,z indicates the probability conditional on W0 = w, Y0 = y, and Z0 = z. Below, we similarly

write Ew,y,z for the conditional expectation.

Remark 2.1. Note that we can express ψ as follows. This alternative representation will prove useful in

proving the verification theorem in the next section.

ψ(w, y, z) = inf
π

Ew,y,z
[∫ ∞

0
1{τ0≤t} λ e

−λt dt

]
= inf

π
Ew,y,z

[∫ ∞
τ0

1{τ0<∞} λ e
−λt dt

]
= inf

π
Ew,y,z

[
e−λτ01{τ0<∞}

]
= inf

π
Ew,y,z

[
e−λτ0

]
.

(2.10)

3. Verification Theorem

In this section, we prove a verification theorem for the minimum probability of lifetime ruin. First,

define the differential operator Dβ for β ∈ R by

Dβv = −λ v + (rw + (µ− r)β − c) vw +
1

ε
(m− y) vy + δ g(z) vz

+
1

2
f2(y, z)β2 vww +

1

ε
ν2 vyy +

1

2
δ h2(z) vzz + ρ12 f(y, z)β ν

√
2

ε
vwy

+ ρ13 f(y, z)β
√
δ h(z) vwz + ρ23

√
2 ν

√
δ

ε
h(z) vyz,

(3.1)

in which v = v(w, y, z) is appropriately differentiable.

Note that if w ≥ c/r, then ψ(w, y, z) = 0 because the individual can invest c/r of her wealth in the

riskless asset and generate a rate of income equal to c, which exactly covers her consumption. Therefore,
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we effectively only need to determine the minimum probability of lifetime ruin and corresponding optimal

investment strategy on the domain D := {(w, y, z) ∈ R3 : w ∈ [0, c/r]}.

Theorem 3.1. Suppose v : D→ R is a bounded, continuous function that satisfies the following condi-

tions:

(i) v(·, y, z) ∈ C2 is a non-increasing, convex function;

(ii) v(w, ·, ·) ∈ C2,2;

(iii) v(0, y, z) = 1;

(iv) v(c/r, y, z) = 0;

(v) Dβv ≥ 0 for all β ∈ R.

Then, v ≤ ψ on D.

Proof. Assume that v satisfies the conditions specified in the statement of this theorem. Let π be

admissible investment policy, and let W π denote the wealth process under π. Define τn = inf{t ≥ 0 :∫ t
0 π

2
s ds ≥ n} and τ = τ0 ∧ τn.

By applying Itô’s formula to e−λt v(w, y, z), we have

e−λτv(W π
τ , Yτ , Zτ ) = v(w, y, z) +

∫ τ

0
e−λt vw(W π

t , Yt, Zt)σ πt dB
(1)
t

+

∫ τ

0
e−λt vy(W

π
t , Yt, Zt) ν

√
2

ε
dB

(2)
t +

∫ τ

0
e−λt vz(W

π
t , Yt, Zt)

√
δ h(Zt) dB

(3)
t

+

∫ τ

0
e−λtDπv(W π

t , Yt, Zt) dt.

(3.2)

It follows from the definition of τn that the expectation of the first three integrals is zero. Also, the

last integral in (3.2) is non-negative because of condition (v) of the theorem. Thus, we have

Ew,y,z[e−λτv(W π
τ , Yτ , Zτ )] ≥ v(w, y, z). (3.3)

Because v is bounded by assumption, by letting n → ∞, it follows from the dominated convergence

theorem that

Ew,y,z[e−λτ0v(W π
τ0 , Yτ0 , Zτ0)] ≥ v(w, y, z). (3.4)

Since W π
τ0 = 0 when W0 = w ≥ 0, it follows from condition (iii) of the theorem that

Ew,y,z[e−λτ0 ] ≥ v(w, y, z). (3.5)

By taking the infimum over admissible investment strategies, and by applying the representation of ψ

from (2.10), we obtain ψ ≥ v on D.

Corollary 3.2. Suppose v satisfies the conditions of Theorem 3.1 in such a way that condition (v) holds

with equality for some admissible strategy π∗ defined in feedback form by π∗t = π∗(Wt, Yt, Zt), under a

slight abuse of notation. Specifically, suppose Dπ∗(w,y,z)v(w, y, z) = 0 on D. Then, v = ψ on D, and π∗

is an optimal investment strategy.

Proof. In the proof of Theorem 3.1, if we have equality in condition (v), then because the inequality in

(3.3) becomes an equality for that investment strategy, we conclude that v = ψ on D.
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In the next section, we use this verification theorem and their corollaries to solve for the minimum

probability of ruin ψ.

4. Computing the Minimum Probability of Lifetime Ruin

4.1. A Related Optimal Controller-Stopper Problem. In this section, we present an optimal

controller-stopper problem whose solution is the Legendre dual of the minimum probability of ruin.

First, note that we can represent the three Brownian motions from Section 2 as follows: Given B(1), B(2),

and B(3), define B̃(1), B̃(2), and B̃(3) via the following invertible system of equations:

B
(1)
t = B̃

(1)
t ,

B
(2)
t = ρ12 B̃

(1)
t +

√
1− ρ2

12 B̃
(2)
t ,

B
(3)
t = ρ13 B̃

(1)
t +

ρ23 − ρ12ρ13√
1− ρ2

12

B̃
(2)
t +

√
(1− ρ2

12)(1− ρ2
13)− (ρ23 − ρ12ρ13)2√

1− ρ2
12

B̃
(3)
t .

(4.1)

One can show that B̃(1), B̃(2), and B̃(3) thus defined are three independent standard Brownian motions

on (Ω,F ,P,F).

Next, define the controlled process Xγ by

dXγ
t = −(r − λ)Xγ

t dt−
µ− r

f(Yt, Zt)
Xγ
t dB̃

(1)
t + γ

(2)
t dB̃

(2)
t + γ

(3)
t dB̃

(3)
t , X0 = x > 0, (4.2)

in which γ =
(
γ(2), γ(3)

)
is the control, and Y and Z are given in (2.3) and (2.7), respectively.

For x > 0, define the function ψ̂ by

ψ̂(x, y, z) = inf
τ

sup
γ

Ex,y,z
[∫ τ

0
e−λtcXγ

t dt+ e−λτ min ((c/r)Xγ
τ , 1)

]
. (4.3)

ψ̂ is the value function for an optimal controller-stopper problem. Indeed, the controller chooses among

processes γ in order to maximize the discounted running “penalty” to the stopper given by cXγ
t in (4.3).

On the other hand, the stopper chooses the time to stop the game in order to minimize the penalty but

has to incur the terminal cost of min ((c/r)Xγ
τ , 1), discounted by e−λτ when she stops.

Using techniques similar to the ones in [6], one can show that the controller-stopper problem has a

continuation region given by {(x, y, z) : 0 ≤ xc/r(y, z) ≤ x ≤ x0(y, z)} for some functions 0 ≤ xc/r(y, z) ≤
r/c ≤ x0(y, z) with (y, z) ∈ R2. Thus, if x ≤ xc/r(y, z), we have ψ̂(x, y, z) = (c/r)x, and if x ≥ x0(y, z),

we have ψ̂(x, y, z) = 1. Moreover, ψ̂ is non-decreasing and concave with respect to x on R+ and is the

unique classical solution of the following free-boundary problem on
[
xc/r(y, z), x0(y, z)

]
:

cx+

(
1
ε L0 + 1√

ε
L1 + L2 +

√
δM1 + δM2 +

√
δ
εM3

)
ψ̂ +NLε,δ = 0;

ψ̂(xc/r(y, z), y, z) = c
r xc/r(y, z), ψ̂x(xc/r(y, z), y, z) = c

r ;

ψ̂(x0(y, z), y, z) = 1, ψ̂x(x0(y, z), y, z) = 0;

(4.4)
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in which

L0v = (m− y) vy + ν2 vyy, (4.5)

L1v = −ρ12
µ− r
f(y, z)

ν
√

2x vxy, (4.6)

L2v = −λ v − (r − λ)x vx +
1

2

(
µ− r
f(y, z)

)2

x2 vxx, (4.7)

M1v = −ρ13
µ− r
f(y, z)

h(z)x vxz, (4.8)

M2v = g(z) vz +
1

2
h2(z) vzz, (4.9)

M3v = ρ23 ν
√

2h(z) vyz, (4.10)

and

NLε,δ = sup
γ

[
1

2

((
γ(2)

)2
+
(
γ(3)

)2
)
ψ̂xx

+ γ(2)

(
ν

√
2

ε

√
1− ρ2

12 ψ̂xy +
√
δ h(z)

ρ23 − ρ12ρ23√
1− ρ2

12

ψ̂xz

)

+ γ(3)
√
δ h(z)

√
(1− ρ2

12)(1− ρ2
13)− (ρ23 − ρ12ρ13)2√

1− ρ2
12

ψ̂xz

]
.

(4.11)

Because ψ̂ is concave with respect to x, we can express NLε,δ as follows:

NLε,δ = −1

ε
ν2
(
1− ρ2

12

) ψ̂2
xy

ψ̂xx
− 1

2
δ h2(z)

(
1− ρ2

13

) ψ̂2
xz

ψ̂xx
− ν
√

2

√
δ

ε
h(z) (ρ23 − ρ12ρ13)

ψ̂xyψ̂xz

ψ̂xx
. (4.12)

4.2. Convex Legendre Dual of ψ̂. Because ψ̂ is concave with respect to x, we can define its convex

dual Ψ by the Legendre transform: For (w, y, z) ∈ D = {(w, y, z) ∈ R3 : w ∈ [0, c/r]},

Ψ(w, y, z) = max
x

(
ψ̂(x, y, z)− wx

)
. (4.13)

In this section, we show that the convex dual Ψ is the minimum probability of lifetime ruin; then, in the

next section, we asymptotically expand ψ̂ in powers of
√
ε and

√
δ.

Theorem 4.1. Ψ equals the minimum probability of lifetime ruin ψ on D, and the investment policy

π∗ given in feedback form by π∗t = π∗(W ∗t , Yt, Zt) is an optimal policy, in which W ∗ is the optimally

controlled wealth (that is, wealth controlled by π∗) and the function π∗ is given by

π∗(w, y, z) = − µ− r
f2(y, z)

ψw
ψww

− ρ12

√
2

ε

ν

f(y, z)

ψwy
ψww

− ρ13

√
δ

h(z)

f(y, z)

ψwz
ψww

, (4.14)

in which the right-hand side of (4.14) is evaluated at (w, y, z).

Proof. From (4.13), it follows that the critical value x∗ solves w = ψ̂x(x, y, z); thus, given w, we have

x∗ = I(w, y, z), in which I is the inverse function of ψ̂x with respect to x. Therefore, Ψ(w, y, z) =

ψ̂(I(w, y, z), y, z) − wI(w, y, z). By differentiating this expression of Ψ with respect to w, we obtain
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Ψw(w, y, z) = ψ̂x(I(w, y, z), y, z)Iw(w, y, z)−I(w, y, z)−wIw(w, y, z) = −I(w, y, z); thus, x∗ = −Ψw(w, y, z).

Similarly, we obtain (with w = ψ̂x(x, y, z)) the following expressions:

ψ̂xx(x, y, z) = − 1

Ψww(w, y, z)
, (4.15)

ψ̂y(x, y, z) = Ψy(w, y, z), (4.16)

ψ̂z(x, y, z) = Ψz(w, y, z), (4.17)

ψ̂yy(x, y, z) = Ψwy(w, y, z) ψ̂xy(x, y, z) + Ψyy(w, y, z), (4.18)

ψ̂zz(x, y, z) = Ψwz(w, y, z) ψ̂xz(x, y, z) + Ψzz(w, y, z), (4.19)

ψ̂xy(x, y, z) = Ψwy(w, y, z) ψ̂xx(x, y, z), (4.20)

ψ̂xz(x, y, z) = Ψwz(w, y, z) ψ̂xx(x, y, z), (4.21)

and

ψ̂yz(x, y, z) = Ψwy(w, y, z) Ψwz(w, y, z) ψ̂xx(x, y, z) + Ψyz(w, y, z). (4.22)

By substituting x∗ = −Ψw(w, y, z) into the free-boundary problem for ψ̂, namely (4.4), one can show

that Ψ uniquely solves the following boundary-value problem on D: minβ Dβv(w, y, z) = 0;

v(0, y, z) = 1, v(c/r, y, z) = 0.
(4.23)

Because Ψ is convex with respect to w, the optimal policy π∗ in (4.23) is given by the first-order necessary

condition, which results in the expression in (4.14). Thus, by Corollary 3.2, we deduce that Ψ is the

minimum probability of lifetime ruin ψ.

Theorem 4.1 demonstrates the strong connection between ψ̂ and ψ, namely that they are dual via the

Legendre transform. (As an aside, if we have ψ, we can obtain ψ̂ via ψ̂(x, y, z) = minw (ψ(w, y, z) + wx).)

Therefore, if we have ψ̂, then we obtain the minimum probability of ruin ψ via (4.13). More importantly,

we get the optimal investment strategy π∗ via (4.14). As a corollary to Theorem 4.1, we have the following

expression for π∗ in terms of the dual variable x.

Corollary 4.2. In terms of the dual variable x, the optimal investment strategy π∗ is given by π∗t =

π̂∗(X∗t , Yt, Zt), in which X∗ is the optimally controlled process X, and

π̂∗(x, y, z) = − µ− r
f2(y, z)

x ψ̂xx + ρ12

√
2

ε

ν

f(y, z)
ψ̂xy + ρ13

√
δ

h(z)

f(y, z)
ψ̂xz, (4.24)

with the right-hand side of (4.24) evaluated at (x, y, z).

Proof. Let w = ψ̂x(x, y, z) in (4.14) and simplify the right-hand side via equations (4.15)-(4.22) to obtain

(4.24).
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5. Asymptotic Approximation of the Minimum Probability of Lifetime Ruin

In this section, we asymptotically expand ψ̂, the Legendre transform of the minimum probability of

ruin, in powers of
√
ε and

√
δ. (A parallel analysis of expanding the Legendre transform of the value

function of the utility maximization problem was carried out in [9].) At the end of this section, we will

use this work to approximate π∗. To begin, expand ψ̂ and the free boundaries in powers of
√
δ:

ψ̂ = ψ̂0 +
√
δ ψ̂1 + δ ψ̂2 + · · · , (5.1)

xc/r(y, z) = xc/r,0(y, z) +
√
δ xc/r,1(y, z) + δ xc/r,2(y, z) + · · · , (5.2)

and

x0(y, z) = x0,0(y, z) +
√
δ x0,1(y, z) + δ x0,2(y, z) + · · · . (5.3)

Insert the expression in (5.1) into NLε,δ in (4.12) to obtain the following expansion in powers of
√
δ:

NLε,δ = − 1

ε
ν2
(
1− ρ2

12

) ψ̂2
0,xy

ψ̂0,xx

+
√
δ

1

ε
ν2
(
1− ρ2

12

)( ψ̂0,xy

ψ̂0,xx

)2

ψ̂1,xx − 2
ψ̂0,xy

ψ̂0,xx

ψ̂1,xy


−
√

2

ε
ν h(z)(ρ23 − ρ12ρ13)

ψ̂0,xy ψ̂0,xz

ψ̂0,xx

]
+O(δ).

(5.4)

Keeping terms up to
√
δ, we expand the free boundary conditions in (4.4) as

ψ̂0(xc/r,0(y, z), y, z) +
√
δ
[
xc/r,1(y, z) ψ̂0,x(xc/r,0(y, z), y, z) + ψ̂1(xc/r,0(y, z), y, z)

]
=
c

r

(
xc/r,0(y, z) +

√
δ xc/r,1(y, z)

)
,

(5.5)

ψ̂0,x(xc/r,0(y, z), y, z) +
√
δ
[
xc/r,1(y, z) ψ̂0,xx(xc/r,0(y, z), y, z) + ψ̂1,x(xc/r,0(y, z), y, z)

]
=
c

r
,

(5.6)

ψ̂0(x0,0(y, z), y, z) +
√
δ
[
x0,1(y, z) ψ̂0,x(x0,0(y, z), y, z) + ψ̂1(x0,0(y, z), y, z)

]
= 1, (5.7)

and

ψ̂0,x(x0,0(y, z), y, z) +
√
δ
[
x0,1(y, z) ψ̂0,xx(x0,0(y, z), y, z) + ψ̂1,x(x0,0(y, z), y, z)

]
= 0. (5.8)

We begin by approximating ψ̂0 and the free boundaries xc/r,0 and x0,0. Then, we use the boundaries

xc/r,0 and x0,0 as fixed boundaries to determine ψ̂1. As one can see from equations (5.5)-(5.8), this fixing

of the boundaries introduces an O(
√
δ)-error into ψ̂1 in O(

√
δ)-neighborhoods of xc/r,0 and x0,0.
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Terms of order δ0. By inserting (5.1)-(5.4) into (4.4) and collecting terms of order δ0, we obtain the

following free-boundary problem:
cx+

(
1
ε L0 + 1√

ε
L1 + L2

)
ψ̂0 − 1

ε ν
2
(
1− ρ2

12

) ψ̂2
0,xy

ψ̂0,xx
= 0;

ψ̂0(xc/r,0(y, z), y, z) = c
r xc/r,0(y, z), ψ̂0,x(xc/r,0(y, z), y, z) = c

r ;

ψ̂0(x0,0(y, z), y, z) = 1, ψ̂0,x(x0,0(y, z), y, z) = 0.

(5.9)

Terms of order
√
δ. Similarly, by comparing terms of order

√
δ and using xc/r,0 and x0,0 as fixed

boundaries for ψ̂1, we obtain the following boundary-value problem:

(
1
ε L0 + 1√

ε
L1 + L2

)
ψ̂1 +

(
M1 + 1√

ε
M3

)
ψ̂0

+ 1
ε ν

2
(
1− ρ2

12

)(( ψ̂0,xy

ψ̂0,xx

)2

ψ̂1,xx − 2
ψ̂0,xy

ψ̂0,xx
ψ̂1,xy

)
−
√

2
ε ν h(z)(ρ23 − ρ12ρ13)

ψ̂0,xy ψ̂0,xz

ψ̂0,xx
= 0;

ψ̂1(xc/r,0(y, z), y, z) = 0, ψ̂1(x0,0(y, z), y, z) = 0.

(5.10)

Next, we expand the solutions of (5.9) and (5.10) in powers of
√
ε:

ψ̂0(x, y, z) = ψ̂0,0(x, y, z) +
√
ε ψ̂0,1(x, y, z) + ε ψ̂0,2(x, y, z) + · · · , (5.11)

and

ψ̂1(x, y, z) = ψ̂1,0(x, y, z) +
√
ε ψ̂1,1(x, y, z) + ε ψ̂1,2(x, y, z) + · · · . (5.12)

Similarly, expand the free boundaries xc/r,0 and x0,0 in powers of
√
ε:

xc/r,0(y, z) = xc/r,0,0(y, z) +
√
ε xc/r,0,1(y, z) + ε xc/r,0,2(y, z) + · · · , (5.13)

and

x0,0(y, z) = x0,0,0(y, z) +
√
ε x0,0,1(y, z) + ε x0,0,2(y, z) + · · · . (5.14)

Substitute (5.11) and (5.12) into (5.9) and (5.10), respectively, and collect terms of the same order of
√
ε.

As discussed earlier, we determine the free boundaries xc/r,0,0(y, z) and x0,0,0(y, z) via a free-boundary

problem for ψ̂0,0; then, we use these boundaries as the fixed boundaries for ψ̂0,1 and ψ̂1,0.

Terms of order 1/ε in (5.9). By matching terms of order 1/ε in (5.9), we obtain the following:

L0 ψ̂0,0 − ν2
(
1− ρ2

12

) ψ̂2
0,0,xy

ψ̂0,0,xx

= 0, (5.15)

or equivalently

(m− y) ψ̂0,0,y + ν2 ψ̂0,0,yy − ν2
(
1− ρ2

12

) ψ̂2
0,0,xy

ψ̂0,0,xx

= 0. (5.16)

We, therefore, look for an ψ̂0,0 independent of y; otherwise, ψ̂0,0 will experience exponential growth as y

goes to ±∞; see [7] and [8]. We also seek free boundaries xc/r,0,0 and x0,0,0 independent of y.
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Terms of order 1/
√
ε in (5.9). By matching terms of order 1/

√
ε in (5.9) and using the fact that

ψ̂0,0,y ≡ 0, we obtain the following:

L0 ψ̂0,1 = 0. (5.17)

Therefore, we look for an ψ̂0,1 independent of y; otherwise, ψ̂0,1 will experience exponential growth as y

goes to ±∞.

Terms of order ε0 in (5.9). By matching terms of order ε0 in (5.9) and using the fact that ψ̂0,0,y =

ψ̂0,1,y ≡ 0, we obtain the following Poisson equation (in y) for ψ̂0,2:

L0 ψ̂0,2 = −cx− L2 ψ̂0,0. (5.18)

The solvability condition for this equation requires that cx + L2 ψ̂0,0 be centered with respect to the

invariant distribution N (m, ν2) of the Ornstein-Uhlenbeck process Y . Specifically,〈
cx+ L2 ψ̂0,0

〉
= cx+ 〈L2〉 ψ̂0,0 = 0, (5.19)

in which 〈·〉 denotes averaging with respect to the distribution N (m, ν2):

〈v〉 =
1√

2πν2

∫ ∞
−∞

v(y) e−
(y−m)2

2ν2 dy. (5.20)

In (4.43), the averaged operator 〈L2〉 is defined by

〈L2〉 v = −λ v − (r − λ)x vx +
1

2

(
µ− r
σ∗(z)

)2

x2 vxx, (5.21)

in which σ∗(z) is given by
1

σ2
∗(z)

=

〈
1

f2(y, z)

〉
. (5.22)

Thus, we have the following free-boundary problem for ψ̂0,0:
cx− λ ψ̂0,0 − (r − λ)x ψ̂0,0,x + s(z)x2 ψ̂0,0,xx = 0 ;

ψ̂0,0(xc/r,0,0(z), z) = c
r xc/r,0,0(z), ψ̂0,0,x(xc/r,0,0(z), z) = c

r ;

ψ̂0,0(x0,0,0(z), z) = 1, ψ̂0,0,x(x0,0,0(z), z) = 0.

(5.23)

with s(z) = 1
2

(
µ−r
σ∗(z)

)2
. The general solution of the differential equation in (5.23) is given by

ψ̂0,0(x, z) = D1(z)xB1(z) +D2(z)xB2(z) +
c

r
x, (5.24)

in which

B1(z) =
1

2s(z)

[
(r − λ+ s(z)) +

√
(r − λ+ s(z))2 + 4λs(z)

]
> 1, (5.25)

and

B2(z) =
1

2s(z)

[
(r − λ+ s(z))−

√
(r − λ+ s(z))2 + 4λs(z)

]
< 0. (5.26)

We determine D1 and D2 from the free boundary conditions.

The free boundary conditions imply that

D1(z)xc/r,0,0(z)B1(z) +D2(z)xc/r,0,0(z)B2(z) +
c

r
xc/r,0,0(z) =

c

r
xc/r,0,0(z), (5.27)
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D1(z)B1(z)xc/r,0,0(z)B1(z)−1 +D2(z)B2(z)xc/r,0,0(z)B2(z)−1 +
c

r
=
c

r
, (5.28)

D1(z)x0,0,0(z)B1(z) +D2(z)x0,0,0(z)B2(z) +
c

r
x0,0,0(z) = 1, (5.29)

and

D1(z)B1(z)x0,0,0(z)B1(z)−1 +D2(z)B2(z)x0,0,0(z)B2(z)−1 +
c

r
= 0, (5.30)

which gives us four equations to determine the four unknowns D1, D2, xc/r,0,0, and x0,0,0. Indeed, the

solution to these equations is

D1(z) = − 1

B1(z)− 1

(
c

r
· B1(z)− 1

B1(z)

)B1(z)

, (5.31)

D2(z) ≡ 0, (5.32)

xc/r,0,0(z) ≡ 0, (5.33)

and

x0,0,0(z) =
B1(z)

B1(z)− 1
· r
c
. (5.34)

It follows that

ψ̂0,0(x, z) = − 1

B1(z)− 1

(
c

r
· B1(z)− 1

B1(z)
· x
)B1(z)

+
c

r
x. (5.35)

Terms of order
√
ε in (5.9). By matching terms of order

√
ε in (5.9) and using the fact that ψ̂0,0,y =

ψ̂0,1,y = 0, we obtain the following Poisson equation (in y) for ψ̂0,3:

L0 ψ̂0,3 = −L1 ψ̂0,2 − L2 ψ̂0,1. (5.36)

As above, the solvability condition for this equation requires that〈
L1 ψ̂0,2 + L2 ψ̂0,1

〉
= 0, (5.37)

in which

ψ̂0,2(x, z) = L−1
0

(
−cx− L2 ψ̂0,0

)
. (5.38)

It follows that ψ̂0,1 solves

〈L2〉 ψ̂0,1 =
〈
L1L−1

0

(
cx+ L2 ψ̂0,0

)〉
. (5.39)

Recall that we impose the (fixed) boundary conditions ψ̂0,1(xc/r,0,0(z), z) = 0 and

ψ̂0,1(x0,0,0(z), z) = 0 at xc/r,0,0(z) ≡ 0 and x0,0,0(z) = B1(z)
B1(z)−1 ·

r
c .

From (5.38), it is straightforward to show that ψ̂0,2 can be expressed as follows:

ψ̂0,2(x, y, z) = −D1(z)B1(z) (B1(z)− 1)xB1(z) η(y, z), (5.40)

in which η solves

(m− y)ηy + ν2 ηyy =
1

2

(
µ− r
f(y, z)

)2

− 1

2

(
µ− r
σ∗(z)

)2

=
1

2

(
µ− r
f(y, z)

)2

− s(z). (5.41)
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It follows that the right-hand side of (5.39) equals

− ρ12 (µ− r) ν
√

2D1(z)B2
1(z) (B1(z)− 1)xB1(z)

〈
ηy(y, z)

f(y, z)

〉
= ρ12 (µ− r)

√
2ν D1(z)B2

1(z) (B1(z)− 1)xB1(z)

〈
F̃ (y, z)

(
1

2

(
µ− r
f(y, z)

)2

− s(z)

)〉
,

(5.42)

in which F̃ is an antiderivative of 1/f with respect to y; that is,

F̃y(y, z) =
1

f(y, z)
. (5.43)

From (5.39) and (5.42), we obtain that ψ̂0,1 equals

ψ̂0,1(x, z) = D̃1(z)xB1(z) + D̃2(z)xB2(z) +A(z)xB1(z) lnx, (5.44)

in which B1 and B2 are given in (5.25) and (5.26), respectively, and A is given by

A(z) =
ρ12 (µ− r)

√
2ν D1(z)B2

1(z) (B1(z)− 1)

(2B1(z)− 1) s(z)− (r − λ)

〈
F̃ (y, z)

(
1

2

(
µ− r
f(y, z)

)2

− s(z)

)〉
. (5.45)

The functions D̃1 and D̃2 are given by the (fixed) boundary conditions at xc/r,0,0(z) ≡ 0 and x0,0,0(z) =
B1(z)
B1(z)−1 ·

r
c , from which it follows that

ψ̂0,1(x, z) = A(z)xB1(z)

(
lnx− ln

(
B1(z)

B1(z)− 1
· r
c

))
= A(z)xB1(z) ln

(
x · B1(z)− 1

B1(z)
· c
r

)
.

(5.46)

Next, we focus on (5.10) to find ψ̂1,0, after which we will approximate ψ̂ by ψ̂0,0 +
√
ε ψ̂0,1 +

√
δ ψ̂1,0.

Terms of order 1/ε in (5.10). By matching terms of order 1/ε in (5.10), we obtain the following:

L0 ψ̂1,0 = 0, (5.47)

from which it follows that ψ̂1,0 is independent of y; otherwise, ψ̂1,0 will experience exponential growth as

y goes to ±∞; see [8].

Terms of order 1/
√
ε in (5.10). By matching terms of order 1/

√
ε in (5.10) and using the fact that

ψ̂1,0,y ≡ 0, we obtain the following:

L0 ψ̂1,1 = 0. (5.48)

Therefore, we look for an ψ̂1,1 independent of y; otherwise, ψ̂1,1 will experience exponential growth as y

goes to ±∞.
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Terms of order ε0 in (5.10). By matching terms of order ε0 in (5.10) and using the fact that ψ̂1,0,y =

ψ̂1,1,y ≡ 0, we obtain the following Poisson equation (in y) for ψ̂1,2:

L0 ψ̂1,2 = −L2 ψ̂1,0 + ρ13
µ− r
f(y, z)

h(z)x ψ̂0,0,xz. (5.49)

The solvability condition for this equation requires that〈
−L2 ψ̂1,0 + ρ13

µ− r
f(y, z)

h(z)x ψ̂0,0,xz

〉
= 0, (5.50)

or equivalently,

〈L2〉 ψ̂1,0 = ρ13

〈
µ− r
f(y, z)

〉
h(z)x ψ̂0,0,xz. (5.51)

with boundary conditions ψ̂1,0(xc/r,0,0(z), z) = 0 and ψ̂1,0(x0,0,0(z), z) = 0 at the boundaries xc/r,0,0(z) ≡ 0

and x0,0,0(z) = B1(z)
B1(z)−1 ·

r
c . It follows that ψ̂1,0 is given by

ψ̂1,0(z) = xB1(z) ln

(
x · B1(z)− 1

B1(z)
· c
r

) [
A1(z) +A2(z) ln

(
x · B1(z)

B1(z)− 1
· r
c

)]
, (5.52)

in which A1 and A2 equal

A1(z) =
H1(z)

(2B1(z)− 1) s(z)− (r − λ)
− H2(z) s(z)

[(2B1(z)− 1) s(z)− (r − λ)]2
, (5.53)

and

A2(z) =
1

2
· H2(z)

(2B1(z)− 1) s(z)− (r − λ)
, (5.54)

with H1 and H2 functions of z defined by

H1(z) +H2(z) lnx

= −ρ13 h(z)

〈
µ− r
f(y, z)

〉
B′1(z)

B1(z)− 1

(
B1(z)− 1

B1(z)
· c
r

)B1(z) [
1 +B1(z) ln

(
x · B1(z)− 1

B1(z)
· c
r

)]
.

(5.55)

5.1. The Approximation of the Probability of Lifetime Ruin and the Optimal Investment

Strategy. Combining (5.35), (5.46), and (5.52), we obtain the following approximation of ψ̂

ψ̂ε,δ(x, z) = ψ̂0,0(x, z) +
√
ε ψ̂0,1(x, z) +

√
δ ψ̂1,0(x, z)

= − 1

B1(z)− 1

(
c

r
· B1(z)− 1

B1(z)
· x
)B1(z)

+
c

r
x

+
√
εA(z)xB1(z) ln

(
x · B1(z)− 1

B1(z)
· c
r

)
+
√
δ xB1(z) ln

(
x · B1(z)− 1

B1(z)
· c
r

) [
A1(z) +A2(z) ln

(
x · B1(z)

B1(z)− 1
· r
c

)]
,

(5.56)

in which A, A1, and A2, are specified in (5.45), (5.53), and (5.54), respectively.
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We also approximate the dual of the optimal investment strategy up to the first powers of
√
ε and

√
δ,

as we did for ψ̂. Using (4.24), we obtain

π̂ε,δ(x, z) = − µ− r
f2(y, z)

x ψ̂0,0,xx +
√
ε

(
− µ− r
f2(y, z)

x ψ̂0,1,xx + ρ12
ν
√

2

f(y, z)
ψ̂0,2,xy

)

+
√
δ

(
− µ− r
f2(y, z)

x ψ̂1,0,xx + ρ13
h(z)

f(y, z)
ψ̂0,0,xz

)
.

(5.57)

Given w ∈ R+, we solve for x using w = ψ̂ε,δx (x, z). Then we let ψε,δ(w, z) := ψ̂ε,δ(x, z)− xw. We also

denote by πε,δ the function that satisfies πε,δ(w, z) := π̂ε,δ(x, z).

6. Numerical Solution using the Markov Chain Approximation Method

In this section, we describe how to construct a numerical algorithm for the original optimal control

problem directly using the Markov Chain Approximation Method (MCAM); see e.g. [11] and [10]. For

the ease of presentation, we will describe the numerical algorithm only when the fast scale volatility factor

is present. In what follows ρ will denote the correlation between the Brownian motion driving the stock

and the one driving the fast factor; that is, ρ = ρ12.

Let us fix an h-grid; that is, a rectangular compact domain Gh ⊂ R2 with the same spacing h in

both directions. We choose an initial guess (on this grid) for a candidate optimal strategy. Denote this

strategy by π. Then, our goal is to create a discrete-time Markov chain (ξhn)n≥0 that lives on Gh and

that satisfies the local consistency condition

Eh,πx,n[∆ξhn+1] = b(x, π)∆tπ,h(x, π) + o(∆th),

Covh,πx,n[∆ξhn+1] = A(x, π)∆tπ,h(x, π) + o(∆th),
(6.1)

in which ∆ξn+1 = ξn+1− ξn, and b and A denote the drift and the covariance of the vector Xt = (Wt, Yt),

respectively. (The Markov chain is constructed to approximate this vector in a certain sense.) Eh,πx,n
denotes the expectation, given that the state of the Markov chain at time n is x. In (6.1) the quantity

∆th (called the interpolation interval) is to be chosen so that it goes to zero as h → 0. We also do not

want this quantity to depend on the state variables or the control variable.

Since Gh is a compact domain, we impose reflecting boundary conditions at its edges. (Natural

boundaries exist for W (t), specifically 0 and the safe level c
r . However, Yt lives on an infinite region.)

For example, we choose the transition probabilities to be pπ,h((w, y), (w, y − h)) = 1, when y is as large

it can be in Gh and for all w ∈ [0, cr ].

6.1. Constructing the Approximating Markov Chain.

6.1.1. When ρ = 0. Denote α = 1
ε , β = ν

√
2
ε . We obtain the transition probabilities of the Markov chain

ξh as
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pπ,h((w, y), (w, y ± h)) =

β2/2 + hα(m− y)±

Q̃h
,

pπ,h((w, y), (w ± h, y)) =
(f(y)π(w, y))2/2 + h(µ− r)π(w, y)± + h(rw − c)±

Q̃h
,

pπ,h((w, y), (w, y)) = Q̃h−Qπ,h(w,y)

Q̃h
,

(6.2)

and choose the interpolation interval to be

∆th =
h2

Q̃h
,

in which

Qπ,h(w, y) = (πf(y))2 + β2 + h|α(m− y)|+ h|(µ− r)π(w, y)|+ h|rw − c|,

and

Q̃h = max
(w,y,π)

Qπ,h(w, y),

in order to satisfy the local consistency condition. Here a± = max{0,±a}.

6.1.2. When ρ 6= 0. In this case a convenient transition probability matrix solving the local consistency

condition is

pπ,h((w, y), (w, y ± h)) =
(1− ρ2)β2/2− |ρπ(w, y)|βf(y)/2 + hα(m− y)±

Q̃h
,

pπ,h((w, y), (w ± h, y)) =
(f(y)π(w, y))2/2− |ρπ(w, y)|βf(y)/2 + h(µ− r)π(w, y)± + h(rw − c)±

Q̃h
,

pπ,h((w, y), (w + h, y + h)) = pπ,h((w, y), (w − h, y − h)) =
(ρπ(w, y))+βf(y)

2Q̃h
,

pπ,h((w, y), (w + h, y − h)) = pπ,h((w, y), (w − h, y + h)) =
(ρπ(w, y))−βf(y)

2Q̃h

pπ,h((w, y), (w, y)) = Q̃h−Qπ,h(w,y)

Q̃h
,

(6.3)

where

Qπ,h(w, y) = (πf(y))2 + β2 − |ρπ(w, y)|βf(y) + h|α(m− y)|+ h|(µ− r)π(w, y)|+ h|rw − c|.

For values of |ρ| close to 1, the transition probabilities may be negative. The positiveness of these

probabilities is equivalent to the diagonal dominance of the covariance matrix A = (aij). (Recall that we

call A diagonally dominant if aii −
∑

j,j 6=i |aij | > 0, ∀i.) The construction of an approximating Markov

chain when some of the expressions in (6.3) are negative will be discussed next.

6.1.3. When ρ = 1 and some of the transition probabilities in (6.3) are negative. We accomplish the

construction of the approximating Markov chain in two steps, following [10]:

(i) Decomposition. As in [11] Sections 5.3 and 5.4, we decompose X into separate components and build

approximating Markov chains to match each component. Then, we combine the transition probabilities

appropriately to obtain the approximating Markov chain for X itself.
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Let X = X(1) +X(2), in which

dX
(1)
t =

(
πf(y)

β

)
dB1

t , (6.4)

dX
(2)
t =

(
rWt − c+ (µ− r)πt

α(m− Yt)

)
dt. (6.5)

Since ρ = 1, we take B1 = B2. Suppose that the form of the locally consistent (with dynamics of X(1)

and X(2), respectively) transition probabilities and interpolation intervals are

pπ,h1 (x, x̄) =
nπ,h1 (x, x̄)

Q̃h1
, ∆tπ,h1 =

h2

Q̃h1
,

pπ,h2 (x, x̄) =
nπ,h2 (x, x̄)

Q̃h2
, ∆tπ,h2 =

h

Q̃h2
,

for some nπ,h1 (x, x̄), nπ,h2 (x, x̄), and appropriate normalizers Q̃h1 , Q̃h2 . Then, the following transition prob-

abilities and the interpolation interval are locally consistent with the dynamics of X

pπ,h(x, x̄) =
nπ,h1 (x, x̄) + hnπ,h2 (x, x̄)

Q̃h1 + hQ̃h2
, ∆tπ,h =

h2

Q̃h1 + hQ̃h2
. (6.6)

Since it is easier, we first provide the expression for pπ,h2 :

pπ,h2 ((w, y), (w, y ± h)|π) =
α(m− y)±

Q̃h2
,

pπ,h2 ((w, y), (w ± h, y)|π) =
(µ− r)π(w, y)± + (rw − c)±

Q̃h2
,

pπ,h2 ((w, y), (w, y)) =
Q̃2

h
−Qπ,h2 (w, y)

Q̃h2
,

(6.7)

where

Qπ,h2 (w, y) = α|m− y|+ (µ− r)|π(w, y)|+ |rw − c|.

The computation of pπ,h1 is more involved. This is the subject of the next step.

(ii) Variance control. The system (6.4) is fully degenerate; that is, the corresponding covariance

matrix A is not diagonally dominant. The previous technique for building a Markov chain does not work.

Instead, we will build an approximating Markov chain by allowing the local consistency condition to be

violated by a small margin of error.

If (σ1, σ2) = (qk1, qk2) for some constant q and integers k1, k2, we could let the transition probability

to be ph(x, x ± (hk1, hk2)) = 1
2 and the interpolation interval to be ∆th = h2

q2
, and we would obtain a

locally consistent Markov chain. This is not possible in general. For an arbitrary vector (σ1, σ2), we can

find a pair of integers k1(x, π), k2(x, π), and a real number γ(x, π) ∈ [0, 1], such that(
σ1(x, π)

σ2

)
= q(x, π)

(
k1(x, π)

k2(x, π) + γ(x, π)

)
.
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Since the Markov chain is constrained to the grid Gh, we can only approximately let it move in the

direction of (σ1, σ2)T . We choose

pπ,h(x, x± h(k1, k2)T ) = p1/2,

pπ,h(x, x± h(k1, k2 + 1)T ) = p2/2,
(6.8)

in which p1 + p2 = 1, and p1 and p2 will be appropriately chosen in what follows. The mean and the

covariance of the approximating chain is

Eh,πx,π[∆ξh(x, π)] = 0,

Eh,πx,π[∆ξh(x, π)∆ξh(x, π)T ] = h2C(x, π),
(6.9)

where

C(x, π) = p1

(
k2

1 k1k2

k1k2 k2
2

)
+ p2

(
k2

1 k1(k2 + 1)

k1(k2 + 1) (k2 + 1)2

)

=

(
k2

1 k1(k2 + p2)

k1(k2 + p2) k2
2 + 2pk2 + p2

)
.

(6.10)

We choose the interpolation interval to be ∆tπ,h(x, π) = h2/q2. On the other hand

a(x, π) = A(x, π)/q2 =

(
k2

1 k1(k2 + γ)

k1(k2 + γ) (k2 + γ)2

)
,

and we see that if we pick p2 = γ, then C11 = a11 and C12 = a12 match, but we violate the local

consistency condition by
C22 − a2

22

a2
22

=
γ(1− γ)

(k2 + γ)2
= O

(
1

k2
2

)
. (6.11)

We will choose k2 sufficiently large so that the local consistency condition is almost satisfied, and the

numerical noise in (6.11) is significantly reduced.

6.1.4. The case when ρ ∈ (−1, 1) and some of the transition probabilities in (6.3) are negative. We will

decompose the state variable into three components:

d ~Xt =

(
dWt

dYt

)
=

(
rWt − c+ (µ− r)πt

α(m− Yt)

)
dt+

(
πtf(Yt)

βρ

)
dB1

t +

(
0 0

0 β
√

1− ρ2

)(
dB1

t

dB2
t ,

)
, (6.12)

that is, a drift component, a fully degenerate noise component, and a noise component with diagonally

dominated covariance matrix. We can build an approximating Markov chain for each component sepa-

rately and then combine them as discussed above.

6.2. Approximating the Probability of Ruin and Updating the Strategy. We solve the system

of linear equations

V π,h(x) = e−λ∆tπ,h
∑
x̃∈Gh

pπ,h(x, x̃)V π,h(x̃), (6.13)

with boundary conditions V π,h(0, y) = 1 and V π,h(c/r, y) = 0. This is the dynamic programming equation

for a probability of ruin problem when the underlying state variable is the Markov chain ξh. In the next
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step, we update our candidate for the optimal strategy. For convenience, denote V π,h by V . In the

interior points of the grid

π(w, y) = −h(µ− r)[V (w + h, y)− V (w, y)] + (β/2)ρf(y) [V (w + h, y + h) + V (w, y − h)− V (w + h, y − h)− V (w, y + h)]

f2(y) [V (w + h, y) + V (w − h, y)− 2V (w, y)]
.

On the wealth dimension boundaries of the grid, we let π(c/r, y) = 0 and

π(0, y) = −h(µ− r)[V (h, y)− V (0, y)] + (β/2)ρf(y) [V (h, y + h) + V (0, y − h)− V (h, y − h)− V (0, y + h)]

f2(y) [2V (0, y)− 5V (h, y) + 4V (2h, y)− V (3h, y)]
.

The updates of the optimal strategy for the maximum and minimum values of y are similar.

Iteration. Once the optimal strategy is updated, we go back and update the transition probabilities and

solve the system of linear equations in (6.13) to update the value function. This iteration continues until

the improvement in the value function is smaller than an exogenously picked threshold.

Two Technical Issues.

• The initial guess of the optimal strategy is important. For ρ = 0, we take the initial strategy as

the one in constant volatility case, where the closed-form solution is available in [14]. For ρ 6= 0,

we take the final strategy computed from zero-correlation case (ρ = 0) as the initial guess. This

initial guess makes the algorithm converge fast.

• For ρ 6= 0, the covariance matrix of the wealth process and volatility factor, in general, does not

satisfy the diagonal dominance condition. The problem is more serious for the slow factor, since

its variance is of order of δ, and the numerical noise using ”‘variance control”’ is far greater.

To solve this issue we perform a “scale adjustment” to increase the variance of the factor. For

example, if we define Z̄t = 100Zt, then the dynamic of the system become

dSt
St

= µdt+ f

(
Yt,

Z̄t
100

)
dB1

t ,

dZ̄t = δ(100m− Z̄t)dt+ 100
√
δ
√

2ν2dB
(3)
t .

(6.14)

when g = (m−z) and h =
√

2ν. The new system is mathematically equivalent to the original one,

but with a much bigger variance; thus, the numerical noise in variance control is much smaller.

Note that the scheme here is equivalent to choosing a different grid sizes for the volatility and

wealth dimensions.

7. Numerical Experiments

In order to conduct our numerical experiments we will take the dynamics of the slow factor in (2.7) to

be

dZt = δ(m− Zt)dt+
√
δ
√

2νdB
(3)
t , Z0 = z.

We let f(y, z) = exp(−y) or f(y, z) = exp(−z) in (2.2), depending on whether we want to account for the

fast volatility factor or the slow volatility factor in our modeling. We will call 1/ε or δ the speed of mean

reversion. We will take the correlations between the Brownian motions driving the volatility factors and

the stock price to be ρ = ρ13 = ρ12.

The following parameters are fixed throughout this section:
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• r = 0.02; the risk-free interest rate is 2% over inflation.

• µ = 0.1; the return of risky asset is 10% over inflation.

• c = 0.1; the individual consumes at a constant rate of 0.1 unit of wealth per year over income.

• λ = 0.04; the hazard rate is constant such that the expected future lifetime is 25 years.

• m = 1.364 and ν = 0.15, so that the harmonic average volatility, which we will denote by

σm = 1/E[ef
2(Y )] = 1/E[e2Y ] = e−m−ν

2
= 0.25; where Y is a Gaussian random variable with

mean m and variance ν2. The distribution of this random variable is the stationary distribution

of the process (Yt)t≥0; see (5.22). [Note that σm is very close in value to E[f(Y )] = E[e−Y ] =

e−m+ν2/2 = 0.26.]

In our numerical procedure we use a bounded region for Y and impose reflecting boundary conditions.

However, f(Yt) is not bounded and not bounded away from zero. On the other hand, the invariant

distribution of the process Y is Gaussian with mean 1.364, and variance 0.152. So it is with very small

probability that Yt is negative or very large. Therefore, the fact that f(Yt) is not bounded or bounded

away from zero does not affect the accuracy of our numerical work in a significant way.

Observation 1. We give a three-dimensional graph of the minimum probability of ruin and the optimal

investment strategy in Figure 1, which are computed using MCAM. Here the speed of mean reversion

is 0.5, ρ = 0, and only one factor is used. In our experiments we observed the optimal strategy π∗ is

positive (no-shortselling). As expected we observe that w → ψ(w, y) is convex and decreasing. Note that

f(y)→ ψ(w, y) is increasing. Also, f(y)→ π∗(w, y) is decreasing; however, it is not necessarily true that

w → π∗(w, y) is decreasing. The latter behavior depends on the value of y.

The probability of ruin does not depend on the sign of the correlation, ρ, between the Brownian

motions driving the stock and the one driving the volatility. The larger the magnitude of ρ, the larger

the probability of ruin. However, the minimum probability of ruin is quite insensitive to the changes in

ρ; see Figure 2.

Observation 2. We compare the optimal investment strategy π∗(w, y, z) in (4.14) to

π̃(w;σ) =
µ− r
σ2

c− rw
(p− 1)r

,

in which

p =
1

2r

[
(r + λ+ s) +

√
(r + λ+ s)2 − 4rλ

]
,

and

s =
1

2

(
µ− r
σ

)2

.

When we want to emphasize the dependence on σ, we will refer to p as p(σ). Young [14] showed that the

strategy π̃ is optimal when the volatility is fixed to be σ.

If only the fast factor is present and the speed of mean reversion is 250 (ε = 0.004), then ψ̂ε,δ in (5.56)

can be expressed as

ψ̂ε(w) = φ̂0,0(x)



21

whose inverse Legendre transform is

ψε(w;σm) =
(

1− r

c
w
)p(σm)

, (7.1)

which is exactly the minimal probability of ruin if the volatility were fixed at σm. Therefore, it is not

surprising that for very small values of ε, the minimum probability of ruin ψ(w, y), calculated using

MCAM, can be approximated by (7.1); see Figure 3-a. In our numerical calculations and in (7.1), we

observe that the minimum probability of ruin ψ does not depend on its second variable. This result is

intuitive, since when only the fast factor is present whatever the initial value of σ0 is, the volatility quickly

approaches its equilibrium distribution (which is Gaussian with mean σm). In fact π0(w;σm) practically

coincides with the optimal investment strategy π∗, which is computed using MCAM; see Figure 3-b.

The most important conclusion from Figure 3-b is that it is not necessarily true that the optimal

investment strategy when there is stochastic volatility is more or less than the optimal investment strategy

when the volatility is constant. Comparing π̃(w;σ) and π∗(w,− ln(σ)) for different values of σ, we see

that π∗(w,− ln(σ)) < π̃(w;σ) for larger values of σ, whereas the opposite inequality holds for smaller

values of σ. The investment amount decreases significantly as the volatility increases.

If only the slow factor is present and the speed of mean reversion is 0.02, then

ψδ(w, z) =
(

1− r

c
w
)p(e−z)

, (7.2)

approximates the minimum probability of ruin ψ(w, z), which we calculate using MCAM, quite well;

compare ψ(w,−ln(σ)) and ψδ(w,−ln(σ)) for different values of σ in Figure 4-a. We also compare π̃(w;σ)

and π∗(w,−ln(σ)) for several values of σ and draw the same conclusions as before. Also note that the

optimal investment strategy is not necessarily a decreasing function of wealth.

When we take the speed of mean reversion to be 0.2 (medium speed), then the probability of ruin

starts diverting from what (7.1) or (7.2) describes; see Figure 5-a. As to the comparison of the optimal

investment strategy with π̃(w;σ), the same conclusions can be drawn; see Figure 5-b.

Observation 3. We compare the performance of several investment strategies in the stochastic volatility

environment. Let σ0 be the initial volatility. We denote by πM the strategy when one only invests in

the money market. The corresponding probability of ruin can be explicitly computed as ψM (w) =

(1− c/rw)1∨[λ/r]. We will also denote πa(w) = π̃(w;σ0), πb = π̃(w;σm), and

πc(w, y, z) =
µ− r
f2(y, z)

c− rw
(p− 1)r

. (7.3)

We let πε(w) denote the approximation to the optimal strategy we obtained in Section 5.1 when we only

use the ε-perturbation. Similarly, we let πδ(w, z) be the approximation to the optimal strategy when we

only use the δ-perturbation.

We obtain the probability of ruin corresponding to a given strategy π by solving the linear partial

differential equation Dπv = 0, (see (3.1) for the definition of the differential operator Dπ) with boundary

conditions v(0, y, z) = 0 and v(c/r, y, z) = 1. (This computation uses the MCAM without iterating.)

In Figure 6 we observe that the performance of πc and πε are almost as good as the optimal strategy

π∗. (Here we are considering a medium mean reversion speed. When the mean reversion speed is much
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smaller, then πδ would be a better investment strategy.) Moreover, their performances are robust, in

that, they do not depend on the initial volatility σ0. This should be contrasted to πa and πb. The former

performs relatively well when σ0 is small, whereas the latter performs better when σ0 is large. When

σ0 = σm, all strategies perform as well as the optimal strategy. Also, observe that for wealthy or very

poor individuals the choice of the strategy does not matter as long as they invest in the stock market.

The difference is for the individuals who lie in between.

As a result, we conclude that if the individual wants to minimize her probability of ruin in a sto-

chastic volatility environment, she can still use the investment that is optimal for the constant volatility

environment. She simply needs to update the volatility in that formula whenever the volatility changes

significantly.

References

[1] Erhan Bayraktar, Kristen S. Moore, and Virginia R. Young. Minimizing the probability of lifetime

ruin under random consumption. North American Actuarial Journal, 12(4):384–400, 2008.

[2] Erhan Bayraktar and Virginia R. Young. Correspondence between lifetime minimum wealth and

utility of consumption. Finance and Stochastics, 11(2):213–236, 2007.

[3] Erhan Bayraktar and Virginia R. Young. Minimizing the probability of lifetime ruin under borrowing

constraints. Insurance: Mathematics and Economics, 41(1):196–221, 2007.

[4] Erhan Bayraktar and Virginia R. Young. Minimizing the probability of ruin when consumption is

ratcheted. North American Actuarial Journal, 12(4):428–442, 2008.

[5] Erhan Bayraktar and Virginia R. Young. Optimal deferred life annuities to minimize the probability

of lifetime ruin. North American Actuarial Journal, 13(1):141–154, 2009.

[6] Erhan Bayraktar and Virginia R. Young. Proving regularity of the minimal probability of

ruin via a game of stopping and control. Preprint, University of Michigan. Available at

http://arxiv.org/abs/0704.2244, 2009.

[7] Jean-Pierre Fouque, George Papanicolaou, and K. Ronnie Sircar. Derivatives in Financial Markets

with Stochastic Volatility. Cambridge University Press, Cambridge, 2000.

[8] Jean-Pierre Fouque, George Papanicolaou, Ronnie Sircar, and Knut Solna. Multiscale stochastic

volatility asymptotics. SIAM J. Multiscale Modeling and Simulation, 2:22–42, 2003.

[9] Mattias Jonsson and K. Ronnie Sircar. Partial hedging in a stochastic volatility environment. Math-

ematical Finance, 12(4):375–409, 2002.

[10] Harold J. Kushner. Consistency issues for numerical methods for variance control, with applications

to optimization in finance. IEEE Transactions on Automatic Control, 44(12):2283–2292, 1999.

[11] Harold J. Kushner and Paul Dupuis. Numerical methods for stochastic control problems in continuous

time, volume 24 of Applications of Mathematics (New York). Springer-Verlag, New York, second

edition, 2001. Stochastic Modelling and Applied Probability.

[12] Moshe A. Milevsky, Kristen S. Moore, and Virginia R. Young. Asset allocation and annuity-purchase

strategies to minimize the probability of financial ruin. Mathematical Finance, 16(4):647–671, 2006.

[13] Kristen S. Moore and Virginia R. Young. Optimal and simple, nearly optimal rules for minimizing

the probability of financial ruin in retirement. N. Am. Actuar. J., 10(4):145–161, 2006.



23

[14] Virginia R. Young. Optimal investment strategy to minimize the probability of lifetime ruin. North

American Actuarial Journal, 8(4):105–126, 2004.



24

(a) Minimum probability of ruin

(b) Optimal investment strategy

Figure 1. Minimum probability of ruin and optimal strategy computed by MCAM. Speed

of mean reversion= 0.5.
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(a) Probability of ruin at σ0=0.6

(b) Probability of ruin at σ0= σm=0.25

(c) Probability of ruin at σ0=0.1

Figure 2. Variations of the minimum probability of ruin with respect to ρ. Speed of

mean reversion= 0.5.
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(a) Minimum probability of ruin

(b) Optimal investment strategy

Figure 3. Stochastic volatility versus constant volatility environment. Speed of mean

reversion=250.



27

(a) Minimum probability of ruin

(b) Optimal investment strategy

Figure 4. Stochastic volatility versus constant volatility environment. Speed of mean

reversion=0.02.
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(a) Minimum probability of ruin

(b) Optimal investment strategy

Figure 5. Stochastic volatility versus constant volatility environment. Speed of mean

reversion=0.5.
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Figure 6. Performance of the investment strategies described in Observation 3 (of Secion

7). Speed of mean reversion=0.2. Correlation ρ = 0.5. Initial volatility σ0 = 0.6.
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Figure 7. Performance of the investment strategies described in Observation 3 (of Secion

7). Speed of mean reversion=0.2. Correlation ρ = 0.5. Initial volatility σ0 = σm = 0.25.
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Figure 8. Performance of the investment strategies described in Observation 3 (of Secion

7). Speed of mean reversion=0.2. Correlation ρ = 0.5. Initial volatility σ0 = 0.1.
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