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Nonuniversal distributions of stock returns in an emerging market
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There is convincing evidence showing that the probability distributions of stock returns in mature
markets exhibit power-law tails and both the positive and negative tails conform to the inverse cubic
law. It supports the possibility that the tail exponents are universal at least for mature markets in
the sense that they do not depend on stock market, industry sector, and market capitalization. We
investigate the distributions of one-minute intraday returns of all the A-share stocks traded in the
Chinese stock market, which is the largest emerging market in the world. We find that the returns
can be well fitted by the q-Gaussian distribution and the tails have power-law relaxations with the
exponents fluctuating around α = 3 and being well outside the Lévy stable regime for individual
stocks. We provide statistically significant evidence showing that the exponents logarithmically
decrease with the turnover rate and increase with the market capitalization, and find that the
market capitalization has a greater impact on the tail exponent than the turnover rate. Our findings
indicate that the intraday return distributions are not universal in emerging stock markets.

PACS numbers: 89.65.Gh, 89.75.Da, 05.45.Tp

I. INTRODUCTION

The logarithmic return of stock price S(t) over a time
interval ∆t is defined as follows,

r(t) = lnS(t)− lnS(t−∆t). (1)

The form of the distribution of asset price fluctuations
plays crucial roles in asset pricing and risk management
[1–3]. Early empirical and theoretical works, which can
be traced back to Bachelier in 1900 [4], argue that as-
set prices follow geometric Brownian motions, i.e., the
returns are normally distributed [4, 5]. More than half
a century after Bachelier’s work, Mandelbrot finds that
incomes and speculative price returns follow the Pareto-
Lévy distribution, which has power-law tails

f(|r|) ∼ |r|−α−1, (2)

whose exponents 1 < α < 2 [6]. The picture of Paretian
markets soon becomes the mainstream [7].
In recent years, the Boston school shows that the tail

distributions of returns of many stock indexes and stock
prices for the USA markets exhibit an inverse cubic law,
where the power-law exponents are close to α = 3 [8–10].
A lot of empirical investigations have been conducted on
financial returns at different time scales ∆t in different
stock markets over different time periods, in which the
distributions vary from exponential to stretched expo-
nential to power-law fat-tailed [11–17]. This miscella-
neous phenomenon is rational since the tails are expected
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to evolve from power law at small time scale to Gaussian
at large scale [18], according to the variational theory for
turbulent signals [19], which has been confirmed by nu-
merous studies [9, 10, 20]. Note that the stretched expo-
nential distribution serves as a bridge between exponen-
tial and power-law distributions [11, 20]. Under certain
conditions the stretched exponential density approaches
to a power law, which is also supported by empirical ev-
idence [3, 21].
For intraday returns, the prevailing point is that the

distributions have power-law tails outside the Lévy sta-
ble regime. Many efforts have been made to explain this
power-law behavior. Base on ultra-high-frequency data,
some researchers argue that large price fluctuations are
caused by large trading volume [22], while some others
submit that news and volume plays a minor role and
the shortage of liquidity is the main cause [23]. The
non-Gaussian behavior of stock prices can also be ex-
plained by the mixture-of-distribution hypothesis [17, 24]
or nonextensive statistical mechanics [14, 25]. In addi-
tion, different classes of microscopic stock market models
are also able to reproduce the power-law tailed distribu-
tions [26].
Despite the variation of tail exponents reported in

the econophysics literature, there is convincing evidence
showing that the tail exponents for stocks in western
mature markets are possibly universal based on a care-
ful study of the trade-by-trade data of 1000 major USA
stocks, 85 major stocks traded on the London Stock Ex-
change which form part of the FTSE 100 index, and 13
major stocks traded on the Paris Bourse that form part
of the CAC 40 index [27]. It shows that the exponent
values are α ≈ 3 for the three markets and do not dis-

http://arxiv.org/abs/1003.5984v1
mailto:wxzhou@ecust.edu.cn


2

play variations with respect to market capitalization or
industry sector.
In this paper, we investigate the distributions of one-

minute intraday returns of all the A-share stocks traded
in the Chinese stock market, which is the largest emerg-
ing market in the world. Our aim is to test the possible
dependence of the tail exponents on the turnover rate
and market capitalization. There is statistically signifi-
cant evidence showing that the exponents increase with
market capitalization and decrease with turnover rate. It
indicates that, different from developed markets, the in-
traday return distributions are not universal in emerging
stock markets.

II. DATA SETS

We employ a nice tick-by-tick database of the A-share
stocks for all companies traded on the Shenzhen Stock
Exchange and the Shanghai Stock Exchange from Jan-
uary 2004 to June 2006. The data were recorded based
on the market quotes disposed to all traders in every six
to eight seconds, which are different from the ultrahigh-
frequency data reconstructed from order flows [28].
We compute the one-minute intraday returns for each

stock. We emphasize that the intraday returns are cal-
culated within individual trading days to eliminate the
overnight effect [15, 29]. For each stock, the one-minute
returns are normalized so that the mean is 0 and the
variance is 1.

III. DEPENDENCE OF RETURN
DISTRIBUTIONS ON TURNOVER RATE

We investigate the possible impact of the turnover rate
on the distribution of stock returns, especially on the
power-law tail exponent. For each stock, we first calcu-
late the total traded value of all trades in each minute

v =
n
∑

i=1

vipi, (3)

where n is the number of trades, vi is the size of the i-th
trade, and pi is the price of the i-th trade. The 1-min
average traded value 〈v〉 is the average over all 1-min
time interval for the stock and the 1-min turnover rate is
calculated by the ratio of average traded values to market
capitalization.
We sort all the stocks according to their 1-min turnover

rates and partition them into 20 groups, ensuring that the
groups contain almost identical number of stocks. The
1-min returns of the stocks in the same group are pooled
as one sample. Figure 1 shows the empirical distribu-
tions of stock returns for the 20 groups. We find that
all these distributions share a qualitatively similar shape
with fat tails. A careful scrutiny shows that the curves
are not smooth around r = 0. This is due to the fact

that the prices of individual stocks have a tick size [10].
This phenomenon disappears when we investigate stock
indices [9].
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FIG. 1. (Color online) Empirical distributions of 1-min stock
returns for the 20 groups partitioned based on the average
turnover rate.
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FIG. 2. (Color online) Dependence of the exponent α esti-
mated from the q-Gaussian function with respect to the aver-
age turnover rate 〈v/c〉. The solid line gives the logarithmic
regression α = A + B ln〈v/c〉, where B = −0.09 ± 0.03 and
R2 = 0.40.

For the 1-min returns of Chinese stocks, the distribu-
tions can be well fitted by Student’s t-distribution [16]

ft(r) =
√
Lnn/2/B

(

1

2
,
n

2

)

(

α+ Lr2
)

−(α+1)/2
, (4)

where B(·, ·) is the “beta function”, L is the scale pa-
rameter, and α is the degrees of freedom. The Student
distribution is also known as the q-Gaussian distribution
in nonextensive statistical mechanics [14, 30]. We fit the
20 curves using Eq. (4) and plot the estimated exponent
α as a function of 〈v/c〉 in Fig. 2. We adopt a logarithmic
form

α = A+B ln〈v/c〉, (5)
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and a linear regression gives B = −0.09 ± 0.03, where
the error is determined according to the standard t-test
at the 5% significance level. There is a decreasing trend
between α and 〈v/c〉.
The estimates of the tail exponents based on the fitting

of the q-Gaussian function might be biased since the bulk
of the distribution with not large returns has dominat-
ing impact on the objective function of the fitting. We
thus use a well designed method proposed for estimating
tail exponents, which is known as the CSN method [31].
We briefly review the idea of the CSN method for pos-
itive returns, which can be easily extended to negative
returns. The CNS method has a promising advantage
to determine the cutoff rmin in an objective way. After
the cutoff rmin is determined, the tail exponent of the re-
turns r > rmin can be determined based on the maximal
likelihood estimation [31],

α = N

N
∑

j=1

ln
rj

rmin − 0.5
, (6)

where N is the number of returns r that are no less than
rmin. In order to determine rmin, one needs to scan differ-
ent values of r to determine the corresponding parame-
ters and obtain the Kolmogorov-Smirnov or KS statistics.
The optimal cutoff rmin is the one that minimizes the KS
statistic.
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FIG. 3. (Color online) Dependence of the tail exponents of
positive and negative returns for the 20 groups as a function of
the 1-min average turnover rate 〈v/c〉. The solid lines are the
best fits of α = A+B ln 〈v/c〉, where B = −0.15±0.04 for the
positive tails with the p-value equaling to 0 and R2 = 0.45,
and B = −0.20 ± 0.02 for the negative tails with the p-value
equaling to 0 and R2 = 0.84, respectively.

Figure 3 shows the dependence of the tail exponents
of positive and negative returns for the 20 groups as a
function of the 1-min average trading value. We fit the
data to the logarithmic function (5) and obtain that B =
−0.15 ± 0.04 for the positive tails with R2 = 0.45 and
B = −0.20± 0.02 for the negative tails with R2 = 0.84,
respectively. We find that the tail exponents decrease
with the turnover rate. For the positive return curve,

there are two outliers that deviate remarkably from the
linear trend. If we discard these two points, the results
for positive and negative returns are very similar.
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FIG. 4. (Color online) Dependence of the tail exponents of
returns for individual stocks as a function of the 1-min average
turnover rate 〈v/c〉. The solid lines are the best fits of α =
A+B ln 〈v/c〉, where B = −0.23 ± 0.03 for the positive tails
with the p-value equaling to 0 andR2 = 0.07 and B = −0.24±
0.03 for the negative tails with the p-value equaling to 0 and
R2 = 0.08, respectively. The dashed line is α = 2.

We also apply the CSN method to the returns of indi-
vidual stocks and the exponents of positive and negative
tails are calculated. The dependence of the tail expo-
nents of returns for individual stocks as a function of the
1-min turnover rate is presented in Fig. 4. Fitting the
data to Eq. (5), we have B = −0.23 ± 0.03 for the pos-
itive tails with R2 = 0.07 and B = −0.24± 0.03 for the
negative tails with R2 = 0.08, respectively. Although the
R-square values are small, the slopes B are significantly
different from 0, which implies that the tail exponents do
depend on the turnover rate. In addition, we find that
the positive and negative tails are roughly symmetric.
All the results presented above show that the tails are

fatter with smaller exponents α for larger turnover rates.
This is consistent with the conventional wisdom that a
stock with high turnover rate is riskier and has higher
volatility. Usually, stocks with small market capitaliza-
tion have higher turnover rates, which is especially true
for the Chinese stock market. Therefore, it is possible
that market capitalization may also have an important
impact on the heaviness of the return tails.

IV. DEPENDENCE OF RETURN
DISTRIBUTION ON MARKET

CAPITALIZATION

We now investigate the possible impact of market cap-
italization on the distribution of stock returns, especially
on the power-law tail exponent. We note that the own-
ership of stock shares is split and only about one-third of



4

the total outstanding shares are tradable in the market
during the time period under investigation. The market
capitalization is calculated as the product of the out-
standing tradable shares and the price at the beginning
of the database records.
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FIG. 5. (Color online) Empirical distributions of 1-min stock
returns for the 20 groups partitioned based on the average
market capitalization.

We sort all the stocks according to their market cap-
italization and partition them into 20 groups, ensur-
ing that the groups contain almost identical number of
stocks. The 1-min returns of the stocks in the same group
are pooled as one sample. Figure 5 shows the empirical
distributions of stock returns for the 20 groups with dif-
ferent average market capitalization. It is found that the
shape of the curves is very similar to that in Fig. 1. Com-
paring Fig. 5 and Fig. 1, we observe that the curves in
Fig. 5 are less collapsed with each other. It can be con-
jectured that the correlation between tail exponent and
market capitalization is stronger than the turnover rate,
which is exactly the case as we will show below.
We estimate the tail exponents using the q-Gaussian

model and the CSN method as in Sec. III. For each group
of stocks, we obtain three exponents. Figure 6 illustrates
the dependence of the tail exponents of 1-min returns
for the 20 groups as a function of the average market
capitalization. We observe that all the three exponents
exhibit an increasing linear trend in semi-logarithmic co-
ordinates. To fit the three curves, we adopt a logarithmic
function

α = A+B ln〈c〉. (7)

Linear regressions of α with respect to ln c give that B =
0.04 ± 0.02 with R2 = 0.32 for the q-Gaussian model,
B = 0.15±0.02 with R2 = 0.80 for the positive tails, and
B = 0.14 ± 0.02 with R2 = 0.76 for the negative tails,
respectively. Comparing with the results in Sec. IV, the
R-square values in the present case are much larger and
the slopes are all significantly different from 0 according
to the t-tests. In other words, the tails for small-cap
stocks are fatter than large-cap stocks. This finding is
consistent with the conventional wisdom in finance that

small-cap stocks are riskier and have more occurrences of
large price fluctuations.
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FIG. 6. (Color online) Dependence of the tail exponents of
returns for the 20 groups as a function of the average market
capitalization. The tail exponents are estimated from the q-
Gaussian model and the CSN method. The three sets of data
points are fitted to the logarithmic function (7). We obtain
that B = 0.04 ± 0.02 with R2 = 0.32 for the q-Gaussian
model, B = 0.15 ± 0.02 with R2 = 0.80 for the positive tails,
and B = 0.14 ± 0.02 with R2 = 0.76 for the negative tails,
respectively.
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FIG. 7. (Color online) Dependence of the tail exponents of
returns for individual stocks as a function of the market cap-
italization. The solid lines are the best fits of α = A+B ln c,
where B = 0.22 ± 0.02 for the positive tails with R2 = 0.10
and B = 0.22 ± 0.03 for the negative tails with R2 = 0.12,
respectively.

We also apply the CSN method to the returns of indi-
vidual stocks and the exponents of positive and negative
tails are calculated. Figure 7 shows the dependence of
the tail exponents of returns for individual stocks as a
function of the average market capitalization. Fitting
the data to Eq. (7) where 〈c〉 is replaced by c, we have
B = 0.22± 0.02 for the positive tails with R2 = 0.10 and
B = 0.22 ± 0.03 for the negative tails with R2 = 0.12,
respectively. We find that the slopes B are significantly
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different from 0. We also observe that the B values in
Fig. 7 for individual stocks are larger than those in Fig. 6
for grouped stocks. In addition, we find that the positive
and negative tails are roughly symmetric.

V. BIVARIATE REGRESSION

In Sec. III and Sec. IV, we have shown that the tail
exponents are dependent of the average turnover rates
and the market capitalization in logarithmic forms. It
is thus natural to combine these results and suggest a
bivariate logarithmic function as follows

α = A+Bv/c ln〈v/c〉+Bc ln c. (8)

This test can only be done for individual stocks since
the two grouping methods in the previous sections are
different.
We perform linear least-squares regressions for positive

and negative tails. The estimated parameters for positive
tails are obtained that A = −1.13±0.41, Bv/c = −0.07±
0.04, and Bc = 0.18± 0.03, whose R-square is R2 = 0.11
and the p-values are 0.006, 0.077, and 0, respectively.
For negative tails, the parameters are A = −1.23± 0.39,
Bv/c = −0.06 ± 0.03, and Bc = 0.19 ± 0.03, whose R-

square is R2 = 0.13 and the p-values are 0.001, 0.066,
and 0, respectively. A comparison of the three regression
models expressed in Eqs. (5), (7) and (8) is presented in
Table I.

TABLE I. Comparison of the three regression models pre-
sented in Eqs. (5), (7) and (8). The number of stars in the
superscript of a coefficient indicates its significance level: ∗∗∗
for 1% and ∗ for 10%.

Positive tail Negative tail
Eqn Bv/c Bc R2 Bv/c Bc R2

(5) −0.23∗∗∗ / 0.07 −0.24∗∗∗ / 0.08
(7) / 0.22∗∗∗ 0.10 / 0.22∗∗∗ 0.12
(8) −0.07∗ 0.18∗∗∗ 0.11 −0.06∗ 0.19∗∗∗ 0.13

The bivariate regression results are consistent with
those in the univariate regressions. That is, the tail ex-
ponents increase with market capitalization and decrease
with turnover rate. For both univariate model (7) and
bivariate model (8), the coefficients of market capitaliza-
tion are significant at the 1% level. The coefficients of
turnover rate are significant at the 1% level in the uni-
variate model (5) and significant only at the 10% level in
the bivariate model (8). In addition, the introducing of
ln c in model (5) improves its explanatory power (char-
acterized by R2) by 4% to 5%, while introducing ln〈v/c〉
in model (7) improves its explanatory power by 1%. All
these findings imply that market capitalization is a more
significant influencing factor of the tail heaviness.
A simple manipulation of Eq. (8) reads

α = A+ Bv/c ln〈v〉+ (Bc −Bv/c) ln c, (9)

which means that the average traded value might also
have an impact on the tail heaviness. We have investi-
gated the univariate model by posing Bc − Bv/c = 0 in
Eq. (9), that is

α = A+B ln〈v〉, (10)

We partition the stocks into 20 groups according to
their 1-min average traded values. From the q-Gaussian
model, we find that B = −0.06 ± 0.04 with R2 = 0.12.
In contrast, the CSN method gives that B = 0.01± 0.02
with R2 = 0.02 for positive tails and B = 0.02 ± 0.02
with R2 = 0.03 for negative tails. For individual stocks,
we have B = 0.16± 0.03 with R2 = 0.03 for positive tails
and B = 0.17 ± 0.03 with R2 = 0.04 for negative tails.
Different from the results of turnover rate and market
capitalization, the results of average traded value from
different method are inconsistent with each other.

VI. CONCLUSION

We have investigated the distributions of one-minute
intraday returns of all the A-share stocks traded in the
Chinese stock market, which is the largest emerging mar-
ket in the world. The returns are standardized to have
zero mean and unit variance. We studied the possible im-
pact of the turnover rate and the market capitalization
on the return distributions with special attention paid to
the tail behavior.

For individual stocks, the returns are found to have
power-law tails. Basically, the tail exponents fluctuate
around α = 3, ranging from α = 2 to α = 5. It indicates
that the return distributions of individual Chinese stocks
are well outside the Lévy stable regime. When the stocks
are grouped according to their turnover rates, market
capitalization or traded values, the returns in each group
can be well fitted by the q-Gaussian formula.
We found from different methods that the tail expo-

nents logarithmically decrease with the turnover rate and
increase with the market capitalization and the market
capitalization has a greater impact than the turnover
rate. These observations are consistent with the fact that
a stock is riskier and has fatter tails when its capitaliza-
tion is small and it has higher turnover rate. However, we
did not find convincing evidence for the impact of traded
value on the tail behavior. We conclude that the intraday
return distributions are not universal in emerging stock
markets, which is different from the universal tail distri-
bution for stocks in developed western stock markets.
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