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Abstract

In this paper, we discuss the Cramér-Lundberg model with investments,

where the price of the invested risk asset follows a geometric Brownian motion

with drift a and volatility σ > 0. By assuming there is a cap on the claim

sizes, we prove that the probability of ruin has at least an algebraic decay rate

if 2a/σ2 > 1. More importantly, without this assumption, we show that the

probability of ruin is certain for all initial capital u, if 2a/σ2 ≤ 1.

1 Introduction

In the classical Cramér-Lundberg model, if the claim sizes have finite exponential
moments, then it is well-known that the ruin probability decays exponentially as the
initial surplus increases; see for instance the books by Asmussen [1] and Embrechts
et. al [2]. For the case of heavy-tailed claims there also exists numerous results in the

1

http://arxiv.org/abs/1003.0135v1


literature. However, when the insurance company invests in a risky asset, for example
a stock, whose price is described by a geometric Brownian motion with drift a > 0
and volatility σ > 0, then the probability of ruin either decays algebraically as the
initial surplus increases or the ruin is certain, provided the claim size is exponentially
distributed. This result was shown by Frolova et. al [3]. Under the assumption
that the claim size distributions have moment generating functions defined on a
neighborhood of the origin, Constantinescu and Thommann [4] proved that if the
probability of ruin decays as the initial capital u → ∞, then ρ = 2a

σ2 > 1, and that
if 1 < ρ < 2, then the probability of ruin decays algebraically as the initial capital
u → ∞. Furthermore, they conjectured that if ρ ≤ 1, then the ruin probability
ψ(u) = 1 for all u ≥ 0.

In this paper, our main goal is to prove that the conjecture is true. This work
was motivated by a paradox of risk without the possibility of reward discussed by
Steele [5]. In the setting of this paradox of risk, the price of a risky asset is modeled
by a geometric Brownian motion with an expected return rate a. Steele pointed out
that if ρ < 1, the price of the risky asset approaches to zero with probability one,
despite the fact that the expected value goes to positive infinity at an exponential
rate. We observe that if the price of our risky asset is very close to zero, then even a
small jump will trigger the ruin. Similarly, if the price of the risky asset drops below
a threshold with probability one and if there is a positive probability that the price
of the risky asset may have jumps larger than the threshold, then the ruin occurs
almost surely. If the jump is modeled by a compound Poisson process, then this leads
to the conjecture that is discussed in this paper.

We first recall the Cramér-Lundberg model with investments. The risk process is
given by

Xt = X0 +

∫ t

0

aXsdt+

∫ t

0

σXsdWs + ct−

N(t)
∑

j=1

ξj, (1.1)

or

dXt = (aXt + c)dt+ σXtdWt − dPt, (1.2)

where Wt is the Wiener process (standard Brownian motion), N(t) is a Poisson
process with parameter λ, and the claim sizes ξi; i = 1, 2, 3, ..., are independent,
identically distributed random variables, having the density function p(x), with pos-
itive mean µ and finite variance. c is the fixed rate of premium and X0 is the initial
capital. Pt =

∑N(t)
j=1 ξj. The capital Xt is continuously invested in a risky asset, with
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relative price increments dXt = aXtdt + σXtdWt, where a > 0 and σ > 0 are the
drift and volatility of the returns of the asset.

Our paper is organized as follows. By assuming there is a cap on the claim size,
in Section 2, we prove two important results that (1) the probability of ruin has at
least an algebraic decay rate if 2a/σ2 > 1 and (2) the price of the risky asset will drop
below a threshold with probability one for all initial capital X0 = u, if 2a/σ2 ≤ 1. In
Section 3, we prove that the conjecture is true by coupling the stochastic processes
with and without the assumption on the claim sizes.

2 Ruin Probability With A Cap On the Claim Size

We will assume the claim size is bounded by a constant M > 0 through the entire
section. In insurance, M can be understood as the limit or cap of a policy. Let
Tu∗ = inf{t > 0; Xt < u∗} be the first time that Xt < u∗, and let

ψu∗(u) = P (Tu∗ <∞ |X0 = u)

be the probability of ruin, where 0 ≤ u∗ < u. If u∗ = 0, we denote the probability of
ruin by ψ(u). We will discuss the probability of ruin on the Cramér-Lundberg model
with investments based on (1) ρ > 1, (2) ρ = 1 and (3) ρ < 1. We first prove the
following

Lemma 2.1. Let Xt be a stochastic process that satisfies (1.2), if 0 ≤ v ≤ u. then

ψ(v) ≥ ψ(u).

Proof. We first derive a strong solution for (1.2). Let Yt = exp{(σ
2

2
− a)t− σWt}.

By Itô’s formula [6], dXtYt = XtdYt + YtdXt + dXtdYt, and simple calculation yields
dXtYt = dVt

u, where Vt
u = u+ c

∫ t

0
Ys ds−

∫ t

0
Ys dPs. Integrating both sides, we have

XtYt = Vt
u. Hence

Xt = Y −1
t Vt

u (2.3)

is a strong solution of (1.1) and (1.2) with initial condition X0 = u.
Next we define Zt = Y −1

t Vt
v, then Zt ≤ Xt, ∀ t ≥ 0, since 0 ≤ v ≤ u. Hence

ψ(u) = P (Xt < 0, for some 0 < t <∞ |X0 = u)

≤ P (Zt < 0, for some 0 < t <∞ |Z0 = v).
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Note that Zt also satisfies (1.2) with initial condition Z0 = v. Hence

P (Zt < 0, for some 0 < t <∞ |Z0 = v) = ψ(v).

Therefore
ψ(v) ≥ ψ(u).

Our main tool is Itô’s formula for semimartingales with a jump part. Let t1 <
t2 < t3 < ... be the times where the Poisson process N(t) has a jump discontinuity.
Then the jump discontinuities for Pt are also at ti with jump size ξi. Following the
notations on P. 43 [6], for t > 0, and a Borel set U in R, we let

Np((0, t]× U) = ♯{i; ti ≤ t, ξi ∈ U}.

Then Np((0, t] × U) defines a random measure Np(dtdx) on the Borel σ-algebra on
[0,∞)× R. Note that

Np(dtdx) =

∞
∑

i=1

δti(dt)δξi(dx), (2.4)

where δti is the Dirac δ-function centered at ti (probability measure concentrated at
one point ti). It follows that

∫ t

0

∫ ∞

0

f(s, x)Np(dsdx) =
∑

i;ti≤t

f(ti, ξi), (2.5)

and therefore
∫ t

0

∫ ∞

0

xNp(dsdx) =
∑

i;ti≤t

ξi = Pt. (2.6)

It is well-known, see e.g. P. 60 and P. 65 [6], that there exists a continuous process
N̂p((0, t]× U) such that

Ñp((0, t]× U) = Np((0, t]× U)− N̂p((0, t]× U), (2.7)

is a martingale. In our case

N̂p((0, t]× U) = E[Np((0, t]× U)].

E[Np((0, t]×U)] defines a measure, np(dtdx), called the mean (intensity) measure of
Np(dtdx) and it is given by np(dtdx) = λp(x)dtdx.
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The equation (1.1) can be rewritten as

Xt = X0 +

∫ t

0

aXsdt+

∫ t

0

σXsdWs + ct−

∫ t

0

∫ ∞

0

xNp(dsdx). (2.8)

By (2.3), the equation (2.8) has a strong solution for each fixed initial condition and
it is a semimartingale by Definition 4.1, P. 64 [6].

By (2.3) and direct calculation, we have

Xt+s = Ȳ −1
t Xs + Ȳ −1

t

∫ t

0

cȲudu− Ȳ −1
t

∫ t

0

ȲudP̄u, (2.9)

where

Ȳt = e−(a−σ
2

2
)t−σW̄t , (2.10)

W̄t = Wt+s −Ws, (2.11)

P̄t = Pt+s − Ps. (2.12)

Note that W̄t and P̄t are independent of {Xv; 0 ≤ v ≤ s} and therefore given
{Xv; 0 ≤ v ≤ s}, Xt+s depends on Xs only. This implies that Xt is a Markov
process. Moreover, since W̄t = Wt+s −Ws and Wt have the same distribution, and
P̄t = Pt+s − Ps and Pt have the same distribution, we have

P (Xt+s ∈ U |Xs = x) = P (Xt ∈ U |X0 = x), (2.13)

for all t > 0, and all Borel sets U . Therefore, Xt, t ≥ 0 is a Markov process with
a stationary transition function. Since the sample paths of Xt are right continuous
with left limits, Xt, t ≥ 0 is a strong Markov process.

Theorem 2.1. Consider the model given by (1.1) and assume that σ > 0, ρ > 1 and
c > λµ. Then

ψ(u) ≤

(

M

u

)ρ−1

∀ u ≥M.

Remark 2.1. This theorem shows that the probability of ruin has at least an algebraic
decay rate if 2a/σ2 > 1. In fact, we obtain a slightly stronger result in the proof below:

ψM (u) ≤

(

M

u

)ρ−1

∀ u ≥M.
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Proof. Let F (x) = x1−ρ, x > 0. Applying Itô’s formula [6], we have

F (Xt)− F (X0) =

∫ t

0

(1− ρ)(Xs)
−ρ(aXs + c) ds+

∫ t

0

(1− ρ)(Xs)
−ρσXsdWs

+
1

2

∫ t

0

(1− ρ)(−ρ)(Xs)
−ρ−1σ2Xs

2 ds

+

∫ t+

0

∫ M

0

(Xs− − x)1−ρ − (Xs−)
1−ρ Np(dsdx),

Hence

F (Xt) = F (X0) +

∫ t

0

(1− ρ)(Xs)
−ρ(aXs + c) ds+ mart.

+
1

2

∫ t

0

(1− ρ)(−ρ)(Xs)
−ρ−1σ2Xs

2 ds

+

∫ t+

0

∫ M

0

(Xs− − x)1−ρ − (Xs−)
1−ρ Ñp(dsdx)

≤ F (X0) + mart. + c(1− ρ)

∫ t

0

(Xs)
−ρds

+

∫ t+

0

∫ M

0

(1− ρ)(Xs−)
−ρ(−x)λp(x)dxds, (2.14)

= F (X0) + mart. + (1− ρ)(c− λµ)

∫ t

0

(Xs)
−ρds, (2.15)

here, and through-out this paper, mart. denotes a martingale at time t. The in-
equality (2.14) holds because

(Xs− − x)1−ρ − (Xs−)
1−ρ ≤ (1− ρ)(Xs−)

−ρ(−x), ∀Xs− ≥M.

Now we consider the process Xt on [M,n), where n is an integer (> M). Let

τn = inf{t > 0 : Xt 6∈ [M,n)}

be the first exit time from the interval [M,n). By the Optional Stopping Theorem,
it follows that

E[F (Xτn)] ≤ E[F (X0)]. (2.16)
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Since ξj > 0 for all j = 1, 2, . . ., we have Xτn = n or Xτn < M . Moreover, since F (x)
is decreasing, we have

E[F (Xτn)] ≥
1

Mρ−1
P (Xτn < M |X0 = u) +

1

nρ−1
P (Xτn = n |X0 = u).

Hence

1

Mρ−1
P (Xτn < M |X0 = u) +

1

nρ−1
P (Xτn = n |X0 = u) ≤

1

uρ−1
.

Therefore

P (Xτn < M |X0 = u) ≤

(

M

u

)ρ−1

.

Let n go to infinity, we have

ψM (u) ≤

(

M

u

)ρ−1

.

Since ψ(u) ≤ ψM(u), we have

ψ(u) ≤

(

M

u

)ρ−1

∀ u ≥M.

The cases for ρ < 1 and ρ = 1 follow from the next two lemmas.

Lemma 2.2. Consider the model given by (1.1) and assume that σ > 0 and ρ < 1.
Then there exists u∗ > M, such that

ψu∗(u) = 1, ∀ u ≥ u∗.

Proof. Let F (x) = xα, x > M, where 0 < α < 1 − ρ. Applying Itô’s formula, we
have

F (Xt)− F (X0) =

∫ t

0

α(Xs)
α−1(aXs + c) ds+

∫ t

0

α(Xs)
α−1σXsdWs

+
1

2

∫ t

0

α(α− 1)(Xs)
α−2σ2Xs

2 ds

+

∫ t+

0

∫ M

0

(Xs− − x)α − (Xs−)
α Np(dsdx).

7



Hence

F (Xt) = F (X0) + mart. +

∫ t

0

α(Xs)
α−1(aXs + c) ds

+
1

2

∫ t

0

α(α− 1)(Xs)
α−2σ2Xs

2 ds

+

∫ t+

0

∫ M

0

(Xs− − x)α − (Xs−)
α Ñp(dsdx)

≤ F (X0) + mart. + α

∫ t

0

(Xs)
α

(

σ2

2
(ρ+ α− 1) + cX−1

s

)

ds,

∀ t ≥ 0. The above inequality holds because (Xs− − x)α ≤ (Xs−)
α, ∀Xs− ≥M.

Let u∗ = max(M, 2c/σ2(1− ρ− α)). We consider the process Xt on [u∗, n), where
n is an integer (> u∗), and let

τn = inf{t > 0 : Xt 6∈ [u∗, n)}

be the first exit time from the interval [u∗, n). Then

F (Xτn) ≤ F (X0) + mart. (2.17)

Taking expectation on both sides of the above inequality, and by the Optional Stop-
ping Theorem, we have

E[Xα
τn
] ≤ uα.

Since F (x) is increasing, we have

E[F (Xτn)] ≥ (u∗ −M)αP (Xτn < u∗ |X0 = u) + nαP (Xτn = n |X0 = u).

Hence

(u∗ −M)αP (Xτn < u∗ |X0 = u) + nαP (Xτn = n |X0 = u) ≤ uα.

Therefore
P (Xτn = n |X0 = u) ≤

(u

n

)α

.

Let n go to infinity, we have

ψu∗(u) = 1− lim
n→∞

P (Xτn = n |X0 = u) ≥ 1− lim
n→∞

(u

n

)α

= 1, ∀ u ≥ u∗.
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Lemma 2.3. Consider the model given by (1.1) and assume that σ > 0 and ρ = 1.
Then there exists u∗ > M + 3, such that

ψu∗(u) = 1 ∀ u ≥ u∗.

Proof. Let F (x) = ln ln x, x > M. Applying Itô’s formula, we have

F (Xt)− F (X0) =

∫ t

0

(Xs lnXs)
−1(aXs + c) ds+

∫ t

0

(Xs lnXs)
−1σXsdWs

+
1

2

∫ t

0

(− lnXs − 1)(Xs lnXs)
−2σ2Xs

2 ds

+

∫ t+

0

∫ M

0

[ln ln(Xs− − x)− ln lnXs−] Np(dsdx).

Hence

F (Xt) = F (X0) + mart. +

∫ t

0

(Xs lnXs)
−1(aXs + c) ds

+
1

2

∫ t

0

(− lnXs − 1)(Xs lnXs)
−2σ2Xs

2 ds

+

∫ t+

0

∫ M

0

[ln ln(Xs− − x)− ln lnXs−] Ñp(dsdx)

≤ F (X0) + mart. +

∫ t

0

(

cX−1
s −

σ2

2 lnXs

)

(lnXs)
−1ds.

The above inequality holds because ln ln(Xs− − x) ≤ ln lnXs−, ∀Xs− ≥M.
Now let ũ be the solution of σ2x = 2c lnx, and u∗ = max(M +3, ũ). We consider

the process Xt on [u∗, n), where n is an integer (> u∗), and let

τn = inf{t > 0 : Xt 6∈ [u∗, n)}

be the first exit time from the interval [u∗, n). Then we have

F (Xτn) ≤ F (X0) + mart. (2.18)

Taking expectation on both sides of the above inequality, and by the Optional Stop-
ping Theorem, we have

E[ln lnXτn ] ≤ ln ln u.

9



Since F (x) is increasing, we have

E[ln lnXτn ] ≥ ln ln(u∗ −M)P (Xτn < u∗ −M |X0 = u)

+ ln lnnP (Xτn = n |X0 = u).

Hence

ln ln(u∗ −M)P (Xτn < u∗ −M |X0 = u) + ln lnnP (Xτn = n |X0 = u) ≤ ln lnu.

Therefore

P (Xτn = n |X0 = u) ≤
ln ln u

ln lnn
.

Let n go to infinity, we have

ψu∗(u) = 1− lim
n→∞

P (Xτn = n |X0 = u) ≥ 1− lim
n→∞

ln ln u

ln lnn
= 1, ∀ u ≥ u∗.

3 Constantinescu and Thommann’s Conjecture

In this section, we will prove that the Constantinescu and Thommann’s Conjecture
is true.

Lemma 3.1. Let u∗ > 0 be any positive real number. Let M < ∞ be an essential
range for ξ1. Suppose ψu∗(u) = 1, for all u ≥ u∗. Then

ψK(u) = 1, ∀ u ≥ K = max(u∗ −
M

2
, 0).

Remark 3.1. u∗ > 0 in the above Lemma is any positive real number, it needs not
be the one defined in Lemma 2.2 or Lemma 2.3.

Proof. Our first step is to show that for any 0 < C1 < 1, there exists a β0 =
β0(M,C1) such that P

(

Xt ≤ u∗ + M
8
, ∀ 0 ≤ t ≤ β0 | X0 = u

)

≥ C1 > 0, for all u∗ ≥
u ≥ K.

Let Yt, Vt be the same as in lemma 2.1, and Xt = Y −1
t Vt

u the solution of (1.2).

Define Zt
u∗

= Y −1
t

(

u∗ + c
∫ t

0
Ys ds

)

. Since dZt
u∗

= (aXt + c)dt + σXtdWt, Zt
u∗

is a

diffusion process. By the continuity of Zt
u∗

, ∀ ǫ > 0, we have

P

(

lim
β→0

sup
0≤s≤β

|Zs
u∗

− u∗| < ǫ

)

= 1.
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Hence for the same ǫ > 0 and ∀ 0 < C1 < 1. ∃ β0 = β0(ǫ, C1) > 0, s.t.

P

(

sup
0≤s≤β0

|Zs
u∗

− u∗| < ǫ

)

≥ C1 > 0,

In particular, choose ǫ = M
8
, ∃ β0 = β0(M,C1) > 0, s.t.

P

(

Zt
u∗

≤ u∗ +
M

8
, ∀ 0 ≤ t ≤ β0

)

≥ C1 > 0.

Define Zt
u = Y −1

t

(

u+ c
∫ t

0
Ys ds

)

, then Zt
u∗

≥ Zt
u ≥ Xt, ∀ t ≥ 0, and

P

(

Xt ≤ u∗ +
M

8
, ∀ 0 ≤ t ≤ β0 | X0 = u

)

≥ P

(

Zt
u ≤ u∗ +

M

8
, ∀ 0 ≤ t ≤ β0

)

≥ P

(

Zt
u∗

≤ u∗ +
M

8
, ∀ 0 ≤ t ≤ β0

)

≥ C1 > 0,

∀ K ≤ u ≤ u∗.

Let δ be the time that the first jump occurs. Our next step is to show that there
exists C2 = C2(C1,M) > 0 such that

P (Xδ < K | X0 = u) ≥ C2 > 0, ∀ K ≤ u ≤ u∗.

Notes that ∀ K ≤ u ≤ u∗,

P

(

Xt ≤ u∗ +
M

8
, ∀ 0 ≤ t ≤ β0, δ < β0, ξ1 >

3M

4
| X0 = u

)

= P

(

Xt ≤ u∗ +
M

8
, ∀ 0 ≤ t ≤ β0 | X0 = u

)

P (δ < β0)P

(

ξ1 >
3M

4

)

≥ C1P (δ < β0)P

(

ξ1 >
3M

4

)

= C2 > 0,

since M is an essential range of ξ1 and therefore P (ξ1 >
3M
4
) > 0. On the other hand,

P

(

Xt ≤ u∗ +
M

8
, ∀ 0 ≤ t ≤ β0, δ < β0, ξ1 >

3M

4
| X0 = u

)

≤ P

(

Xt ≤ u∗ +
M

8
, ∀ 0 ≤ t < δ, δ < β0, ξ1 >

3M

4
| X0 = u

)

≤ P

(

Xδ ≤ u∗ +
M

8
−

3M

4
= u∗ −

5M

8
< u∗ −

M

2
≤ K | X0 = u

)

.
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Hence
P (Xδ < K | X0 = u) ≥ C2 > 0, ∀ K ≤ u ≤ u∗.

Our final step is to show that

ψK(u) = 1, ∀ u ≥ K = max(u∗ −
M

2
, 0).

Define

T1 =







inf{t > δ, Xt ≤ u∗}, if Xδ ≥ K

∞, if Xδ < K.

Note that the infimum of an empty set is ∞. But by the assumption ψu∗(u) = 1,
for all u ≥ u∗, we have T1 = ∞ if and only if Xδ < K. Let E = {Xt ≥ K, ∀ 0 ≤ t <
∞} and θs be the shift operator, then

P (E| X0 = u∗) = E[1E1T1<∞ | X0 = u∗] + E[1E1T1=∞ | X0 = u∗]

= E[1E1T1<∞ | X0 = u∗]

= E[1T1<∞θT1
[1E ] | X0 = u∗].

In what follows, we denote Ex[1E] = E[1E| X0 = x]. By the strong Markov property
of Xt, we have

E[1T1<∞θT1
[1E ] | X0 = u∗] = E[1T1<∞EXT1

[1E] | X0 = u∗]

≤ E [1T1<∞Eu∗ [1E ] | X0 = u∗]

= E[1T1<∞ | X0 = u∗]Eu∗ [1E]

≤ (1− C2)E[1E | X0 = u∗]

= P (E| X0 = u∗)(1− C2).

The first inequality holds since K ≤ XT1
≤ u∗ on {T1 <∞}. Hence we have

P (E| X0 = u∗) = P (E| X0 = u∗)(1− C2).

Therefore P (E| X0 = u∗) = 0, i.e. ψK(u
∗) = 1. Since u ≤ u∗, by Lemma 2.1,

ψK(u) ≥ ψK(u
∗) = 1.

The proof is completed.
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Theorem 3.1. Consider the model given by (1.1) and assume that σ > 0 and ρ ≤ 1.
Suppose also the jump distribution is bounded by an essential range M > 0. Then

ψ(u) = 1, ∀ u ≥ 0.

Proof. By Lemma 2.2, Lemma 2.3 and the strong Markov property of Xt, it is
sufficient to show that

ψ(u) = 1, ∀ 0 ≤ u ≤ u∗.

By Lemma 3.1, ψK1
(u) = 1, ∀ u ≥ K1 = max(u∗ − M

2
, 0). Applying Lemma 3.1

again, with u∗ replaced by K1, we have

ψK2
(u) = 1, ∀ u ≥ K2 = max(K1 −M, 0) = max(u∗ − 2

M

2
, 0).

Repeating this argument N = ⌈2u∗

M
⌉ times, we have

ψKN
(u) = 1, ∀ u ≥ KN = max(u∗ −N

M

2
, 0) = 0,

i.e.,
ψ(u) = 1, ∀ u ≥ 0.

Next, we will prove the conjecture true without assuming a cap on the claim size.

Theorem 3.2. Consider the model given by (1.1) and assume that σ > 0 and ρ ≤ 1.
Then

ψ(u) = 1, ∀ u ≥ 0.

Proof. Let M > 0 be a large constant, define

ξ̂i =







ξi, if ξi ≤ M

M, if ξi > M,

and P̂t =
∑N(t)

j=1 ξ̂j . Let Yt, Vt be the same as in Lemma 2.1, and Xt = Y −1
t Vt

u be the
solution of (1.2). Define

Zt = Y −1
t

(

u+ c

∫ t

0

Ys ds−

∫ t

0

Ys dP̂s

)

,

then Zt ≥ Xt, ∀ t ≥ 0. Hence

ψ(u) = P (Xt < 0, for some 0 < t <∞ | X0 = u) (3.19)

≥ P (Zt < 0, for some 0 < t <∞ | Z0 = u). (3.20)
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On the other hand, since dZt = (aXt + c)dt + σXtdWt − dP̂t, Zt satisfies (1.1) with
bounded claim size distribution. Hence, by Theorem 3.1,

P (Zt < 0, for some 0 < t <∞ | Z0 = u) = 1, ∀ u ≥ 0.

Therefore
ψ(u) = 1, ∀ u ≥ 0.
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