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Abstract

We present an approach to derivative exposure man-
agement based on subjective and implied probabili-
ties. We suggest to maximize the valuation difference
subject to risk constraints and propose a class of risk
measures derived from the subjective distribution.

We illustrate this process with specific examples for
the two and three dimensional case. In these cases
the optimization can be performed graphically.

1 Introduction

When using derivatives to create exposure to an un-
derlying asset one important question arises: Which
of the available and how many contracts should be
chosen? Or in other words, which exposure is most
desirable given a particular risk profile.

We believe that any proper exposure management
has to be based on a subjective probabilistic ap-
proach, incorporating all known information (and un-
certainty), not just historic estimates of statistical
parameters.

In the Subjective Approach to Finance [1] instru-
ment valuations are based on subjective information
and beliefs. These subjective valuations should then
be used together with the current market prices to
make investment decisions expressing how ones views
differ from the market implied distributions[2].

2 Notation

The probability of proposition A to be true, given
that B is true is denoted by P (A|B). A and B can
be composed of several propositions. I denotes the
available (subjective) background information.
Similarly, probability distributions are denoted by

p(Ax|B), where Ax is a proposition involving a con-
tinuous variable x.
Here we will be particularly concerned with the

asset price distribution at future times. We use the
notation At

x to represent the statement “The asset
price will be x at time t”. We may omit t if it is clear
from the context.

3 A generic procedure

In [1] a generic approach to exposure management in
the subjective and probabilistic frame-work was pre-
sented, which is developed here under the assumption
that all parameters except the final asset value are
known (in particular the interest rate and dividend
yield). Furthermore, we assume here that valuations
and probability distributions are independent of the
traded quantity.
Let pm(At

x) be the implied market distribution for
the value of an asset at time t— see e.g.[2] on how it is
defined and how it can be found. This market-implied
distribution is determined through, and hence com-
patible with, current market prices.
Our subjective beliefs about the final value are de-

scribed by a probability distribution p(At
x|I), where I
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indicates the information available to us. This proba-
bility distribution determines our valuations and per-
ceived risks.
Let us consider a set of N (European) deriva-

tives (over the same asset) with pay-off profiles fi(x)
(where x is the final asset value). The current market
price is then

V̄i = e−rt

∫
∞

0

pm(At
x) fi(x) dx (1)

and the subjective value of each instrument to us is

Vi = e−rt

∫
∞

0

p(At
x|I) fi(x) dx. (2)

The current portfolio market value for a portfolio
containing ni contracts of instrument i is then given
by

Π̄(n1, . . . , nN) =

N∑

i=1

niV̄i. (3)

On the other hand, our subjective valuation of this
portfolio is

Π(n1, . . . , nN) =

N∑

i=1

niVi. (4)

We argue that an investor should aim to maximize
the valuation difference

ξ(n1, . . . , nN ) = Π− Π̄, (5)

subject to risk constraints. Note that ξ is a linear
function of the ni.
A slightly degenerate case of this is the “market

knows best” case, where we adopt the market im-
plied distribution as the subjective probability distri-
bution. Hence the valuation difference vanishes and
we optimize risk parameters.

4 Possible risk measures

With x being the final asset value, let
Πf (x, n1, . . . , nN) =

∑N
i=1

nifi(x) be the final
portfolio value at expiry. The profit/loss is then

L(x, n1, . . . , nN )
def

= Πf − ertΠ̄ (6)

We are interested in risk measures related to the
profit/loss probability distribution p(Ll|I), where Ll

is the proposition that the profit/loss is l (in currency
terms).
Let us define the loss function

g(l)
def

= max(−l, 0). (7)

For each value of i the quantity1

ρi(n1, . . . , nN )
def

=

∫
∞

−∞

p(Ll|I) gi(l) dl (8)

can be seen as a risk measure. The higher i the
more the measure penalizes larger losses compared
to smaller losses.
For example, ρ0 is the probability of a realized loss

at expiry and ρ1 is the expected value of the loss.
From the linearity of the portfolio values (3) and

(4) it follows that

L(x, λn1, . . . , λnN ) = λL(x, n1, . . . , nN ), (9)

i.e. the profit/loss scales linearly with the num-
ber of contracts. Let L′

λl be the proposition that
L(x, λn1, . . . , λnN ) has the value λl. For λ ∈ R+ we
have

p(L′

λl|I)d(λl) = p(Ll|I)dl (10)

gj(λl) = λjgj(l) (11)

and hence

ρi(λn1, . . . , λnN ) = λiρi(n1, . . . , nN ). (12)

This corresponds to a simple radial dependence in
an N-dimensional spherical coordinate system. Hence
it is advantageous to consider the optimization prob-
lem in terms of the exposure radius

n =

√
√
√
√

N∑

i=1

n2
i (13)

and the exposure angles α1, . . . , αN−1, which cor-
respond to N -dimensional spherical coordinates for
n1, . . . , nN .

1Here we set g0(l)
def

= H(−l), where H is the Heaviside step
function.
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To maximize the valuation difference one proceeds
as follows: For each value of the exposure angles one
evaluates all ρj for which constraints are imposed.
If ρ0 does not satisfy an imposed constraint, then
these exposure angles are not feasible (because ρ0 is
independent of the exposure for n > 0). For all other
constraints evaluate the maximum possible exposure

nmax
j =

(
ρmax
j

ρj(α1, . . . , αn−1)

)1/j

(14)

and select the smallest.
As the risk measure is based on the subjective dis-

tribution function it is important that it does not
understate risks or overstate information. It must be
a rational judgement on the likelihood of all possible
outcomes. Expressing ones information and beliefs
in a subjective probability distribution is in itself a
challenging task and will be the subject of further
research.

5 The two-instrument case

This is the simplest possible case for two derivatives
with number of contracts n1 and n2. Let us introduce
polar coordinates by setting

n
def

=
√

n2
1 + n2

2 (15)

and defining the exposure angle α ∈ [0, π) such that2

n1 = n cos(α) n2 = n sin(α). (16)

Given risk constraints in form of maximum values
for ρi (for several i) we can calculate a maximum
allowed n for each exposure angle α. Furthermore,
for each exposure angle α we can calculate the valua-
tion difference ξ for this maximum possible exposure.
These quantities can then be plotted against the ex-
posure angle α to identify the optimal exposure pa-
rameters.
An example is presented below in figures 1 and 2.

For the implied and subjective probability distribu-
tion we use two uncertain variance distributions (see

2α is ill-defined for n = 0, but this case is easily treated
separately as it corresponds to no exposure at all.

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

x

implied dist
subj dist

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3 3.5 4

call
put

Figure 1: Pay-off profiles of the two instruments
and implied (blue) and subjective (red) probability
distributions.

Appendix A) with a log-normal distribution for the
variance. Both distributions differ in expected return
(higher in subjective distribution). The two instru-
ments considered here are the 100% call and the 80%
put. The first figure shows the implied and subjec-
tive probability distribution together with the pay-off
profile of the two instruments.
The second figure shows the maximum exposure

and valuation differences for the constraint ρ1 ≥
−0.1. From the graph we see that the maximum val-
uation difference is achieved for α ≈ 286 deg with
an exposure of n = 2.38. This corresponds to the
following number of contracts:

n1 = 2.38 cos(286 deg) = 0.66

n2 = 2.38 sin(286 deg) = −2.29

Hence one should short 2.29 puts (80% strike) and
buy 0.66 calls (100% strike).

6 Three instrument case

In the three dimensional case we can use ordinary
spherical coordinates defined through

n1 = n cos(α1)
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Figure 2: The first graph shows the risk measure ρ0 and ρ1 for n = 1. The second graph shows the maximum exposure for
ρ1(n) ≥ −0.1, which corresponds to ρ1(n) = 0.1. The third graph then shows the achievable valuation difference under this
constraint. The last graph shows the logarithm of the risk measures ρ2 and ρ3 for n = 1. Here no constraint has been imposed
on these two measures. However, large values indicate higher tail risks.
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Figure 3: Pay-off profiles of the three instruments
and implied (blue) and subjective (red) probability
distributions.

n2 = n cos(α2) sin(α1)

n3 = n sin(α2) sin(α1)

where α1 ∈ [0, π] and α2 ∈ [0, 2π). This implies

n =
√

n2
1 + n2

2 + n2
3. (17)

Note that in this parameterization the two instru-
ment case (for instruments 2 and 3) is recovered for
α1 = π/2.
The maximum achievable valuation difference is

now a function of the exposure angles α1 and α2.
This function can be plotted as a heat or contour
map for graphical optimization.
Figures 3 and 4 extend the previous example to the

three instrument case by adding the 100% put (and
leaving the distributions unchanged).
From figure 4(a) we can see that the maximum

valuation difference is achieved for

α1 ≈ 80 deg α2 ≈ 284 deg (18)

with an exposure of n ≈ 3.14. This corresponds to
n1 = 0.55, n2 = 0.75, and n3 = −3.
Note how adding an extra instrument improves the

achievable valuation difference from the two dimen-
sional case. In fact, as the two dimensional case is a

subset of the considered exposures this must be the
case.

7 Generic N-dimensional case

While it is more difficult to represent this case graph-
ically, one can still follow the generic procedure. We
introduce hyper-spherical coordinates

n1 = n cos(α1)

nj = n cos(αj)Π
j−1

k=1
sin(αk)

nN = nΠN−1

k=1
sin(αk)

where

αj ∈ [0, π] for 1 ≤ j < N

αN ∈ [0, 2π)

As there are now at least three exposure angles in-
volved, the optimization cannot simply be performed
graphically in the parameter space. However, there
are a number of options. Firstly, brute force com-
putation of all possible options (on a discrete grid)
and selection of the optimum may be viable for lower
resolution and dimensionality. Secondly, a genetic al-
gorithm could be used.

8 Conclusion

We presented a generic approach to derivative ex-
posure management for one underlying asset. We
suggest to maximize the valuation difference (be-
tween subjective and market valuation) under risk
constraints.
A class of risk measures based on the expected

value of powers of the loss function was introduced.
Higher powers of the loss function penalize more for
the possibility of higher losses.
We illustrated this procedure for the two and three

instrument case. In these cases the optimization
can be performed graphically. One plots the max-
imum achievable valuation difference for each com-
bination of exposure angles and selects the highest
value compatible with any other potential risk con-
straints (which can be plotted in similar graphs).
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Figure 4: Valuation difference and exposure for the three instrument case. The maximum valuation difference is achieved for
α1 ≈ 80 deg, α2 ≈ 284 deg with an exposure of n ≈ 3.14.
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Above approach can in principle be generalized to
multiple underlying assets. However, the interdepen-
dence cannot be ignored and hence a subjective mul-
tivariate distribution is needed3.
The presented approach relies on the availability

of a subjective probability distribution. However, to
translate information and beliefs into such a distribu-
tion is in itself a non-trivial exercise and will be the
subject of further research.

A Uncertain variance distribu-

tions

Given maximum-entropy arguments it is reasonable
to assume a Gaussian (normal) distribution if the
mean and variance σ2 are known. Let us denote this
normal distribution for the log-returns l by

p(Ll|vσ2MµI) =
1√
2πσ

exp

(

− (l − ν(µ, σ))2

2σ2

)

,

where Ll is the proposition that the log return will
be l, vσ2 is the proposition that the variance has the
value σ2, Mµ is the proposition that the mean of the
returns (not log-returns!) is µ− 1, and the log-mean
ν is

ν(µ, σ)
def

= ln(µ)− σ2/2. (19)

If the variance is not known we have after marginal-
izing

p(Ll|MµI) =

∫
∞

0

p(Ll|vσ2MµI)p(vσ2 |MµI) dσ
2,

where the second factor describes our beliefs about
the value of the variance.
The mean log return (the mean return is by con-

struction µ− 1) is then given by

λ
def

=

∫
∞

−∞

dl l p(Ll|MµI)

=

∫
∞

0

dσ2

∫
∞

−∞

dl l p(Ll|vσ2MµI) p(v
2
σ|I)

3The implied distribution only enters through the known
current asset prices, and hence takes implied interdependencies
automatically into account.

=

∫
∞

0

dσ2p(v2σ|I) ν(µ, σ)

= ln(µ)− σ̄2/2, (20)

where we defined the average variance as

σ̄2 def

=

∫
∞

0

dσ2 σ2 p(v2σ|I) (21)

The variance is the second central moment of the
log return distribution. Hence

ξ =

∫
∞

−∞

dl(l − λ)2p(Ll|MµI)

=

∫
∞

−∞

dl(l2 − 2λl + λ2)p(Ll|MµI)

= −λ2 +
∫

∞

0

dσ2 p(v2σ|I)
∫

∞

−∞

dl l2 p(Ll|vσ2MµI)

︸ ︷︷ ︸

=σ2+ν2

= σ̄2 + (σ̄4 − σ̄2
2
)/4, (22)

where

σ̄4 def

=

∫
∞

0

dσ2 σ4 p(vσ2 |I). (23)

Let us consider the case where p(vσ2 |I) is a log-
normal distribution for σ2 with uncertainty parame-
ter β > 0

p(vσ2 |I) = 1

σ2β
√
2π

exp

(

− (ln(σ2)− ln(α))2

2β2

)

Then with γ
def

= eβ
2/2

σ̄2 = αγ (24)

σ̄4 = exp

(

2 ln(α) +
1

2
4β2

)

= α2γ4. (25)

Hence the mean log return becomes

λ∗ = ln(µ)− αγ

2
, (26)

and the variance

ξ∗ = αγ +
α2γ2

4
(γ2 − 1). (27)
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