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Abstract

We propose a hybrid model of portfolio credit risk where the dynam-
ics of the underlying latent variables is governed by a one factor GARCH
process. The distinctive feature of such processes is that the long-term
aggregate return distributions can substantially deviate from the asymp-
totic Gaussian limit for very long horizons. We introduce the notion of
correlation surface as a convenient tool for comparing portfolio credit loss
generating models and pricing synthetic CDO tranches. Analyzing alter-
native specifications of the underlying dynamics, we conclude that the
asymmetric models with TARCH volatility specification are the preferred
choice for generating significant and persistent credit correlation skews.
The characteristic dependence of the correlation skew on term to maturity
and portfolio hazard rate in these models has a significant impact on both
relative value analysis and risk management of CDO tranches.

1 Introduction

The latest advances in credit correlation modeling were in part motivated by
the growth and sophistication of the so called correlation trading strategies,
in particular those involving the standard tranches referencing the Dow Jones
CDX (US) and iTraxx (Europe) broad market CDS indexes. The synthetic
CDO market allows investors to take views on the shape of the credit loss
distribution of the underlying collateral portfolio. The market implied portfolio
loss distribution is now well exposed through the pricing of liquid standard
tranches, which in turn are expressed through their implied correlations.

The pricing of credit derivatives has been based on either structural Merton
style models or reduced form credit migration models. See Lando [21] and
Schonbucher [27] for a survey of these techniques. In both cases, rather ad hoc
models of dependence are needed to explain why correlations vary over time and
across tranches. Frequently, specific copulas are postulated to model prices at
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a point in time. However, this approach does not easily generalize to dynamic
situations where new information is continually being revealed and prices of
tranches of different maturities evolve consistently with each other and with the
underlying reference portfolio.

This paper brings the standard time series methodology into the portfolio
credit risk setting. Specifically, we consider a structural credit model where the
latent asset variables evolve according to a one factor multi-variate asymmetric
GARCH model. This model is formulated and estimated on high frequency
data and the implications for long horizon loss distributions are derived by time
aggregation. We demonstrate that the asymmetric GARCH specification can
generate multivariate return distributions with both significant lower tail depen-
dence and asymmetry that persist for very long time horizons. We then show
that a multiname credit portfolio loss distribution derived from our model can
produce implied correlation skews similar to the ones observed in the synthetic
CDO market.

The article is organized as follows. In section 2 we give a brief overview
of the portfolio credit modeling in a general copula framework, and introduce
the notion of correlation surface as a generalization of base correlation to a
dynamic setting. We derive analytical formulas expressing the portfolio loss
distribution directly in terms of the shape of the correlation surface. In section
3 we apply time series models to the portfolio credit risk problem. We develop
new implications of the well known asymmetric threshold GARCH (TARCH)
models and show their power in explaining persistent non-Gaussian features of
long horizon market returns. We then demonstrate the implications of using
such latent variable specification for default correlation estimates. In section 4
we use the correlation surface estimates to assess the ability of various static
and dynamic credit loss-generating models to produce realistic pricing of CDO
tranches. In section 5 we summarize the results and outline possible applications
and extensions of our approach.

2 Defining Portfolio Credit Risk Models

In this section we will introduce the notion of correlation surface as a general tool
for comparing portfolio credit risk models. We will first give a brief overview of
the general copula framework, focusing particularly on the symmetric one factor
latent variable assumption and the large homogeneous portfolio approximation
which will be used throughout this paper. We will then formalize the definition
of the correlation surface and show that, under the above approximation, it
contains sufficient information to recover the full portfolio loss distribution and
to price CDO tranches.

2.1 General Copula Framework

Consider a portfolio of M credit-risky obligors in a static setup with a fixed time
horizon [0, T ]. To simplify notations we will skip the time subscript for time
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dependent variables. At time t = 0 all M obligors are assumed to be in non-
default state and at time T firm i is in default with probability pi. We assume we
know the individual default probabilities p = [p1, ..., pM ]

′
(either risk-neutral,

e.g. inferred from default swap quotes, or actual, e.g. estimated by rating
agencies). Let τi ≥ 0 be the random default time of obligor i and Yi = 1{τi≤T}
the default dummy variable which is equal to 1 if default happened before T
and 0 otherwise.

The loss generated by obligor i conditional on its default is denoted as li > 0.
The loss li is a product of the total exposure ni and percentage loss given default

1−Ri where Ri ∈ [0, 1] is the recovery rate. We assume that all li are constant
(see [1] for discussion on stochastic recoveries). Portfolio loss LM at time T is
the sum of the individual losses for the defaulted obligors

LM =

M∑
i=1

li1{τi≤T} =

M∑
i=1

liYi (1)

The mean loss of the portfolio can be easily calculated in terms of individual
default probabilities:

E (LM ) =

M∑
i=1

liE (Yi) =

M∑
i=1

lipi (2)

Risk management and pricing of derivatives contingent on the loss of the
credit portfolio, such as CDO tranches, require knowing not only the mean but
the whole distribution of losses with cdf FL (x) = P (LM ≤ x) . Portfolio loss dis-
tribution depends on the joint distribution of default indicators Y = [Y1, ..., YM ]

′

and in a static setup can be conveniently modeled using the latent variables
approach [14]. Particularly, to impose structure on the joint distribution of de-
fault indicators we assume that there exists a vector of M real-valued random
variables R = [R1, ..., RM ]

′
and M dimensional vector of non-random default

thresholds d = [d1, ..., dM ]
′

such that

Yi = 1⇐⇒ Ri ≤ di for i = 1, ...,M (3)

Denote F : RM → [0, 1] as a cdf of R and assume that it is a continuous

function with marginal cdf {Fi}Mi=1. For each obligor i the default threshold di
is calibrated to match the obligor’s default probability pi by inverting the cdf
of its aggregate returns Ri : di = F−1

i (pi). According to Sklar’s theorem [32],
under the continuity assumption F can be uniquely decomposed into marginal
cdfs {Fi}Mi=1 and the M -dimensional copula C : [0, 1]M ⇒ [0, 1]

F (d) = C (F1 (pi) , .., FM (pM )) (4)

The most popular copula choices are the Gaussian copula model [22], Student-
t [23], and double-t [20]. The choice of copula C defines the joint distribution of
default indicators from which the portfolio loss distribution can be calculated.
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The number of names in the portfolio can be large and therefore the calibra-
tion of the copula parameters can be problematic. To reduce the number of
parameters some form of symmetry is usually imposed on the distribution of
default indicators. Gordy [18] and Frey and McNeil [14] discuss the mathemat-
ics behind the modeling of credit risk in homogeneous groups of obligors and
the equivalence of the homogeneity assumption to the factor structure of default
generating variables.

Assumption 1(Symmetric One Factor Model): Assume that loss given

default li = (1−Ri)·ni and individual default probabilities pi are the same for all
M names in the portfolio and that the latent variables admit symmetric linear
one factor representation:

ni = n (5a)

Ri = R (5b)

pi = p (5c)

Ri = bRm +
√

1− b2Ei with 0 ≤ b ≤ 1 (5d)

where Rm and Ei are independent zero mean, unit variance random variables.
E′i-s are identically distributed with cdf G(•).

Within this framework, denote:

• F (di) ≡ P (Ri ≤ di) cdf of aggregate total returns Ri

• G (di) ≡ P (Ei ≤ di) cdf of aggregate idiosyncratic returns Ei

• F (d) ≡ P (R ≤ d) joint cdf of R

• C (u) ≡ F
(
F−1 (u1) , ..., F−1 (uM )

)
copula of R

Note than the assumption of one factor structure implies that equity returns
R are independent conditional on the market return Rm and therefore F (d)
can be computed as expectation of the product of conditional cdfs:

F (d) = E

(
M∏
i=1

P (Ri ≤ di|Rm)

)
= E

(
M∏
i=1

G (di − biRm)

)
(6)

Parameter b defines the pairwise correlation of latent variables with the
market factor. The correlation of latent variables, ρ, which is often referred to
as ”asset correlation” (this naming reflects the interpretation of latent variables
as asset returns in Merton-style structural default models), is constant across
all pairs of assets in a symmetric single factor model:

ρij = ρ = b2 (7)

In addition to the asset correlation, which reflects the co-movement of returns
on small scale, multivariate distributions can be also characterized by measures
that reflect joint extreme movements for a pair of assets – the tail dependence
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coefficient λdij and the pairwise default correlation coefficient ρdij (p). Suppose Ri
and Rj are the stock returns for companies i and j over the [0, T ] time horizon.
The coefficient of lower tail dependence and the default correlation coefficient
for two random variables with the same continuous marginal cdfs, F (R) , and
the same default probabilities, p,are defined as:

λdij = lim
p→+0

P (Ri ≤ dp|Rj ≤ dp) = lim
p→+0

C (p, p)

p
(8)

ρdij (p) = corr(1{Ri≤dp}, 1{Rj≤dp}) =
C (p, p)− p2

(1− p)p
(9)

where p is the probability of crossing the threshold (also interpreted as the de-
fault probability), and is related to the latter via the relationship dp = F−1 (p) .
Both these measures depend only on the bivariate copula of the two random
variables and are asymptotically equal: lim

p→+0
ρdij (p) = λdij . Generally speaking,

the measures of small-scale and extreme co-movement of assets are independent
of each other. For example, it is quite possible to have ρij = 0 and λdij 6= 0
and vice versa for a non-Gaussian multi-variate distribution. Embrecht et al
[11] provide very detailed introduction to the properties of those dependence
measures.

To simplify the calculations even more, the large homogenous portfolio (LHP)
approximation is often used. Suppose that we increase the number of names
in the portfolio while keeping the total exposure size of the portfolio con-
stant so that ni = N/M . Conditional on Rm the loss of the portfolio con-
tains the mean of independent identically distributed random variables, LM =(

1−R
)
N 1
M

∑M
i=1 1{Ri≤d}, which a.s. converges to its conditional expectation

as M increases to infinity. We use L without subscript to denote the portfolio
loss under LHP assumption.

Proposition 1 (LHP Loss) Under Assumption 1

L ≡ lim
M→∞

[(
1−R

)
N

1

M

M∑
i=1

1{Ri≤d}

]
=
(

1−R
)
NP (Ri ≤ d|Rm) (10)

=
(

1−R
)
NG

(
d− bRm√

1− b2

)
a.s. for any Rm ∈ supp (G)

Proof. see proposition 4.5 in [14]
Based on (10) cdf of L can be expressed in terms of the cdf of Rm

P (L ≤ l) = P (Rm ≥ d1 (l)) (11)

d1 (l) =
d

b
−
√

1− b2
b

G−1

 l(
1−R

)
N

 (12)

We use the following notation for the Gaussian distribution:
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Notation 2 Let Φ (.) and φ(.) with one agrument denote the cdf and pdf, cor-
respondingly, of a standard normal random variable. Let Φ (., .; ρ) and φ(., .; ρ)
with three arguments denote cdf and pdf of two standard normal random vari-
ables with linear correlation ρ, and Φi (., .; ρ) denote the partial derivative of
Φ (., .; ρ) with respect to the i’th agrument, e.g. Φ3 (., .; ρ) ≡ ∂

∂ρΦ (., .; ρ) .

For the Gaussian copula we have the familiar formula for LHP loss first de-
rived by Vasicek [33], where we have substituted the asset correlation parameter
ρ in place of the factor loading b using the relation (7):

LG =
(

1−R
)
NΦ

(
Φ−1 (p)−√ρRm√

1− ρ

)
(13)

P (L ≤ l) = 1− Φ
(
dG1 (l)

)
(14)

dG1 (l) =
Φ−1 (p)
√
ρ
−
√

1− ρ
√
ρ

Φ−1

 l(
1−R

)
N

 (15)

Vasicek [33] and Schonbucher and Shubert [28] show that LHP approxima-
tion is quite accurate for upper tail of the loss distribution even for mid-sized
portfolios of about 100 names. We will use a symmetric one factor LHP ap-
proximation in this paper for analytical tractability.

2.2 From Loss Distribution to Correlation Surface

It is intuitively clear that the choice of the dependence structure affects the
degree of uncertainty about the portfolio loss. Indeed, if all issuers in the port-
folio are completely independent of each other and any common driving factor,
then the law of large numbers assures that the portfolio loss under the LHP
approximation is a well determined number with little uncertainty about it. On
the other extreme, if the issuers are highly dependent such that they all default
or survive at the same time, then the portfolio loss has a binary outcome – it is
either zero or equal to the maximum loss.

It is easy to quantify this intuitive result. While the mean of the loss distri-
bution is not affected by the choice of copula, one can show that the second and
higher moments of the loss distribution depend on the copula characteristics. In
particular, the variance of the loss can be expressed in terms of bivariate default
correlation coefficient ρd (p) defined in section 2.1. Under assumption of equal
default probabilities for all obligors, it is given by:

V ar(L) = (1−R)2N2p(1− p)ρd (p) (16)

Thus, in line with the intuition, the uncertainty of the default loss distribution
is directly proportional to the default correlation coefficient.

To characterize the shape of the entire distribution of L, we must look at the
particular slices of portfolio loss. Let (Kd,Ku] denote a tranche with attach-
ment point Kd and detachment point Ku expressed as fractions of the reference
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portfolio notional so that 0 ≤ Kd < Ku ≤ 1. The notional of the tranche is
defined as N(Kd,Ku] = N (Ku −Kd) where N is the notional of the portfolio.
The loss L(Kd,Ku] of the tranche is the fraction of L that falls between Kd and
Ku. For simplicity, assume that total notional N is normalized to 1.

L(Kd,Ku] = f(Kd,Ku] (L) (17)

f(Kd,Ku] (x) ≡ (x−Kd)
+ − (x−Ku)+ (18)

Tranches with zero attachment point, (0,Ku] , and unit detachment point,
(Kd, 1] , are called equity and senior tranches, respectively. Loss of any tranche
can be decomposed into losses of either two equity or two senior tranches
tranches L(Kd,Ku] = L(0,Ku] − L(0,Kd] = L(Kd,1] − L(Ku,1] This is similar to
representing a spread option as a long/short position using either calls or puts.

The expected loss of the equity tranche L(0,K] depends on the portfolio loss
distribution and under the LHP approximation can be computed using only the
distribution of the market factor:

EL(0,K] = Ef(0,K] (L) (19)

=
(

1−R
)
E

[
G

(
d− bRm√

1− b2

)
1{Rm≥d1(K)}

]
+KP (Rm < d1 (K))

The expectation in (19) can be computed by Monte Carlo simulation or numer-
ical integration if we know the cdf of residuals G and the distribution of Rm
(see appendix C). For the Gaussian copula, the integral can be calculated in a
closed form:

EGL(0,K] =
(

1−R
)

Φ
(
Φ−1 (p) ,−d1;−√ρ

)
+KΦ (d1) (20)

d1 =
1
√
ρ

Φ−1 (p)−
√

1− ρ
√
ρ

Φ−1

(
K

1−R

)
(21)

Because of its analytical tractability, it is convenient to use the Gaussian
copula as a benchmark model when comparing different choices of dependence
structure. By finding the asset correlation level ρ that replicates the results
of more complex portfolio loss generating models in the context of a Gaussian
copula framework, we can translate the salient features of such models into
mutually comparable units. More specifically, we define the correlation surface
as follows:

Definition 3 Suppose the loss distribution of a large homogeneous portfolio is

generated by a model
{
C, p,R

}
with copula C, identical individual default proba-

bilities p and recovery rates R. Let L(0,K] ∈
[
pf(0,K]

(
1−R

)
, f(0,K]

((
1−R

)
p
)]
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be the expected loss of the equity tranche (0,K] . We define the correlation sur-

face ρ(K, p,R) of the model
{
C, p,R

}
as the correlation parameter of the Gaus-

sian copula that produces the same expected loss EL(0,K] for the tranche (0,K]
for the given horizon T and given single-issuer cumulative default probability p:

ρ(K, p,R) solves EGL(0,K] (ρ) = EL(0,K] for all K ∈ [0, 1] (22)

where EL(0,K] is expected loss of the tranche

(0,K] generated by model
{
C, p,R

}
where EGL(0,K] is defined in (20).

The correlation surface as defined above is closely related but not identi-
cal to the notion of the base correlation used by many practitioners [25]. The
difference is that the base correlation is defined using the prices of the equity
tranches, which in turn depend on interest rates, term structure of losses, etc.
By contrast, the correlation surface is defined without a reference to any mar-
ket price. It characterizes the portfolio loss generating model, rather than the
supply/demand forces in the market.

One could, of course, take another logical step, and instead of deriving the
correlation surface from the parameters of the dynamic loss generating model,
go in the opposite direction – find such parameters of the loss generating model
that result in the closest match to the market prices of CDO tranches. It would
be natural to call this solution ”implied parameters”, and the corresponding

function ρ(K, p,R) ”implied correlation surface”. The latter would, in fact,
coincide with the conventionally defined base correlation.

To ensure that the correlation surface is well defined we need to prove that
(22) has a unique solution. Let us first prove the following:

Proposition 4 For the Gaussian copula, the expected loss of an equity tranche,
EGL(0,K], is a monotonically decreasing function of ρ and attains its maximum
when ρ is equal to 0 and minimum when ρ is 1.
Proof. Using Notation 2, Eq. (20) and the properties of Gaussian distribution1

1The following properties of two dimensional Gaussian cdf are used in the calculation

Φ2 (x, y; ρ) ≡
∂

∂y
Φ (x, y; ρ) = φ (y) Φ

(
x− ρy√
1− ρ2

)

Φ3 (x, y; ρ) ≡
∂

∂ρ
Φ (x, y; ρ) = φ (x, y; ρ)

First formula is derived by taking the derivative and re-arranging the terms. The proof of
the second can be found in Vasicek([34])
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we derive

EGρ L(0,K] ≡
∂

∂ρ
EGL(0,K] (23)

= −
(

1−R
)[ 1

2
√
ρ

Φ3

(
Φ−1 (p) ,−d1;−√ρ

)
+ Φ2

(
Φ−1 (p) ,−d1;−√ρ

) ∂
∂b
d1

]
+Kφ (d1)

∂

∂b
d1

= −1−R
2
√
ρ
φ
(
Φ−1 (p) ,−d1;−√ρ

)
< 0 (24)

for any ρ ∈ (0, 1).

Therefore, there is a one-to-one mapping between loss distribution and cor-
relation surface, and our transformation does not lead to any loss of information.
The next proposition shows how to calculate the loss cdf using the correlation
surface and its slope along the K-dimention.

Proposition 5 Suppose ρ(K, p,R) is the correlation surface for model
{
C, p,R

}
and the probability distribution function of the portfolio loss is a continuous
function then the loss cdf can be computed from the correlation surface:

P (L ≤ K) = PG (L ≤ K) + ρKE
G
ρ L(0,K] (25)

where ρ ≡ ρ(K, p,R) is the level of the correlation surface, ρK ≡ ∂
∂K ρ(K, p,R)

is the correlation surface slope and

PG (L ≤ K) = 1− Φ (d1) (26)

EGρ L(0,K] =
(

1−R
) 1

2
√
ρ
φ
(
Φ−1 (p) ,−d1;−√ρ

)
(27)

d1 =
1
√
ρ

Φ−1 (p)−
√

1− ρ
√
ρ

Φ−1

(
K

1−R

)
(28)

Proof. first note that the derivative with respect to K of the expected tranche’s
loss under true copula C is related to the cdf of the loss

d

dK
EL(0,K] =

d

dK
E
(
L− (L−K)+

)
(29)

= − d

dK
E (L−K)+ = E1{L−K≥0} = 1− P (L ≤ K)
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therefore

P (L ≤ K) = 1− d

dK
EL(0,K] (30)

= 1− EGKL(0,K] − ρKEGρ L(0,K]

= 1− Φ (d1) +
1−R
2
√
ρ
φ
(
Φ−1 (p) ,−d1;−√ρ

)
ρK

= PG (L ≤ K) +
(

1−R
) 1

2
√
ρ
φ
(
Φ−1 (p) ,−d1;−√ρ

)
ρK

where partial derivative with respect to K is computed as

EGKL(0,K] ≡
∂

∂K
EGL(0,K] (31)

= −
(

1−R
)

Φ2

(
Φ−1 (p) ,−d1;−√ρ

) ∂

∂K
d1 +Kφ (d1)

∂

∂K
d1 + Φ (d1)

= Φ (d1)

Another important point is that the correlation surface depends implicitly
on the term to maturity via the cumulative default probability p. However, this
is not the only dependence – potentially, the dependence structure characterized
by the copula C also exhibits some time dependence when viewed within the
context of the Gaussian copula. This statement needs a clarification – the copula
C itself is defined in a manner that encompasses all time horizons and therefore
cannot depend on any particular horizon. However, when we translate the
tranche loss generated with this dependence structure into the simpler Gaussian
model the transformation that is required may depend on the horizon T . In

other words, the shape of the correlation surface ρ(K, p,R) may depend on the
horizon. We study this dependence in detail in section 4.

These results allow us to further develop the often mentioned analogy be-
tween the role that default correlation plays in tranche pricing on one hand and
the role that implied volatility plays in equity derivatives pricing, on the other.
The starting point of this analogy is the result (16), which shows that default
correlation is directly related to the uncertainty of portfolio loss. If we recall
that the CDO equity tranche is essentially a call option on portfolio survival, it
becomes clear that the price of the equity tranche should be positively related to
the default (asset) correlation, just as the price of any equity option is positively
related to the implied volatility of its underlying stock.

The correlation surface takes this analogy one step further. Just as the
implied volatility surface is sufficient to derive the risk-neutral distribution of
the underlying stock (see [8], [9], [30], [31]) and price any European option, we
have shown that the correlation surface is sufficient to derive the full portfolio
loss distribution and price any CDO tranche.

10



3 Time Series Approach to Tail Risk

3.1 Motivation for the time series approach

The analogy between the correlation surface and implied volatility surface in-
troduced in the previous section leads to further insight about the origins of
the large credit portfolio loss risks. Both equity and credit derivatives pricing
exhibits substantial deviations from the simplest Gaussian models of the under-
lying assets. In particular, the equity index options implied volatility exhibits a
steep downward skew of implied volatility, and the CDO tranches exhibit a steep
upward skew of implied (base) correlations. To further underline the similarities
between these skews, note that a senior CDO tranche with an attachment point
that is higher than the expected loss on the underlying portfolio can be thought
as an out-of-money put option on portfolio losses. When looked from this angle,
the equity implied volatility skew and credit correlation skew are tilted the same
way – towards the farther out-of-money options.

Recall that the empirical distribution of returns does indeed exhibit signif-
icant downside tails, and that a large part of the implied volatility skew can
be explained by the properties of the empirical distribution [7]. Given the
above mentioned analogies between the synthetic CDO tranches and equity in-
dex options, it is quite natural to look for a similar explanation of the implied
correlation skew.

The standard Gaussian copula framework implicitly relies on the Merton-
style structural model for definition of default correlations. Therefore, if we are
to give an empirical explanation to the observed base correlation skew we must
start by giving an empirical meaning to the variables in this model. Our working
hypothesis in this paper will be that the meaning of the ”market factor” in the
factor copula framework is the same as the market factor used in the equity
return modeling. As such, it is often possible to use an observable broad market
index such as S&P 500 as a proxy for the economic market factor, with an added
convenience that there exists a long historical dataset for its returns and a rich
set of equity options data from which one can glean independent information
about their implied return distribution.

This hypothesis is not uncommon in portfolio credit risk modeling – for
example, the authors of [23] emphasized the importance of using a fat-tailed
distribution of asset returns in the copula framework in part by citing the em-
pirical evidence from equity markets. However, most researchers have focused
on the single-period return distribution characteristics.

In contrast, we focus in this paper on the long-run cumulative returns, and
prove that their distribution is quite distinct from that of the short-term (single-
period) returns. As we will show in the rest of this paper, it is the time aggre-
gation properties and the compounding of the asymmetric volatility responses
that make it possible to explain the credit correlation skew for 5- or even 10-year
horizons. Moreover, this dynamic explanation of the skew allows one to make
rather specific predictions for the dependence of this skew on both the term to
maturity and on the hazard rates and other model parameters.
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We first specify time series properties of stock returns for high frequency
time intervals (daily or weekly) and then derive the distribution of stock prices
over longer horizons measured in months or even years. Assuming geometric
Brownian motion of stock prices on short intervals leads to the same log-normal
shape for the distribution of stock prices for all future horizons. Models with
more realistic dynamics can lead to richer distributions of the time aggregated
returns even if the high frequency shocks are Gaussian.

In the GARCH family of models [12], [3], [6], there have been many investi-
gations of the difference between the conditional and the unconditional distri-
butions. These models reveal an important explanation for the excess kurtosis
in financial returns but generally show no reason to expect skewness in returns.
Diebold [5] investigates the implications of time aggregation of GARCH models
concluding that eventually they lose their excess kurtosis as the central limit
theorem leaves the average distribution Gaussian.

Asymmetric volatility models were introduced by Nelson [26] and further
investigated by Glosten, Jaganathan and Runkle [15] and by Zakoian [35]. The
model to be discussed in this paper is essentially the GJR model and will be
called the Threshold-ARCH or TARCH. These models all show that negative
returns forecast higher volatility than positive returns of the same magnitude.
This observation is very widespread and is sometimes called the leverage effect
following Black [2]. However, it is most likely due to risk aversion as in Campbell
and Hentschell [4] and in this paper we will refer to it simply as asymmetric
volatility.

The first indication that skewness could arise from time aggregation was pre-
sented in Engle [13]. He showed that with asymmetric volatility, the skewness of
time aggregated returns could be more negative than the skewness of the indi-
vidual innovations. In the next section we show analytically how this negative
skewness depends upon time aggregation. We then examine the multivariate
distribution when the single common factor has TARCH dynamics.

3.2 Univariate model: TARCH(1,1)

Let rt be the log-return of a particular stock or an index such as SP500 from
time t− 1 to time t . zt denotes the information set containing realized values
of all the relevant variables up to time t. We will use the expectation sign with
subscript t to denote the expectation conditional on time t information set:
Et (.) = E (.|zt) . The time step that we use in the empirical part is 1 day or 1
week. Predictability of stock returns is negligible over such time horizons and
therefore we assume that the conditional mean is constant and equal to zero:

mt ≡ Et−1(rt) = 0 (32)

The conditional volatility σ2
t ≡ Et−1(r2

t ) of rt in TARCH(1,1) has the au-
toregressive functional form similar to the standard GARCH(1,1) but with an
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additional asymmetric term [15], [35]:

rt = σtεt (33)

σ2
t = ω + αr2

t−1 + αdr
2
t−11{rt−1≤0} + βσ2

t−1

where {εt} are iid , have zero mean, variance normalized to 1, finite skewness
sε and finite kurtosis kε. We also assume that ω > 0 and α, αd, β are non-
negative so that the conditional variance σ2

t is guaranteed to be positive.
The persistence of volatility in the model is governed by the parameter ζ :

ζ ≡ E
(
β + αε2

t + αdε
2
t1{εt≤0}

)
= β + α+ αdv

d
ε (34)

where vdε ≡ E
(
ε2
t1{εt≤0}

)
is the ”right truncated variance” of εt . If ζ ∈ [0, 1)

then conditional variance mean-reverts to its unconditional level σ2 = E
(
σ2
t

)
=

ω
1−ζ . The following parameter ξ will also be useful in describing the higher

moments of TARCH(1,1) returns and volatilities:

ξ ≡ E
(
β + αε2

t + αdε
2
t1{εt≤0}

)2
= β2 +α2kε +α2

dk
d
ε + 2αβ + 2αdβv

d
ε + 2ααdk

d
ε

(35)
where kdε ≡ E

(
ε4
t1{εt≤0}

)
is the ”right truncated kurtosis” of εt. We can

rewrite (33) in terms of the increments of the conditional volatility ∆σ2
t+1 ≡

σ2
t+1 − σ2

t and the volatility shocks ηt

rt = σtεt (36)

∆σ2
t+1 = (1− ζ)

(
σ2 − σ2

t

)
+ σ2

t ηt

ηt ≡ α
(
ε2
t − 1

)
+ αd

(
ε2
t1{εt≤0} − vdε

)
The speed of mean reversion in volatility is 1−ζ and is small when ζ is close

to one which is usually true for daily and weekly equity returns – hence the
persistence of the volatility. The TARCH(1,1) volatility shocks ηt are iid, with
zero mean and constant variance var(ηt) = var(αε2

t + αdε
2
t1{εt≤0}) = ξ − ζ2.

The correlation of conditional volatility with the return in the previous period
depends on the covariance of return and volatility innovations:

corrt−1

(
rt, σ

2
t+1

)
= corrt−1 (εt, ηt) =

αsε + αds
d
ε√

ξ − ζ2
(37)

where sdε = E
(
ε3
t1{εt≤0}

)
< 0 is the ”right truncated” skewness of εt.The

negative correlation of return and volatility shocks, often cited as the ”leverage
effect”2, is the main source of the asymmetry in the return distribution. We
can see from formula (37) that negative return-volatility correlation can be

2Though we note here that the magnitudfe of this ”leverage effect” in return time series
for stocks of most investment grade issuers far exceeds the amount that would be reasonable
based purely on their capital structure leverage.
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achieved either through negative skewness of return innovations sε < 0, through
asymmetry in volatility process αd > 0 or combination of the two. We call these
static and dynamic asymmetry, respectively.

In this paper we are interested in the effects of the volatility dynamics on the
distribution of long horizon returns which in the log representation is a sum of

short term log returns Rt,t+T ≡ lnSt+T − lnSt =

t+T∑
u=t+1

ru. While a closed form

solution for the probability density function of TARCH(1,1) aggregated returns
is not available, we can still derive some analytical results for its conditional
and unconditional moments: volatility, skewness and kurtosis. Since TARCH
is linear autoregressive volatility process, the conditional variance Vt,t+T of the
log return Rt,t+T is linear in σ2

t+1 :

Vt,t+T = EtR
2
t,t+T = Et

 ∑
t+1≤u≤t+T

σ2
u

 = T

(
σ2 +

(
σ2
t+1 − σ2

) 1

T

1− ζT

1− ζ

)
(38)

The new result of this paper for the TARCH(1,1) model is the representation
of the skewness term structure derived in the following proposition.

Proposition 6 Suppose 0 ≤ ζ < 1 and the return innovations have finite skew-
ness, sε, and finite ”truncated” third moment, sdε. Then the conditional third
moment of Rt,t+T has the following representation for TARCH(1,1)

EtR
3
t,t+T = sε

T∑
u=1

Et
(
σ3
t+u

)
+ 3

(
αsε + αds

d
ε

) T∑
u=1

1− ζT−u

1− ζ
Et
(
σ3
t+u

)
(39)

In addition, if Eσ3
t is finite, then unconditional skewness of Rt,t+T is given by

ST ≡
ER3

t,t+T

E(R2
t,t+T )3/2

=

[
1

T 1/2
sε + 3

1

T 3/2

(
αsε + αds

d
ε

) T (1− ζ)− 1 + ζT

(1− ζ)2

]
E
(σt
σ

)3

(40)
Proof. See appendix A for the details.

The conditional third moment is a function of the conditional term structure
of σ3

t , term horizon T and volatility parameters. The conditional skewness can
be computed using second and third conditional moments derived above. The
asymmetry in the return distribution arises from two sources - skewness of re-
turn innovations and asymmetry of the volatility process. Note that the second
term in the formulas for conditional and unconditional skewness is directly re-
lated to the correlation of return and volatility innovations. If return-volatility

correlation is zero
(
αsε + αds

d
ε = 0

)
then ST = 1

T 1/2 sεE
(
σt

σ

)3
. If return inno-

vations are symmetric then asymmetric volatility drives the asymmetry in the
return distribution. In figure 1 we show conditional and unconditional skew-
ness term structures. For realistic parameters corresponding approximately to
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Figure 1: Term structure of conditional skewness of time aggregated return

Rt+1,t+T .TARCH(1,1) has persistence coefficient ζ = 0.98 and the following

parametrization: σ2 = 1, α = 0.01, αd = 0.10, β = 0.92, εt ∼ N(0, 1). We

plotted unconditional skewness term structure and conditional for three different ini-

tial volatilities: σ2/2, σ2and 2σ2. The term structure of Etσ
3
t+uwas computed from

10,000 independent simulations.

parameters of the TARCH(1,1) estimated for weekly SP500 log returns, both
conditional and unconditional skewness is negative. It decreases in the medium
term, attains the minimum at approximately the 2 year point and then decays
to zero as T increases. The skewness term structure conditional on the high/low
current volatility is above/below the unconditional skewness.

To provide some empirical context to the theoretical discussion above, let
us consider the time series of SP500 returns. The results of the estimation of
various TARCH(1,1) specification are shown in the appendix B. Figure 2 shows
the estimate of skewness for overlapping returns of different aggregation horizons
measured in days. The full sample shows high negative skewness for one day
return because of the 1987 crash. On the post 1990 sample negative skewness
rises with aggregation horizon up to 1 year and then slowly decays toward zero.
Both samples show significant skewness for horizons of several years. We should
note that confidence bounds around skewness curves are quite wide due to the
persistence and high volatility of the squared returns and serial correlation of
the overlapping observations. Nevertheless, both the shape and the level of the
empirical skewness in figure 2 and the theoretical estimate shown in figure 1 are
quite similar.
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Figure 2: Term structure of skewness for SP500 time aggregated log returns estimated

with overlapping samples moments for full and post-1990 data.

3.3 Multivariate model with TARCH(1,1) factor volatility
dynamics

Let us now turn to a multi-variate model of equity returns for M companies,
with a simple dynamic factor structure decomposing the returns into a common
(market) and idiosyncratic components. To concentrate on the time dimension
of the model we assume a homogeneity of cross-sectional return properties,
namely that factor loadings and volatilities of idiosyncratic terms are constant
and identical for all stocks. Thus, our homogeneous one factor ARCH model
has the following form.

ri,t = brm,t + σεi,t

where

• b ≥ 0 is the constant market factor loading and it is the same for all stocks

• rm,t is the market factor return with zero conditional mean Et−1(rm,t) = 0,
conditional volatility σ2

m,t ≡ Et−1(r2
m,t) that has TARCH(1,1) parametriza-

tion (33)

• σεi,t are the idiosyncratic return components with constant volatilities σ2

and zero conditional means Et−1(σεi,t) = 0

• {εi,t, εm,t} are unit variance iid shocks for each t and all i

Because of the simple linear factor structure and constant market loadings

time aggregated equity returns Ri,T =

T∑
u=1

ri,u also have a one factor represen-
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tation3

Ri,T = bRm,T + Ei,T (41)

where Rm,T =

T∑
u=1

rm,u and Ei,T = σ

T∑
u=1

εi,u are independent conditional on z0.

3.4 Tail risk and default correlation estimates

Assuming that the latent variables in the copula framework follow the one factor
TARCH(1,1) dynamics, we can calculate the coefficient of lower tail dependence
λdi,j and the default correlation coefficient ρdi,j (p), which were defined in equa-
tions (8) and (9), respectively. Default correlation coefficient for Gaussian and
Student-t can be computed in closed form, while the factor GARCH/TARCH
models require Monte Carlo simulation, which is desribed in appendix C. Figure
3 shows the numerical estimates of the default correlation ρd1,2 as a function of p
for 4 different models - TARCH, GARCH and Student-t and Gaussian copulae.

The linear correlation of latent returns is set to 0.3 for all 3 models. TARCH
and GARCH are calibrated to have volatility dynamics parameters correspond-
ing approximately to the weekly SP500 returns and the time aggregation horizon
is set to 5 years. The degrees of freedom parameter for the Student-t idiosyn-
cracies and T-Copula is set to be equal to 12.

The GARCH distribution is symmetric and has smaller tail dependence for
both upper and lower tails. We can see on the graph that it also has lowest
default correlation for all default probabilities in the range of [0.01,0.2]. The
Student-t copula is also symmetric but has fatter joint tails compared to the
GARCH. Its default correlation is above GARCH for all p and converges to a
positive number (the tail dependence coefficient) as p decreases to zero.

We can see that TARCH has higher default correlation than other 2 models
and is upward sloping for very low quantiles. The upturn for the extreme
tails is a consequence of the left tail shape of the common factor. The default
correlation for very low default probabilities should be close to 1 since the left
tail of the factor is fatter than the left tail of the idiosyncratic shocks. As
we showed in the previous sections, both kurtosis and skewness of the market
factor declines faster for GARCH than TARCH given the same level of volatility
persistence.

We also show the 95% confidence bounds for default correlation, which are
calculated using 1000 independent repetitions of 10,000 Monte Carlo simulations
of the common factor. TARCH, T-Copula and GARCH models have virtually
non-overlapping confidence bounds for ρdi,j (p) for sufficiently low values of the
default probability [0.01,0.1]. Since the correlation skew for sufficiently large
values of the detachment point K is also related to the limit of low default
probabilities, we can therefore rely on this result in the next section to assert
that the differences between the correlation surfaces generated by these three
models are statistically significant.

3To simplify the notations we assume that the initial time t = 0 and use only subscipt for
the time aggregation horizon T.
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Figure 3: Default correlation as a function of p for Gaussian cop-

ula, T-Copula, GARCH and TARCH models. The linear correlation

parameter is 0.3 for all four models. TARCH(GARCH) parameters

are α = 0.01(0.06), αd= 0.1(0), β = 0.92(0.92). The degrees of freedom

parameter for T-Copula and TARCH Student-t idiosyncracies is 12.

4 Comparing Credit Portfolio Loss Generating
Models

Our goal in this paper is to provide a general framework for judging the versa-
tility of various portfolio credit risk models. All such models, whether defined
via dynamic multivariate returns model like in this paper or in various versions
of the static copula framework ([1], [14], [16], [22], [23] and [28]), can be char-
acterized by the full term structure of loss distributions. Thus, without loss of
generality, we can refer to all models of credit risk as loss generating models,
with an implicit assumption that any two models that produce identical loss
distributions for all terms to maturity are considered to be equivalent.

The correlation surface, introduced in section 2.2, conveniently transforms
specific choice of a loss generating model into a two dimensional surface ρ(K,T )
of the Gaussian copula correlation parameter, with the main dimensions being
the loss threshold (detachment level) K and the term to maturity T . All other
inputs such as the recovery rate R, the term structure of (static) hazard rates
h, the level of linear asset correlation ζ, the Student-t degrees of freedom ν,
various GARCH model coefficients, etc. – are considered as model parameters
upon which the two-dimensional correlation surface itself depends.

Note that in the previous sections we have expressed the correlation surface
as a function of detachment level and the underlying portfolio’s cumulative ex-
pected default probability p rather than the term to maturity T . Given our
assumption of the static term structure of the hazard rates h these two formu-
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Figure 4: Correlation surface slices corresponding to 1-year (left chart) and 5-year

(right chart) horizons with default probabilities 0.02 and 1−(1− 0.02)
5

= 0.0961 for

Gaussian, Student-t Copula with 12 degrees of freedom, and Double-t Copulas with

(vm =12, vi =100) and (vm =12, vi =12) degrees of freedom. Linear correlation is

0.3 for all copulas.

lations are equivalent. In this section we prefer to emphasize the dependence
on maturity horizon in order to facilitate the comparison with base correla-
tion models and also to analyze the dependence on the level of hazard rates
separately from the term to maturity dimension.

Of course, the correlation surface of a static Gaussian copula model [22] is a
flat surface with constant correlation across both detachment level K and term
to maturity T . Any deviation from a flat surface is therefore an indication of a
non-trivial loss generating model, and we can judge which features of the model
are the important ones by examining how strong a deviation from flatness they
lead to.

4.1 Models with static dependence structure

Let us begin with the analysis of one of the popular static loss generation models.
On figure 4 we show the correlation surface computed for the Student-t copula
with linear correlation ρ = 0.3 and ν = 12 degrees of freedom. Student-t
copula is in the same elliptic family as the Gaussian copula but has non-zero
tail dependence governed by the degrees of freedom parameter. As a model of
single-period asset returns the Student-t distribution has been shown to provide
a significantly better fit to observations than the standard normal [23].

However, from the figure 4 we can see that the static Student-t copula does
not generate a notable skew in the direction of detachment level K, and in fact
generates a mild downward sloping skew for very short terms, which is contrary
to what is observed in the market. The main reason for this is the rigid structure
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of this model, with the tails of the idiosyncratic returns tied closely to the tails of
the market factor. This follows from the representation of the Student-t copula
as a mixture model [29]. Instead of producing a varying degree of correlation
depending on the default threshold, the Student-t copula model simply produces
a higher overall level of correlation.

On the other hand, the more flexible double-t copula model [20] produces
a steep upward sloping skew, as can be seen from figure 4. The main feature
of the double-t copula that is responsible for the skew is the cleaner separation
between the common factor and idiosyncratic returns – there is no longer a
single mixing variable which ties the two sources of risk together. As a result,
the idiosyncratic returns get efficiently diversified in the LHP framework and
their contribution becomes progressively smaller for farther downside returns.
Since the higher value of the detachment levelK corresponds to farther downside
tails, the greater dominance of the market factor translates into higher effective
correlation for higher K, i.e. upward sloping correlation skew.

Furthermore, by making the fully independent idiosyncratic returns more fat
tailed one achieves a steeper skew – compare the two examples of the double-
t copula, with the degrees of freedom of the idiosyncratic returns set to 100
(i.e. nearly Gaussian case) and to 12 (i.e. strongly fat-tailed case), respectively.
Indeed, for the same detachment level K the idiosyncratic returns with lower
degrees of freedom (stronger fat tails) are less dominated by the market factor,
resulting in relatively lower effective correlation. Since the difference between
two cases diminishes as K grows, this translates into steeper correlation skew
for fatter-tailed idiosyncratic returns.

Finally, we observe that the slope of the correlation skew gets flatter as the
time horizon grows. Within the context of double-t copula this is simply because
the same detachment level K corresponds to less extreme tails when the term
to maturity is greater. Following the same logic as above, this means less steep
correlation skew.

All of these features will have their close counterparts in the dynamic models
which we will consider next.

4.2 Multi-period (dynamic) loss generating models

Let us now turn to loss generating models based on latent variables with multi-
period dynamics. We have concluded in the previous section that a clean sep-
aration of the market factor and the idiosyncratic returns appears to be a pre-
requisite for producing an upward sloping correlation skew. Fortunately, the
dynamic multi-variate models which we considered in section 3 all have this
property, both for single-period and for aggregated returns.

On figure 5 we show the correlation surface computed for a loss generating
model based on GARCH dynamics with Gaussian residuals, with a linear cor-
relation set to ρ = 0.3, and GARCH model parameters taken from the weekly
SP500 estimates in appendix B. The loss distributions and the correlation sur-
faces are calculated using a Monte Carlo simulation with 100,000 trials.
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Figure 5: Correlation surface for GARCH model (α=0.045, β=0.948) with Gaussian

shocks and the slices of the surface for 1, 3, 5 and 7 year maturities.

As we can see, this model does exhibit a visible deviation from the flat cor-
relation surface for short maturities. However, as we already noted in section 3,
the distribution of aggregate returns for the symmetric GARCH model quickly
converges to normal. Therefore, it is not surprising to see that the correlation
surface also flattens out fairly quickly and becomes virtually indistinguishable
from a Gaussian copula for maturities beyond 5 years. Thus, we conclude that
the symmetric GARCH model with Gaussian residuals is inadequate for descrip-
tion of liquid tranche markets where one routinely observes steep correlation
skews at maturities as long as 7 and 10 years.

Based on the empirical results of Section 3.3 we know that a GARCH model
with Student-t residuals provides a better fit to historical time series of equity
returns. A natural question is whether allowing for such volatility dynamics can
lead to a persistent correlation skew commensurate with the levels observed in
synthetic CDO markets.

The results of section 3.3 suggest that the additional kurtosis of the single-
period returns represented by the Student-t residuals does not matter very much
for aggregate return distributions at sufficiently long time horizons. Indeed,
figure 6 shows that the GARCH model with Student-t residuals exhibits a cor-
relation skew that is quite a bit steeper at the short maturities, yet is almost
as flat and featureless at the long maturities as its non-fat-tailed counterpart –
there is a small amount of skew at 10 years, but it is too small compared to the
steepness observed in the liquid tranche markets. Thus, we conclude that one
has to focus on the dynamic features of the market factor process in order to
achieve the desired correlation skew effect.

Our next candidates are the TARCH models with either Gaussian or Student-
t return innovations. We have seen in section 3 that the asymmetric volatility
dynamics of these models leads to a much more persistent skewness and kur-
tosis of aggregated equity returns that actually grow rather than decay at very
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Figure 6: Correlation surface for GARCH model (α=0.045, β=0.948) with Student-t

shocks (v=8.3) and the slices of the surface for 1, 3, 5 and 7 year maturities.

short horizons, and survive for as long as 10 years for the range of parameters
corresponding to the post-1990 sample of SP500 weekly log-returns. Hence, our
hypothesis is that a latent variable model with TARCH market dynamics might
be capable of producing a non-trivial credit correlation skew for maturities of
up to 10 years.

Figures 7 and 8 show the correlation surfaces for the TARCH-based loss
generating models. The most immediate observation is that both versions of the
model produce a rather persistent correlation skew. Although the correlation
surface flattens out with growing term to maturity, the steepness of the skew
is still quite significant even at 10 years. Just as in the case of the symmetric
GARCH model, the fat-tailed residuals lead only to marginal steepening of the
correlation surface compared to the case with Gaussian residuals.

Contrast these properties of the dynamic GARCH-based models with the
features of the static double-t copula. Upon a closer inspection of figures 4 and
7 we can see that the TARCH model with Gaussian shocks and Gaussian id-
iosyncrasies produces a slightly steeper 5-year correlation skew than the double-t
copula, even when the latter is taken with fat-tailed idiosyncrasies. When we
turn on the Student-t return residuals for the market factor dynamics (see figure
8) the differences in the 5-year skew become quite significant.

The explanation of the correlation skew in the dynamic TARCH-based mod-
els is similar to the static double-t copula when one considers a particular time
horizon. The separation of aggregate returns for the common market factor
and idiosyncratic factors remains valid for all time horizons. The diminishing
importance of the idiosyncratic returns compared to the market factor for the
greater values of detachment level K explains most of the steepness of the corre-
lation skew. Practitioners using the static models often have to assume heuristic
term structure dependence for base correlations, typically without fundamen-
tal reasons why one choice or another is preferred, and consequently leading to
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Figure 7: Correlation surface for TARCH model (α=0.004, αd=0.094, β=0.927) with

Gaussian shocks and the slices of the surface for 1, 3, 5 and 7 year maturities.

biased relative value assessments between tranches of different maturities. Our
TARCH-based model, in contrast, produces a characteristic pattern of correla-
tion skew dependence on T which is driven by the speed of convergence of the
idiosyncratic factors to normal and can serve as a starting point for such relative
value assessments. We confine our discussion of this subject to highlighting of
this possibility, since its detailed analysis in the context of actual market prices
is well beyond the scope of our paper.

4.3 Sensitivity to model parameters and hedging applica-
tions

The predictable shape of the correlation surface, demonstrated above, is comple-
mented by an equally important feature of the dynamic loss generating models –
they lead to a well-defined dependence of the correlation skew on model param-
eters. The ability to calculate the sensitivity of expected losses to underlying
parameters is crucial in risk management applications. In particular, sensitivity
of the correlation surface with respect to the underlying portfolio hazard rate
leads to a non-trivial adjustment of the CDO tranche deltas.

First, let us demonstrate this sensitivity for TARCH model with Gaussian

idiosyncrasies. Figure 9 shows the correlation skew ρ
(
K, pt (h) , R

)
of the 5-

year tranches with various detachment levels K as a function of varying portfolio
hazard rate h. The range of variation is chosen from 100bp to 500bp, which
corresponds roughly to portfolio spreads ranging from 40bp to 200bp, with

R = 0.4. From the visual comparison of figures 9 and 7 it appears that the
dependence of the correlation skew for a fixed term to maturity but varying level
of hazard rates is very similar to the dependence of the correlation surface on
the term to maturity. This similarity is natural, since the first order effect is the
dependence on the level of the cumulative default probability pt (h) = 1− e−ht
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Figure 8: Correlation surface for TARCH model (α=0.004, αd=0.094, β=0.927) with

Student-t shocks(v=8.3) and the slices of the surface for 1, 3, 5 and 7 year maturities.

which depends on the product of h · t rather than on the hazard rate or the
term to maturity separately. For each level of this product, we get a specific
level of the default threshold in the structural credit risk model. The higher this
threshold, the closer is the sampled region to the center of the latent variables
distribution and the less it is affected by the tail risk – thus leading to a lower
level and flatter skew of the credit correlation.

However, there is a second order effect which makes these two dependencies
somewhat different. Let us recall first that idiosyncrasies with less fat tails
(higher degrees of freedom) correspond to flatter correlation skew, as we argued
in the previous section. Since the idiosyncrasies converge to normal distribution
faster than the market factor as the return aggregation horizon grows, we can
deduce that the dependence on the term to maturity with fixed hazard rate
should exhibit a faster flattening of the correlation surface than the dependence
on the hazard rate with fixed term to maturity.

The right hand side figure in 9 shows a comparison of the change in corre-
lation when going from 5-year horizon to 10-year horizon with constant hazard
rate set at 100bp, against the change in correlation of fixed 5-year slice when
hazard rate goes from 100bp to 200bp. One can observe that the term-to-
maturity extension indeed causes a greater degree of flattening than the hazard
rate increase.

The dependence of the correlation surface on hazard rate has a strong ef-
fect on CDO tranche deltas. The precise calculation of tranche deltas in our
framework requires one to derive the tranche loss probabilities from the shape
of the correlation surface, as outlined in section 2.2, and then use the standard
pricing techniques described in Schonbucher [27]. However, the magnitude of
the adjustment can be estimated more easily by neglecting the interest rates and
looking only on the protection leg of the given equity tranche. The tranche delta
is dominated by the hazard rate sensitivity of the present value of its protection
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Figure 9: Left figure: the dependence of the 5-year correlation skew on the level of the

hazard rates. Right figure shows 3 correlation surface slices, contrasting the flattening

of the skew with growing hazard rates and term to maturity.

leg, which in turn is proportional to the expected tranche loss:

∆(0,K] (pt) ∝
dEL(0,K](t)

dh
= EGh L(0,K](t) + ρh

(
K, pt, R

)
EGρ L(0,K](t) (42)

where, in accordance with the definition of the correlation surface, we have:

EL(0,K] (t) = EGL(0,K]

(
ρ
(
K, pt (h) , R

)
, pt (h)

)
(43)

Let us define the delta adjustment factor as the percentage adjustment to
the tranche delta compared to fixed-correlation Gaussian delta of the tranche:

∆(0,K] (pt) = ∆G
(0,K] (pt) (1 + δadj (K, pt)) (44)

Since the first term in eq. (42) corresponds to the Gaussian delta of the
tranche, we can see that the delta adjustment factor is equal to the correlation
surface sensitivity times the tranche loss sensitivity ratio:

δadj (K, pt) = ρh

(
K, pt, R

) EGρ L(0,K](t)

EGh L(0,K](t)
= ρh

(
K, pt, R

)
Ψ (K, pt) (45)

where
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EGρ L(0,K](t) = −1−R
2
√
ρ
φ
(
Φ−1 (pt) ,−d1;−√ρ

)
(46)

EGh L(0,K](t) ≡
dpt
dh

EGp L(0,K](t) = (1− pt) t
(

1−R
)

Φ

(
−d1 +

√
ρΦ−1 (pt)√

1− ρ

)
(47)

d1 =
1
√
ρ

Φ−1 (pt)−
√

1− ρ
√
ρ

Φ−1

(
K

1−R

)
(48)

and the functions are evaluated at ρ = ρ
(
K, pt (h) , R

)
. Thus, the tranche loss

sensitivity ratio is given by:

Ψ (K, pt) =
EGρ L(0,K](t)

EGh L(0,K](t)
= − 1

2 (1− pt) t
√
ρ

φ
(
Φ−1 (pt) ,−d1;−√ρ

)
Φ
(
−d1+

√
ρΦ−1(pt)√
1−ρ

) (49)

Figure 10 illustrates these calculations for the case of TARCH-based dynamic
loss generating model. We can see that the systematic delta estimates in our
model are anywhere from 40% to 100% greater than the conventional fixed-
correlation delta estimates stemming from the Gaussian copula model. The
adjustment is greatest for the lowest values of K, and drops quickly as the
detachment level grows. While comparison with the actual tranche market price
sensitivity is beyond the scope of our paper, we would like to note that both the
the significant under-estimation of the equity tranche deltas and the relatively
smaller amount of the delta error for more senior tranches are in line with the
market experience during the correlation dislocation in May-September of 2005.

5 Summary and Conclusions

In this paper we have introduced and studied a new class of credit correlation
models defined as an extension of the structural credit model where the latent
variables follow a factor-ARCH process with asymmetric volatility dynamics.
To build the foundation for our model, we have studied the time aggregation
properties of the multivariate dynamic models of equity returns. We showed that
the dynamics of equity return volatilities and correlations leads to significant
departures from the Gaussian distribution even for horizons measured in several
years. The asymmetry appears to ”survive aggregation” longer than fat tails
based on the parameters estimated from the real data. The main source of
skewness and kurtosis of the return distribution for long horizons is the dynamic
asymmetry of volatility response to return shocks.

We introduced the notion of the correlation surface as a tool for comparing
loss generating models, whether defined via a single-period (static) copula, or
via multi-period (dynamic) latent-variable framework, and for simple and con-
sistent approach to non-parametric pricing of CDO tranches. We showed that
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Figure 10: Left figure: the dependence of the tranche loss sensitivity ratio and ρh
on K. Right figure shows the product of the delta adjustment factor as a function

of K. The base case corresponds to TARCH model (α=0.004, αd=0.094, β=0.927)
with Gaussian idiosyncracies, aggregated over 5 year horizon. Portfolio hazard rate is

equal to 100bps.

portfolio loss distributions with smooth pdf can be easily reconstructed from
the correlation surface using its level and slope along the K-dimention.

We considered the differences in the correlation surfaces generated by static
models, including Gaussian, Student-t and Double-t copula, and dynamic mod-
els including GARCH(1,1) with Gaussian and Student-t shocks, and TARCH(1,1)
with Gaussian and Student-t shocks. From this comparison we can conclude
that the most relevant stylized facts for explanation of the market observable
correlation skew are, in order of their importance:

• the independence of the market factor and idiosyncratic returns (no com-
mon mixing variables);

• the persistent asymmetry of aggregate return distribution of the market
factor, which in case of TARCH models occurs as a consequence of the
asymmetric volatility dynamics;

• the fat tails in the market factor returns;

• the fat tails in the idiosyncratic returns;

• the slower convergence to Normal distribution of the market factor com-
pared to idiosyncratic returns;

Importantly, in our dynamic framework, the correlation surface is not only
explained, but predicted – based on empirical parameters of the TARCH process
and the parameters describing the reference credit portfolio. The model also
predicts a specific sensitivity of the correlation surface to changes in various
parameters, including the average hazard rate of the underlying portfolio.

27



The inability of static models to incorporate changing base correlations are
at the heart of the difficulties faced by these models during the credit market
dislocations. In particular, our model reveals that the systematic deltas of equity
tranches are understated by the industry standard static copula models, since
the growing portfolio spread (hazard rate) should lead to an additional drop
in equity tranche prices due to decreasing implied correlation level. Similarly,
the static models require making additional assumptions about the correlation
skew at different maturities. The early market convention of keeping this skew
constant which some practitioners still adhere to is very far from realistic as can
be seen from the results of section 4.2. The more reasonable assumption is that
the correlation level decreases and the skew flattens for longer horizons.

We should note however, that these conclusions are based on an implicit
assumption that the model includes a single common return factor, and that
the parameters of the dynamic model are constant over time. While this is a
weaker assumption that an outright imposition of the constant correlation skew,
it may still be too strict in some circumstances. A possible direction for gener-
alization of our model is to move from a single market factor to a multi-factor
framework which can make the model much more flexible in terms of both the
detachment level K and term structure T dependence of the correlation surface
ρ = ρ(K,T ). The well-documented importance of both macro and industry
factors for explanation of equity returns suggests that such a generalization is
not only desirable from calibration point of view but also warranted empirically.
While the analytical tractability of the model will suffer, the numerical accuracy
will likely remain intact when using Monte Carlo simulations.

Whether in a single factor or a multi-factor setting, many of our conclusions
reflect the limitations of the large homogeneous portfolio approximation which
we have adopted in this paper. In particular, it is clear that even determin-
istic but heterogenous idiosyncrasies, market factor loadings and hazard rates
could lead to significant changes in portfolio loss distribution and consequently
to the correlation surface of the model. An extension of our model to such het-
erogenous case is possible, although the computational efforts will increase very
significantly.

In conclusion we note that the ARCH family of time series models [12] had
proven quite successful in explaining the behavior of implied volatility smile and
skew and stock index option pricing [13]. Given the similar empirical motiva-
tion of our model, and multi-faceted analogies with equity derivatives pricing
outlined throughout the paper, we believe that our approach can lead to similar
advances in the portfolio credit risk modeling, and shed new light on pricing of
CDO tranches.
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A Kurtosis and Skewness of Aggregated TARCH
Returns

In this notes we analyze kurtosis and skewness of aggregated returns RT =

T∑
t=1

rt

when rt is assumed to follow TARCH(1,1) process

rt = σtεt

σ2
t = (1− ζ)σ2 + αr2

t−1 + αdr
2
t−11{rt−1≤0} + βσ2

t−1

where returns innovations εt are assumed to be iid, have zero mean and unit vari-
ance. We are interested in variance, skewness and kurtosis of time aggregated
returns. To make sure that those moments are finite we need corresponding
moments of the return innovations to be finite. Particularly, we assume that εt
has finite kurtosis. Let us introduce the following notations for the central and
truncated moments of εt

mε ≡ E (εt) = 0

vε ≡ E
(
ε2
t

)
= 1

vdε ≡ E
(
ε2
t1{εt≤0}

)
sε ≡ E

(
ε3
t

)
sdε ≡ E

(
ε3
t1{εt≤0}

)
kε ≡ E

(
ε4
t

)
kdε ≡ E

(
ε4
t1{εt≤0}

)
Lemma 7 The following recursions hold for TARCH(1,1) model

covt−1

(
rkt , r

2
t+u

)
= ρcovt−1

(
rkt , r

2
t+u−1

)
for u>1

covt−1

(
rkt r

2
t+1

)
= αvart−1

(
rk+2
t

)
+ αdvart−1

(
rk+2
t 1{rt≤0}

)
Proof.

covt−1

(
rkt , r

2
t+u

)
= covt−1

(
rkt
[
(1− ζ)σ2 + αr2

t+u−1 + αdr
2
t+u−11{rt+u−1≤0} + βσ2

t+u−1

])
= 0 + αcovt−1

(
rkt , r

2
t+u−1

)
+ αdcovt−1

(
rkt , r

2
t+u−11{rt+u−1≤0}

)
+ βcovt−1

(
rkt , σ

2
t+u−1

)
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if u>1 then

covt−1

(
rkt , r

2
t+u−11{rt+u−1≤0}

)
= vdεcovt−1

(
rkt , r

2
t+u−1

)
covt−1

(
rkt , σ

2
t+u−1

)
= covt−1

(
rkt , r

2
t+u−1

)
If u=1 then

covt−1

(
rkt , σ

2
t+u−1

)
= 0

Proposition 8 Suppose 0 ≤ ζ < 1 and the return innovations have finite skew-
ness, sε, and finite ”truncated” third moment, sdε , then conditional third mo-
ment of T-period aggregate return Rt,t+T has the following representation for
TARCH(1,1)

EtR
3
t,t+T = sε

T∑
u=1

Et
(
σ3
t+u

)
+ 3

(
αsε + αDs

d
ε

) T∑
u=1

1− ζT−u

1− ζ
Et
(
σ3
t+u

)
In addition if Eσ3

t is finite then unconditional skewness of Rt,t+T is given by

ST ≡
ER3

t,t+T

E(R2
t,t+T )3/2

=

[
1

T 1/2
sε + 3

1

T 3/2

(
αsε + αds

d
ε

) T (1− ζ)− 1 + ρT

(1− ζ)2

]
E
(σt
σ

)3

Proof. Using Lemma 7 we have

Et

(
t+T∑
u=t+1

ru

)3

= Et

 ∑
t+1≤t1≤t2≤t3≤t+T

rt1rt2rt3


=

T∑
u=1

Etr
3
t+u +

∑
t+1≤t1<t2≤t+T

3Et
(
rt1r

2
t2

)
=

T∑
u=1

Et
(
r3
t+u

)
+ 3

∑
t+1≤t1<t2≤t+T

ζt2−t1−1
(
αEt

(
r3
t1

)
+ αdEt

(
r3
t11{rt1≤0}

))

=

T∑
u=1

Et
(
r3
t+u

)
+ 3

T∑
u=1

1− ζT−u

1− ζ
(
αEt

(
r3
t+u

)
+ αdEt

(
r3
t+u1{rt+u≤0}

))
= sε

T∑
u=1

Et
(
σ3
t+u

)
+
(
αsε + αds

d
ε

) T∑
u=1

1− ζT−u

1− ζ
Et
(
σ3
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)
Using the law of iterated expectations

E

(
t+T∑
u=t+1

ru

)3

= E

Et( t+T∑
u=t+1

ru

)3
 =

[
Tsε + 3

(
αsε + αds

d
ε

) T (1− ζ)− 1 + ζT

(1− ζ)2

]
E (σt)

3

ST is then computed using the simple formula for the unconditional variance
E(R2

t,t+T ) = σ2.
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To derive unconditional kurtosis we define the following unconditional auto-
correlations

γn = γ−n = corr(r2
t−n, r

2
t )

ϕn = corr(rt−n, r
2
t ) for n ≥ 1

ψi,j ≡ E
(
rt−irt−jr

2
t

)
for 1 ≤ j < i

Lemma 9 γn, ϕn and ψi,j decay exponentially as n and i− j increase

γn = ζγn−1 = ζn−1γ1 for n ≥ 1

ϕn = ζϕn−1 = ζn−1ϕ1 for n ≥ 1

ψi,j = ζψi−1,j−1 = ζj−1ψi−j+1,1 for 1 ≤ j < i

where γ1, ϕ1 and ψk,1 are given by

γ1 = α (kr − 1) + αd
(
kdr − vdr

)
+ βkr/kε

ϕ1 = αsr + αds
d
r

ψk,1 = αE
(
rt−k+1r

3
t

)
+ αdE

(
rt−k+1r

3
t 1{rt≤0}

)
with vdε =

E(r2t 1{rt≤0})
Er2t

, sr =
E(r3t )

(Er2t )3/2
, sdr =

E
(
r3t 1{rT <0}

)
(Er2t )3/2

, kr =
E(r4t )
(Er2t )2

and

kdr =
E(r4t 1{rt≤0})

(Er2t )2
.

Proposition 10 If

ζ ≡ E
(
β + αε2

t + αDε
2
t1{εt≤0}

)
= β + α+ αDv

d
ε < 1

ξ ≡ E
(
β + αε2

t + αDε
2
t1{εt≤0}

)2
= β2 + α2kε + α2

Dk
d
ε + 2αβ + 2αDβv

d
ε + 2ααDk

d
ε < 1

then unconditional kurtosis of rt, K1, is finite and

K1 ≡
Er4

t

(Er2
t )

2 = kε
1− ζ2

1− ξ

Proof. If the 4th moment of rt exists then the following equation must hold

Er4
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)
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σ4
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Therefore Er4
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t
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Proposition 11 If the distribution of εt is symmetric and αd = 0 then uncon-
ditional kurtosis of RT , if exists, is given by the following formula:

KT = 3 +
1

T
(K1 − 3) + 6

γ1

T 2

T (1− ζ)− 1 + ζT

(1− ζ)2
for T > 1 (50)

K1 = kε
1− ζ2

1− ξ
(51)

where kε is unconditional kurtosis of εt and

ξ ≡ E
(
β + αε2

t + αdε
2
t1{εt≤0}

)2
= β2 + α2kε + α2
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substituting the derived 4th moment into the definition of the kurtosis KT =

E

(
t+T∑
u=t+1

ru

)4

/E
(
r2
t

)2
completes the proof.

B Estimation Results for SP500

In this appendix consider the estimation results of several TARCH(1,1) speci-
fications for SP500 weekly returns, to provide empirical context for the rest of
the paper. We obtained the daily levels of SP500 from CRSP database. The
total number of observations is 10,699 and covers the period from 07/02/1962
till 12/31/2004. We constructed weekly log returns and estimated the parame-
ters of TARCH and GARCH models with Gaussian and Student-t shocks for 2
samples - full and post-1990.

Tables 1 and 2 shows estimated parameters and various data statistics. Note
that the Student-t distribution has an additional parameter, degrees of freedom
ν, that adjusts the tails of the error distribution. Since the Gaussian distribution
is nested within the Student-t as a limit of large degrees of freedom, and since
the estimates of the full unconstrained model result in a relatively small and
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statistically significant value of the degrees of freedom, we conclude that the
data points toward the fat-tailed return shock distribution.

On the other hand, the asymmetric TARCH model is nested within the
symmetric GARCH in the limiting case αd = 0. The estimated asymmetric
coefficient αd in the TARCH model is not only non-zero, but significantly higher
than the symmetric coefficient α for both complete and post 1990 samples, both
daily and weekly frequencies and Gaussian and Student-t shock distributions.
Thus, we conclude that the asymmetric volatility is prominently present in the
data. The best fit model among those considered is the TARCH(1,1) with
Student-t distribution of return innovations. The additional parameters of this
model are statistically significant.

To make sure that asymmetry in volatility is not a result of several extreme
negative returns like 1987 crash we provide data statistics and re-estimated
parameters of TARCH models for trimmed full and post 1990 samples. The
trimming is done by cutting excess volatility in the most extreme 0.1% obser-
vations of both positive and negative return.

Table 1: SP500 moments.

Sample period Daily Weekly
sr sdr kr vdr sr sdr kr vdr

1962-2004 -1.40 -2.43 39.83 0.53 -0.55 -1.35 7.01 0.55

1990-2004 -0.11 -1.14 6.67 0.51 -0.64 -1.36 6.10 0.56

SP500 moments(After trimming 0.1% of extreme positive and negative returns )

1962-2004 0.05 -1.03 5.95 0.50 -0.39 -1.18 5.26 0.54

1990-2004 0.04 -1.01 5.56 0.50 -0.50 -1.24 5.22 0.55

Table 2.

Estimated parameters of GARCH(1,1)/TARCH(1,1) with Gaussian/Student-t shocks

on weekly SP500 returns. The total number of return observations is 756 for post-1990

sample and 2,139 for the full sample starting in 1962.. Number below each parameter

estimate in parenthesis is an asymptotic standard deviation, LogL is corresponding

loglikelihood value. GARCH parameters correspond to the volatility specification:

σ2
t = ω + αr2

t−1 + αdr
2
t−11{rt−1≤0} + βσ2

t−1. νis degrees of freedom of Student-t

distributed return innovation εt. The constant term of the volatility process is not

shown since it is not used in the simulations.
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Sample Dates 01/01/1990-12/31/2004 01/01/1962-12/31/2004

Model GARCH TARCH TARCH + t GARCH TARCH TARCH + t

α 0.044 0.007 0.004 0.107 0.037 0.032

(0.0073) (0.024) (0.019) (0.013) (0.016) (0.0125)
αd - 0.112 0.094 - 0.136 0.106

(0.046) (0.033) (0.033) (0.0223)
β 0.953 0.918 0.927 0.886 0.877 0.894

(0.0003) (0.0022) (0.0013) (0.0022) (0.0031) (0.0015)
ν - - 8.31 - - 10.19

(2.75) (2.42)
LogL 1855.6 1861.7 1877.4 5347.4 5368.6 5397.7

C Monte Carlo Simulations

Most of the numerical estimates for credit risk in this paper are obtained by
Monte Carlo simulation. Here we outline the simulation procedure for two such
calculations, the estimation of the pairwise default correlation coefficient, and
the estimation of the tranche losses under the LHP assumption.

The default correlation coefficient, ρd(p) for the factor GARCH and TARCH
models is calculated based on the simulated factor time series and closed form
formulas of conditional default probabilities:

• simulate the common factor, Rm,T , I = 10, 000 times and normalize it to
have variance 1

• for each p find dT (p) that solves 1
I

I∑
i=1

Φ

(
dT−bR(i)

m,T√
1−b2

)
= p

• calculate ρd(p) = p12−p2
p(1−p) where p12 = 1

I

I∑
i=1

Φ

(
dT (p)−bR(i)

m,T√
1−b2

)2

The likelihood bounds in Figure 3 were obtained by repeating this procedure
1000 times.

When simulating portfolio loss distribution under the large homogeneous
portfolio (LHP) assumption we again begin by simulating the aggregated market
factor return. The latent variables are assumed to have symmetric one factor
structure with the factor following TARCH(1,1) model. For each realization of
the market factor the portfolio loss is given by the LHP formula (10)

LT =
(

1−R
)

Φ

(
dT − bRm,T√

1− b2

)
where

• Rm,T =

T∑
u=1

rm,u/std

(
T∑
s=1

rm,s

)
is a normalised return over horizon T

generated using time aggregation of simulated TARCH(1,1) returns with
unconditional volatility equal to 1
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• dT is calibrated so that the probability of Ri,T = bRm,T +
√

1− b2ET
hitting dT is equal to single name default probability pT

P
(
bRm,T +

√
1− b2ET ≤ dT

)
= pT

• b is the factor loading that is chosen to match a given unconditional linear
correlation ρ = b2

To calculate the expected tranche losses generated by the model and to
calibrate dT we use I = 100, 000 independent Monte Carlo simulations of the
factor and then use corresponding sample moments:

dT solves
1

I

I∑
i=1

Φ

(
dT − bR(i)

m,T√
1− b2

)
= pT

EL(0,K] =
1

I

I∑
i=1

f(0,K]

((
1−R

)
Φ

(
dT − bR(i)

m,T√
1− b2

))
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