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BLOCKED REGULAR FRACTIONAL FACTORIAL DESIGNS

WITH MINIMUM ABERRATION1

By Hongquan Xu

University of California, Los Angeles

This paper considers the construction of minimum aberration
(MA) blocked factorial designs. Based on coding theory, the concept
of minimum moment aberration due to Xu [Statist. Sinica 13 (2003)
691–708] for unblocked designs is extended to blocked designs. The
coding theory approach studies designs in a row-wise fashion and
therefore links blocked designs with nonregular and supersaturated
designs. A lower bound on blocked wordlength pattern is established.
It is shown that a blocked design has MA if it originates from an
unblocked MA design and achieves the lower bound. It is also shown
that a regular design can be partitioned into maximal blocks if and
only if it contains a row without zeros. Sufficient conditions are given
for constructing MA blocked designs from unblocked MA designs.
The theory is then applied to construct MA blocked designs for all
32 runs, 64 runs up to 32 factors, and all 81 runs with respect to four
combined wordlength patterns.

1. Introduction. Fractional factorial designs are widely used in scientific
and industrial experiments. Blocking is an effective method for reducing
systematic variations and therefore increasing precision of effect estimation.
Experimenters often face the practical problem of choosing good fractional
factorial designs and blocking schemes.

Fractional factorial designs are typically chosen according to the minimum

aberration (MA) criterion [12], which includes the maximum resolution cri-
terion [1] as a special case. The study of blocking in fractional factorial
designs is complicated by the presence of two defining contrast subgroups,
one for defining the fraction and another for defining the blocking scheme,
therefore, resulting in two types of wordlength patterns, one for treatment
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2 H. XU

and another for block. The MA criterion can be applied to the treatment
and block wordlength patterns separately. However, MA designs with re-
spect to one wordlength pattern may not have MA with respect to the other
wordlength pattern. One approach, that taken by Sun, Wu and Chen [19]
and Mukerjee and Wu [15], is to consider the concept of admissible blocking
schemes, but it often leads to too many admissible designs. Another ap-
proach is to combine the treatment and block wordlength patterns into one
single wordlength pattern so that the criterion of MA can be applied to it in
the usual way. Sitter, Chen and Feder [17], Chen and Cheng [5] and Cheng
and Wu [10] have proposed four combined sequences, resulting in four MA
criteria (to be defined later). See [9] for a related approach.

A practical and important issue is how to construct MA blocked designs
with respect to one or more criteria. This question is not adequately ad-
dressed in the literature. Most of the existing MA blocked designs rely on
the work of Sun, Wu and Chen [19], who obtained the complete catalog of
blocked designs with 8, 16, 32, 64 and 128 runs for up to nine factors. MA cri-
teria rank blocked designs according to the treatment and block wordlength
patterns, which are often obtained by counting words in the treatment defin-
ing contrast subgroups and alias sets. When the number of factors is large,
there are a huge number of words to be counted, causing considerable dif-
ficulties in computation. For example, when a design with 64 runs and 25
factors is arranged in 8 blocks, there are 222 − 1 = 4,194,303 words to be
counted. It is cumbersome and sometimes even impossible to do so for thou-
sands or millions of different designs. This calls for alternative computational
methods.

To avoid the aforementioned computational difficulties, we take a coding
theory approach and propose new methods to compare and rank blocked
designs without using defining contrast subgroups and alias sets. The idea
is originally due to Xu [22], who proposed the concept of minimum moment

aberration and established its equivalence to MA for unblocked designs. We
extend the concept of minimum moment aberration to blocked designs for
three of the four MA criteria in Section 2.

To further ease the computation burden, we study relationships among
MA blocked designs under different criteria and develop a general theory
on MA blocked designs. The coding theory approach studies designs in a
row-wise fashion and therefore links blocked designs with nonregular and
supersaturated designs. Results on nonregular and supersaturated designs
are used to establish an important lower bound on blocked wordlength pat-
tern. It is shown that a blocked design has MA with respect to all four
criteria if it originates from an unblocked MA design and achieves the lower
bound. It is also shown that a regular design can be partitioned into max-
imal blocks if and only if it contains a row (i.e., treatment combination)
without zeros. Sufficient conditions are given for constructing MA blocked
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designs from unblocked MA designs. Some technical lemmas are presented
in Section 3 and the main results are given in Section 4. We shall point out
that, for simplicity, we focus entirely on regular designs, even though most
of the results can be easily extended to nonregular designs.

With the concept of minimum moment aberration and developed theory,
we present methods to construct MA blocked designs in Section 5. We obtain
MA blocked designs for all 8, 16, 27 and 32 runs, 64 runs up to 32 factors,
and all 81 runs with respect to four combined wordlength patterns. The
difference among MA blocked designs under different criteria is summarized.

The rest of this section introduces some background. A regular sn−k de-
sign is defined by k treatment defining words, which form the treatment

defining contrast subgroup. The resolution [1] is the length of the shortest
word in the treatment defining contrast subgroup. For i = 1, . . . , n, let Ai,0

denote the number of words of length i in its treatment defining contrast
subgroup. For two unblocked regular sn−k designs D1 and D2, let r be the
smallest integer such that Ar,0(D1) 6= Ar,0(D2). Then D1 is said to have less
aberration than D2 if Ar,0(D1) < Ar,0(D2). If there is no design with less
aberration than D1, then D1 has MA. In short, the MA criterion sequentially
minimizes A1,0,A2,0, . . . ,An,0.

To arrange a regular sn−k design in sp blocks of size sn−k−p, one can
choose p independent block defining words, which form the block defining

contrast subgroup. There are (sp − 1)/(s− 1) block effects, each confounded
with sk treatment effects. For i = 1, . . . , n, let Ai,1 denote the number of
treatment words of length i that are confounded with some block effects.

As done in the literature, we shall only consider regular main effect (RME)
designs where none of the main effects is aliased with another main effect or
confounded with a block effect. It is evident that, for RME designs, A1,0 =
A2,0 = A1,1 = 0. The vectors Wt = (A3,0, . . . ,An,0) and Wb = (A2,1, . . . ,An,1)
are called the treatment and block wordlength pattern, respectively. Let
A0,1 = 0 for convenience.

MA criteria for blocked designs differ in how the treatment and block
wordlength patterns are combined. Sitter, Chen and Feder [17] first proposed
the combined wordlength pattern

Wscf = (A3,0,A2,1,A4,0,A3,1,A5,0,A4,1, . . .),(1)

where Ai,1 is ranked after Ai+1,0 for i = 2,3, . . . . Chen and Cheng [5] pointed
out that the ordering of wordlength patterns in (1) violates the hierarchical
assumption, and proposed the sequence

Wcc = (3A3,0 + A2,1,A4,0,10A5,0 + A3,1,A6,0, . . .),(2)

where the sum of
(2i−1

i

)

A2i−1,0 and Ai,1 is ranked before A2i,0 for i = 2,3, . . . .
Cheng and Wu [10] proposed the two combined wordlength patterns

W1 = (A3,0,A4,0,A2,1,A5,0,A6,0,A3,1, . . .),(3)
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W2 = (A3,0,A2,1,A4,0,A5,0,A3,1,A6,0, . . .),(4)

where Ai,1 is ranked after A2i,0 in W1 and after A2i−1,0 in W2 for i = 2,3, . . . .
We shall mention that sequence (4) was first proposed by Chen and Cheng [5]
and later independently by Zhang and Park [25] and Cheng and Wu [10].

Four MA criteria result from sequentially minimizing the corresponding
combined wordlength patterns. MA blocked designs under the W sequence
are called MA W designs.

An orthogonal array (OA) of N runs, n columns, s levels and strength t,
denoted by OA(N,n, s, t), is an N × n matrix in which all possible st level
combinations appear equally often as rows for any set of t columns.

2. A coding theory approach: minimum moment aberration. For a prime
power s, let GF (s) be the finite field of s elements. Let Vn be the n-
dimensional row vector space over GF (s), that is, Vn = {(v1, . . . , vn) :vi ∈
GF (s) for i = 1, . . . , n}.

An [n,m] linear code over GF (s) is a vector subspace of Vn with di-
mension m so that it has sm distinct vectors. An [n,m] linear code D can
be specified by an m × n generator matrix G whose rows form a basis for
the code. Then D = {u ∈ Vn :u = vG,v ∈ Vm}. A regular sn−k design is an
[n,n − k] linear code over GF (s). For an introduction to coding theory,
see [13], Chapter 4, and [20].

Consider arranging a regular sn−k design in sp equal-sized blocks. A design
of this kind is called a regular (sn−k :sp) design. Such a design is specified by
a pair of matrices T and B, defined over GF (s) and of orders (n−k)×n and
(n−k)×p, respectively, such that T has full row rank and B has full column
rank. Then a typical block of the design consists of all level combinations
of the form uT , with u ∈ Vn−k and uB = v, where v is any fixed vector in
Vp. Different blocks correspond to different choices of v. Since B has full
column rank p, there are sp choices of v, leading to a division of the sn−k

level combinations into sp blocks. See [9] and [15].
Let Lp = (sp−1)/(s−1) throughout this paper. Suppose that the columns

of B are b1, . . . , bp. Let F be the (n − k) × Lp matrix whose columns are
λ1b1 + · · ·+λpbp, where λi ∈GF (s), at least one λi 6= 0 and the first nonzero
λi is 1.

The columns of T and F can be viewed as points of PG(n− k− 1, s), the
projective geometry of dimension n− k − 1 over GF (s). In the terminology
of projective geometry, F is a (p−1)-flat in PG(n−k−1, s). Then a regular
(sn−k :sp) design is an RME design if and only if T and F are disjoint; see
[5] and [15].

Let G = (T,F ) be the (n − k) × (n + Lp) matrix and D be the linear
code generated by G. For convenience, write D = (DT ,DF ), where DT is
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the N × n treatment matrix and DF is the N × Lp block matrix, with
N = sn−k. For integers t ≥ 0, define moments

Kt,0(D) = N−2
N

∑

i=1

N
∑

j=1

[δij(DT )]t,(5)

Kt,1(D) = N−2
N

∑

i=1

N
∑

j=1

[δij(DT )]tδij(DF ),(6)

where δij(DT ) and δij(DF ) are the number of coincidences between the ith
and jth rows of DT and DF , respectively. For two vectors u = (u1, . . . , un)
and v = (v1, . . . , vn), the number of coincidences is the number of i’s such
that ui = vi. We take 00 = 1 throughout the paper.

Remark 1. The definitions of Kt,0(D) and Kt,1(D) given in (5) and (6)
work for both regular and nonregular designs. For regular designs, the double
summation can be replaced with a single summation; for example, (6) can
be simplified to

Kt,1(D) = N−1
N

∑

i=1

[δij(DT )]tδij(DF ),(7)

where j can be any row number.

Remark 2. Note that DF is a replicated OA(sp,Lp, s,2). It follows from
Lemma 1 of [14] that δij(DF ) takes on only two different values. Specially,
let y1, . . . , yN be the rows of DF . Then

δij(DF ) =

{

Lp = (sp − 1)/(s − 1), if yi = yj,
Lp−1 = Lp − sp−1, otherwise.

(8)

For an integer k, let
(x
k

)

= x(x− 1) · · · (x− k + 1)/k! if k > 0,
(x
0

)

= 1 and
(x
k

)

= 0 if k < 0. For integers k, j ≥ 0, let S(k, j) be a Stirling number of the
second kind, that is, the number of ways of partitioning a set of k elements
into j nonempty sets. It is well known that S(k, j) = (1/j!)

∑j
i=0(−1)j−i

(j
i

)

ik

for k ≥ j ≥ 0. For integers k, i≥ 0, define

Qk(i;n, s) = (−1)i
k

∑

j=0

j!S(k, j)s−j(s− 1)j−i

(

n− i
j − i

)

.(9)

For integers t, i≥ 0, define

ct(i;n, s) = (s− 1)
t

∑

k=0

(−1)k
(

t
k

)

nt−kQk(i;n, s).(10)
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It is easy to show that S(k, k) = 1, Qk(k;n, s) = (−1)ks−kk! and Qk(i;n, s) =
0 when i > k. Therefore, ct(t;n, s) = s−t(s−1)t! and ct(i;n, s) = 0 when i > t.

The following two lemmas regarding unblocked designs are from Xu [22,
23].

Lemma 1. For a regular sn−k design D and integers t ≥ 0,

Kt,0(D) =

min(t,n)
∑

i=0

ct(i;n, s)Ai,0(D),(11)

where ct(i;n, s) are constants defined in (10) and A0,0(D) = 1/(s− 1).

Lemma 2. Sequentially minimizing K1,0,K2,0, . . . ,Kn,0 is equivalent to

sequentially minimizing A1,0,A2,0, . . . ,An,0.

The minimum moment aberration criterion [22] sequentially minimizes
K1,0,K2,0, . . . ,Kn,0. Lemma 2 implies that the minimum moment aberration
criterion is equivalent to the MA criterion for unblocked designs.

Extending Lemma 1 to blocked designs, we have the following result.

Theorem 1. For a regular (sn−k :sp) design D and integers t ≥ 0,

Kt,1(D) = s−1
min(t,n)

∑

i=0

ct(i;n, s)[Ai,1(D) + LpAi,0(D)],(12)

where Lp = (sp − 1)/(s − 1), ct(i;n, s) are constants defined in (10) and

A0,0(D) = 1/(s− 1).

The proof of Theorem 1 requires the generalized Pless power moment

identities, a fundamental result in coding theory. For clarity, all proofs are
given in the Appendix.

For an RME design D, A1,0(D) = A2,0(D) = A0,1(D) = A1,1(D) = 0. From
(11) and (12), we obtain K1,0(D) = s−1n, K2,0(D) = s−2n(n+s−1), K0,1(D) =
s−1Lp and K1,1(D) = s−2nLp. Furthermore,

K3,0(D) = 6s−3(s− 1)A3,0(D) + s−3n(n2 + 3ns + s2 − 3n− 3s + 2),(13)

K2,1(D) = 2s−3(s− 1)A2,1(D) + s−3n(n + s− 1)Lp.(14)

We can define three minimum moment aberration criteria for blocked
designs by replacing Ai,0 and Ai,1 with Ki,0 and Ki,1 in (1), (3) and (4).
Because ct(t;n, s) is a positive constant, it follows from (11) and (12) that
the minimum moment aberration criterion with respect to Wscf , W1 or W2

is equivalent to its corresponding MA criterion.
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The MA Wcc criterion defined in (2) is more complicated than the other
three criteria. Nevertheless, from (13) and (14), we obtain

K3,0(D) + K2,1(D) = 2s−3(s− 1)[3A3,0(D) + A2,1(D)]

+ s−3n[(n2 + 3ns + s2 − 3n− 3s + 2) + (n + s− 1)Lp].

Therefore, minimizing K3,0 + K2,1 is equivalent to minimizing 3A3,0 + A2,1.

3. Some lemmas. Suppose that D = (DT ,DF ) is a regular (sn−k :sp)
design. Let x1, . . . , xN be the rows of DT and y1, . . . , yN be the rows of DF ,
where N = sn−k. For m = 1, . . . , sp, let Dm be the sn−k−p × n treatment
matrix corresponding to the mth block. For integers t ≥ 0, define moments

Kt(Dm) = s−2(n−k−p)
sn−k−p

∑

i=1

sn−k−p
∑

j=1

[δij(Dm)]t,

where δij(Dm) is the number of coincidences between the ith and jth rows
of Dm. Let Bm = {i :xi is a row of Dm,1≤ i≤N}. It is evident that i ∈ Bm

and j ∈ Bm for some m if and only if yi = yj. It is useful to express Kt(Dm)
in terms of the original design DT as

Kt(Dm) = s−2(n−k−p)
∑

i∈Bm

∑

j∈Bm

[δij(DT )]t.(15)

Without loss of generality, assume that D1 contains the null treatment
(i.e., a row of zeros) and call D1 the principal block. Then D1 is an [n,n−
k − p] linear code over GF (s) and other blocks Dm, 2 ≤ m ≤ sp, are cosets
of D1; therefore,

Kt(Dm) = Kt(D1) for m = 2, . . . , sp.(16)

Note that D1 is possibly a supersaturated design in which the number of
columns is larger than the number of rows.

The next result shows that Kt,1(D) is determined by Kt,0(D) and Kt(D1).

Lemma 3. Suppose that D is a regular (sn−k :sp) design and D1 is its

principal block. For integers t ≥ 0, Kt,1(D) = Lp−1Kt,0(D) + s−1Kt(D1).

Lemma 4. Suppose that D is an (sn−k :sp) RME design and D1 is its

principal block. Let J = n(sn−k−p−1 − 1)(sn−k−p − 1)−1 and η be the frac-

tional part of J .

(i) K1(D1) = s−1n and D1 is an OA(sn−k−p, n, s,1).
(ii) K2(D1)≥ s−(n−k−p)[n2 + (sn−k−p − 1)(J2 + η(1− η))]. The equality

holds if and only if the difference among all δij(D1), i < j, does not exceed

one.
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(iii) K2,1(D)≥ Lp−1s
−2n(n+s−1)+s−(n−k−p+1)[n2 +(sn−k−p−1)(J2 +

η(1− η))].

A regular (sn−k :sp) design D = (DT ,DF ) can be viewed as an unblocked
regular s(n+Lp)−(k+Lp) design. For clarity, denote this unblocked design as
Dun. For integers t ≥ 0, define moments Kt(Dun) = N−2 ∑N

i=1

∑N
j=1[δij(Dun)]t,

where N = sn−k and δij(Dun) = δij(DT ) + δij(DF ) is the number of coinci-
dences between the ith and jth rows of Dun. The next result shows that
Kt(Dun) is related to Kt,0(D), Kt−1,1(D), Kt−2,1(D), Kt−2,0(D) and so on.

Lemma 5. For a regular (sn−k : sp) design D and integers t ≥ 0,

Kt(Dun) = Kt,0(D) + tKt−1,1(D)

+ s−p+1
t

∑

r=2

(

t
r

)

[(Lr
p −Lr

p−1)Kt−r,1(D)

−LpLp−1(L
r−1
p −Lr−1

p−1)Kt−r,0(D)].

The following two lemmas are useful to know when MA blocked designs
are the same under different criteria.

Lemma 6. If D has MA with respect to both Wscf and W1, then D has

MA with respect to W2.

Lemma 7. Suppose there exists some constant 0 ≤ α < 3 such that

αA3,0 + A2,1 is minimized for D. If D has MA with respect to both Wscf

and W2, then D has MA with respect to Wcc.

Lemma 7 is very useful to show the MA Wcc optimality. The condition
α < 3 is necessary; see Section 5 for counterexamples.

4. Main results. Lemma 4(iii) and (14) together yield a lower bound of
A2,1 as follows.

Theorem 2. For an (sn−k :sp) RME design D,

A2,1(D) ≥ [2(s − 1)]−1

×{−n(n + s− 1) + s−(n−k−p−2)

× [n2 + (sn−k−p − 1)(J2 + η(1− η))]},

where J = n(sn−k−p−1 − 1)(sn−k−p − 1)−1 and η is the fractional part of J .
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Theorem 2 plays an important role in the theoretical development and
construction of MA blocked designs. The lower bound is tight for p = n −
k − 1 and n − k − 2. Note that an RME design achieving the lower bound
does not always have MA. When s = 2 and p < n− k − 2, the lower bound
can be improved in some cases if the results in [4] and [2] are used. However,
the improvement is usually negligible, noting that A2,1 must be an integer
for RME designs.

Corollary 1. If D has MA with respect to Wscf and W2, and D
achieves the lower bound in Theorem 2, then D has MA with respect to

Wcc.

The next result provides a sufficient condition when MA blocked designs
are the same under four criteria.

Theorem 3. If DT has MA among all regular sn−k designs and D
achieves the lower bound in Theorem 2, then D has MA with respect to

Wscf , W1, W2 and Wcc.

When the lower bound in Theorem 2 is achieved, the principal block D1

has minimum moment aberration among all sn−k−p ×n designs. Theorem 3
can be generalized as follows.

Corollary 2. If DT has MA among all regular sn−k designs and the

principal block D1 has minimum moment aberration among all sn−k−p × n
designs, then D has MA with respect to Wscf , W1, W2 and Wcc.

The next result gives a simple necessary and sufficient condition when a
regular design can be partitioned into maximal blocks as an RME design.

Theorem 4. A regular sn−k design containing the null treatment can

be partitioned into maximal sn−k−1 blocks as an RME design if and only if

it contains a row without zeros.

Mukerjee and Wu [15] previously studied the maximal blocking problem
with a projective geometric approach. They managed to obtain a complete
solution for sn−1 and sn−2 designs. Our approach appears to be more pleas-
ant than theirs. Theorem 4 gives a simple answer to the question.

When s = 2, a row without zeros is necessarily a row of all 1’s. Then a
row and its fold-over forms a block. The unblocked design must be a fold-
over design. A regular fold-over design is also called an even design [11],
because it contains only words of even length. Whether or not a design is an
even design can be simply checked by its wordlength pattern. The following
corollary is a special case of Theorem 4.
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Corollary 3. A regular 2n−k design containing the null treatment can

be partitioned into maximal 2n−k−1 blocks as an RME design if and only if

it is an even design.

It is of special interest to know when an unblocked MA design can be
partitioned into maximal blocks. Unblocked MA 2n−k designs were given
by Chen and Wu [8] for k = 1,2,3,4 and by Chen [6] for k = 5. Combining
their results and Corollary 3, we have the following result. An unblocked
MA 2n−k design can be partitioned into maximal 2n−k−1 blocks as an RME
design as follows:

(i) when k = 1 and n is even,
(ii) when k = 2 and n is a multiple of 3,
(iii) when k = 3 and n = 7t + q for integers t ≥ 0 and q = 7,11,
(iv) when k = 4 and n = 15t + q for integers t≥ 0 and q = 8,12,15,20,
(v) when k = 5 and n = 31t+q for integers t ≥ 0 and q = 16,21,24,28,31,

37,40,44.

Furthermore, it is known from coding theory that even designs are the
only designs of resolution IV for 5N/16 < n ≤ N/2 with N = 2n−k; see [3].
For such n, an unblocked MA 2n−k design can always be partitioned into
maximal 2n−k−1 blocks as an RME design.

To describe the next result, let F̃ be an (n − k − 2)-flat and T̃ be the
complement of F̃ in PG(n−k−1, s). Let H̃n−k be the linear code generated
by T̃ . Note that H̃n−k is unique up to isomorphism. It is evident that H̃n−k

and its projection designs (i.e., subsets of columns) can be partitioned into
maximal sn−k−1 blocks as RME designs. The reverse is also true in the
following sense. If an sn−k design can be partitioned into sn−k−1 blocks as
an RME design, then it is isomorphic to a projection design of H̃n−k. The
next result characterizes MA (sn−k :sn−k−1) RME designs.

Theorem 5. If DT has MA among all projection designs of H̃n−k, then

DT can be partitioned as an (sn−k :sn−k−1) RME design D that has MA

with respect to Wscf , W1, W2 and Wcc.

Theorem 5 shows that MA blocked (sn−k :sn−k−1) designs are the same
for all four criteria when they exist. As a numeric illustration, consider
s = 3. For 27 runs, H̃3 is the unique MA 39−6 design. According to Xu
[23], for 4 ≤ n < 9, MA 3n−(n−3) designs are projection designs of the MA
39−6 design; therefore, they can be partitioned into maximal 9 blocks and
resulting RME designs have MA with respect to all four criteria. For 81 runs,
H̃4 is the unique MA 327−23 design. According to Xu [23], for 5 ≤ n ≤ 9
and 12 ≤ n < 27, MA 3n−(n−4) designs are projection designs of the MA
327−23 design; therefore, they can be partitioned into maximal 27 blocks
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and resulting RME designs have MA with respect to all four criteria. For
n = 10,11, MA 3n−(n−4) designs are not projection designs of the MA 327−23

design; therefore, they cannot be partitioned as RME designs with 27 blocks.
The second best designs are projection designs of the MA 327−23 design;
therefore, they can be partitioned into maximal 27 blocks and the resulting
RME designs have MA with respect to all four criteria.

When s = 2, H̃n−k is an even design with resolution IV. We have the
following result.

Corollary 4. If a regular 2n−k design has MA among all even designs,

then it can be partitioned as a (2n−k : 2n−k−1) RME design that has MA with

respect to Wscf , W1, W2 and Wcc.

Recall that a regular (sn−k :sp) design D can be viewed as an unblocked
regular s(n+Lp)−(k+Lp) design Dun. The next result provides a sufficient con-
dition when an MA blocked design originates from an unblocked MA design.

Theorem 6. If DT has MA among all regular sn−k designs and the

unblocked design Dun has MA among all regular s(n+Lp)−(k+Lp) designs, then

the blocked (sn−k :sp) RME design D has MA with respect to Wscf , W1, W2

and Wcc.

Theorem 6 is most useful when p = 1. It happens frequently that an un-
blocked MA sn−k design can be extended to an unblocked MA s(n+1)−(k+1)

design by adding an extra column. For example, according to Chen, Sun
and Wu [7] and Xu [23], for 8 and 27 runs, MA unblocked designs are in
sequential order for all n. Whenever this happens, the extra column can be
used as the block generator, and the resulting (sn−k :s1) design has MA with
respect to Wscf , W1, W2 and Wcc.

Theorem 6 is less useful when p > 1 because Dun usually does not have
MA. The following result is interesting in this regard.

Theorem 7. If DT has MA among all regular sn−k designs and D has

MA with respect to Wscf , then D has MA with respect to both W1 and W2.

If, in addition, αA3,0(D) + A2,1(D) is also minimized for some constant

0 ≤ α < 3, then D has MA with respect to Wcc.

Theorem 7 implies that when MA blocked designs are different under
Wscf , W1 and W2, an MA Wscf blocked design must not originate from an
unblocked MA design.
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5. MA blocked designs. MA blocked designs with respect to Wscf , W1

or W2 can be obtained by computing and comparing moments Kt,0 and Kt,1

for all possible blocking schemes. This is a feasible task when the number
of blocking schemes is not too large; see [24] for details, where MA blocked
designs for all 32 runs, 64 runs up to 32 factors, and all 81 runs with respect
to Wscf , W1 and W2 are given.

However, this method cannot be used to construct MA Wcc designs be-
cause there is no equivalent minimum moment aberration criterion with
respect to (2). Furthermore, an essential difference exists between the MA
Wcc criterion and the other three criteria. Because the MA Wscf , W1 and W2

criteria minimize A3,0 first, there is no need to search over resolution III de-
signs whenever blocking schemes from resolution IV designs exist. However,
the MA Wcc criterion minimizes 3A3,0 +A2,1 first. Combining A3,0 with A2,1

makes it more difficult to construct MA Wcc designs than other types of MA
designs. To determine the minimum of 3A3,0 + A2,1, a simple strategy is to
search over all resolution III designs. This requires a complete catalog of
resolution III designs, but such a catalog is not available for 64-run designs.

Combining the developed theory and computer search, we obtain MA Wcc

designs for all 8, 16, 27 and 32 runs, 64 runs up to 32 factors, and all 81
runs. Previously, Chen and Cheng [5] developed a theory to characterize MA
Wcc designs in terms of their blocked residual designs and obtained MA Wcc

designs for all 8 and 16 runs and 32 runs up to 20 factors.
Here we explain how to construct MA Wcc designs for 64 runs and n ≤ 32

with the results of Xu and Lau [24]. First, for p = 5 and 6 ≤ n ≤ 32, by
Theorem 5, MA (2n−(n−6) : 25) designs are the same under all four criteria;
therefore, MA designs given by Xu and Lau [24] have MA with respect to all
four criteria. Indeed, they can be easily constructed by searching over MA
projection designs of the unique even 232−26 design. Next, for p = 1, because
unblocked MA 2n−(n−6) designs are in sequential order for n = 6–7, 8–12,
14–20 and 21–33, by Theorem 6, we obtain MA (2n−(n−6) : 21) designs with
respect to all four criteria for all 6 ≤ n ≤ 32 but n = 7, 12, 13 and 20. For
n = 7, 12, 13 or 20, according to [24], MA W2 and Wscf designs coincide and
have A2,1 = 0; therefore, by Lemma 7, MA Wcc designs also coincide with
MA W2 and Wscf designs.

The situation for p = 2,3,4 is more complicated than that for p = 1 and
5. We first compute the lower bounds of A2,1 in Theorem 2, which are
given in Table 1. It is evident that a lower bound can be replaced by the
smallest nonnegative integer that exceeds it if it is negative or not an integer.
According to Xu and Lau [24], MA W2 designs achieve the modified lower
bounds of A2,1 except for the following 22 cases: p = 2, n = 19–26, 31, 32;
p = 3, n = 29–32; and p = 4, n = 25–32. Furthermore, MA Wscf and W2

designs coincide except for p = 2 and n = 7,12. Then, by Corollary 1, MA
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Table 1
Lower bound of A2,1 in Theorem 2 for 64 runs, 6 ≤ n ≤ 32 and p = 2,3,4

p 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 −1.5 −1.5 −1.5 −1.5 −1.2 −1.3 −0.8 −0.7 0 0 1 1.2 2.3 2.7
3 0 0 1 1.5 2.5 3.5 4.5 6 7 9 10.5 12.5 14.5 16.5
4 3 5 7 9 12 15 18 22 26 30 35 40 45 51

p 20 21 22 23 24 25 26 27 28 29 30 31 32

2 3.8 4.5 5.5 6.5 7.5 8.7 9.8 11.3 12.2 14 15 17 18.2
3 19 21 24 26.5 29.5 32.5 35.5 39 42 46 49.5 53.5 57.5
4 57 63 70 77 84 92 100 108 117 126 135 145 155

Wscf and W2 designs also have MA with respect to Wcc except for the 24
special cases, which require additional computer search.

For the 24 special cases, Theorem 2 and Lemma 7 are again used to ease
computation. Consider, for example, p = 4 and n = 29. According to Xu
and Lau [24], MA Wscf ,W1 and W2 designs coincide and have A3,0 = 0 and
A2,1 = 196. The lower bound of A2,1 is 126. To determine the minimum of
3A3,0 +A2,1, we only need search over all designs with A3,0 ≤ (196−126)/3 =
23.3, leading to A3,0 ≤ 23. This is a feasible task. A complete enumeration
(to be explained later) shows that there are exactly 17 regular 229−23 designs
with A3,0 ≤ 23, among which one has resolution IV. It is straightforward to
verify that 2.9A3,0 +A2,1 has minimum 196 among all 17 229−23 designs with
A3,0 ≤ 23. Then, by Lemma 7, MA Wcc designs coincide with MA W2 and
Wscf designs.

When MA W2 and Wscf designs are different or when they do not minimize
αA3,0 +A2,1 for all α with 0≤ α < 3, Lemma 7 cannot be used; then MA Wcc

designs are determined by sequentially comparing the complete sequence
in (2). Fortunately, this happens only for the following five cases: (n,p) =
(7,2), (12,2), (25,4), (26,4), (29,3). For the first two cases, MA Wcc designs
coincide with MA W2 designs; for the last three cases, MA Wcc designs
are different from MA W2 designs, which coincide with MA Wscf and W1

designs.
Now we explain how to enumerate all 229−23 designs with A3,0 ≤ 23. Note

that a 3-letter word consists of three factors and there are 29 factors in a
229−23 design. Therefore, for any 229−23 design with A3,0 = 23, there must
exist a column appearing in at least 3× 23/29 = 2.4 or 3 words of length 3.
Deleting that column yields a 228−22 design with A3,0 ≤ 20. Therefore, all
229−23 designs with A3,0 ≤ 23 can be enumerated by adding a column to all
228−22 designs with A3,0 ≤ 20, which in turn can be enumerated by adding a
column to all 227−21 designs with A3,0 ≤ 17. This can be done sequentially in
the same way as in Chen, Sun and Wu [7] and Xu [23], as long as the number
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of designs is not too large at each step. We shall point out the importance of
the lower bound of A2,1 in Theorem 2. Without this bound, one has to search
over all 229−23 designs with A3,0 ≤ 196/3 = 65.3. This is not a feasible task
because there are more than 100,000 229−23 designs with A3,0 ≤ 65 and it is
impossible to enumerate all of them with the current method and computer.

Finally, we summarize the differences of MA blocked designs under differ-
ent criteria for all 8, 16, 27, 32 runs, 64 runs up to 32 factors, and all 81 runs.
We observed that MA blocked designs under all four criteria are the same
in most cases. This occurs for all 8 and 27 runs, which can be easily verified
with Theorems 5 and 6. When MA blocked designs under four criteria are
not all the same, one of the following four situations occurs:

1. MA W1, W2 and Wcc designs are the same, but they differ from MA Wscf

designs.
2. MA W2, Wscf and Wcc designs are the same, but they differ from MA W1

designs.
3. MA W1, W2 and Wscf designs are the same, but they differ from MA Wcc

designs.
4. MA W2 and Wcc designs are the same, but they differ from MA W1 or

Wscf designs.

Situation 1 occurs once for 32 runs with (n,p) = (6,1) and once for 64 runs
with (n,p) = (7,2), and does not occur for 16 and 81 runs. Situation 2
occurs twice for 16 runs with (n,p) = (5,1), (5,2), 12 times for 32 runs,
35 times for 64 runs, and twice for 81 runs with (n,p) = (11,1), (11,2).
Situation 3 occurs once for 32 runs with (n,p) = (13,3), three times for
64 runs with (n,p) = (25,4), (26,4), (29,3), and three times for 81 runs with
(n,p) = (9,2), (17,2), (21,2). Situation 4 occurs only once for 64 runs with
(n,p) = (12,2).

Except for situation 3, MA Wcc designs coincide with MA W2 designs,
which are given by Xu and Lau [24]. Table 2 gives MA designs for situa-
tion 3 with treatment and block columns in the same fashion as Cheng and
Wu [10] and Xu and Lau [24]. The designs are labeled as n-k ·i/Bp(W ), where
i denotes the rank of the unblocked sn−k design under the MA criterion, p
denotes the number of block variables, and W denotes the MA W -criterion.
See Xu and Lau [24] for generator matrices and column labels. To save space,
in Table 2 independent columns are omitted in the treatment columns; only
generators are given in the block columns, treatment wordlength pattern
is truncated as Wt = (A3,0,A4,0,A5,0,A6,0) and block wordlength pattern is
truncated as Wb = (A2,1,A3,1,A4,1,A5,1). The last two columns in Table 2
give the numbers of clear main effects (C1) and of clear two-factor interac-
tions (C2). A main effect or two-factor interaction is clear if it is not aliased
with any other main effect or two-factor interaction and is not confounded
with any block effect [19].
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Table 2
MA blocked designs for situation 3

Design Treatment Wt Block Wb C1 C2

32 runs
13-8.1/B3(*) 31 7 11 21 25 13 14 19 0 55 0 96 3 5 17 36 0 310 0 13 0
13-8.4/B3(Wcc) 31 7 11 21 13 14 26 3 4 39 32 48 5 10 19 22 76 124 288 4 0

64 runs
25-19.1/B4(*) 31 35 13 52 14 55 37 61 11 19 0 435 0 3 5 9 48 144 0 5923 0 25 0

21 44 7 62 25 49 22 41 38 5440
25-19.17/B4(Wcc) 31 35 13 52 14 55 21 37 11 19 8 378 336 3 5 17 41 92 568 2688 8 0

25 38 7 26 49 22 28 50 9 4032 13104
26-20.1/B4(*) 31 35 13 52 14 55 37 61 11 19 0 515 0 3 5 9 48 156 0 6999 0 26 0

21 44 7 62 25 49 22 41 38 26 7062
26-20.50/B4(Wcc) 31 35 13 52 14 55 21 37 11 19 16 386 672 3 5 17 41 100 632 3248 0 0

25 38 7 26 49 22 28 50 9 33 4368 15960
29-23.1/B3(*) 31 35 13 52 14 55 37 61 11 19 0 819 0 5 17 33 91 0 5187 0 29 0

21 44 7 62 25 49 22 41 38 26 14560
28 42 47

29-23.4/B3(Wcc) 31 35 13 52 14 55 37 61 11 19 12 707 640 9 20 38 46 484 2252 4 0
21 44 7 62 25 49 22 41 26 28 11536 14016
42 56 3

81 runs

9-5.1/B2(*) 22 9 24 31 34 0 18 36 12 4 20 9 30 117 162 9 0
9-5.2/B2(Wcc) 22 9 24 31 3 1 18 27 28 6 18 6 44 90 186 6 5
17-13.1/B2(*) 22 9 24 31 3 25 13 37 6 18 20 336 1014 4 15 40 210 2079 0 0

7 35 12 5072 9256
17-13.2/B2(Wcc) 22 9 24 31 3 25 13 37 6 18 23 306 1107 12 15 28 303 1782 0 0

7 35 16 4952 9814
21-17.1/B2(*) 22 9 24 31 3 25 13 37 6 18 51 729 3717 4 26 48 550 4590 0 0

7 35 12 38 15 16 19 21819 32418
21-17.2/B2(Wcc) 22 9 24 31 3 25 13 37 15 23 52 720 3735 11 30 45 573 4545 0 0

16 34 6 38 7 18 26 21876 32310

Notes. (*) MA Wscf , W1 and W2 designs.

For all designs given in Table 2, MA Wcc designs have a larger A3,0 value

but a smaller A2,1 value than corresponding MA designs under the other

three criteria. Indeed, these MA Wcc designs achieve the lower bound of A2,1

in Theorem 2, whereas MA designs under the other three criteria originate

from unblocked MA designs.

Note that for 81 runs, MA Wscf ,W1 and W2 designs 9-5.1/B2 have the

same 3A3,0 + A2,1 value as the MA Wcc design 9-5.2/B2. This also happens

with 21-17.1/B2 and 21-17.2/B2. These examples show that the condition

α < 3 in Lemma 7 is necessary.
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APPENDIX

Further notation and results in coding theory are necessary in order to
prove Theorem 1. The Hamming weight of a vector u = (u1, . . . , un), denoted
by wt(u), is the number of its nonzero components ui.

Associated with any linear code D is another linear code, called its dual

and denoted by D⊥. Suppose D is an [n,m] linear code with generator
matrix G over GF (s). The dual D⊥ is the null space of G, that is, D⊥ =
{u ∈ Vn :uG′ = 0}, where G′ is the transpose of G. The dual D⊥ is indeed
the defining contrast subgroup of D.

Suppose D is an [n1 + n2,m] linear code over GF (s) and D⊥ is its dual
code. Each vector u in D and D⊥ can be written as u = (u1, u2), where
u1 ∈ Vn1 and u2 ∈ Vn2 . Let Bi1,i2(D) and Bi1,i2(D

⊥) be the number of vectors
in D and respectively in D⊥ with wt(u1) = i1 and wt(u2) = i2.

The following result, a special case of Lemma 4.3 of Xu [21], generalizes
the Pless power moment identities [16].

Lemma A.1. For integers k1, k2 ≥ 0,

s−m
n1
∑

i1=0

n2
∑

i2=0

ik1
1 ik2

2 Bi1,i2(D) =
n1
∑

j1=0

n2
∑

j2=0

Bj1,j2(D
⊥)Qk1(j1;n1, s)Qk2(j2;n2, s),

where Qk(j;n, s) is defined in (9).

Proof of Theorem 1. Let N = sn−k and n2 = Lp. Then D = (DT ,DF )
is an [n+n2, n−k] linear code. Let D⊥ be the dual code of D. Each vector u
in D and D⊥ can be written as u = (u1, u2), where u1 ∈ Vn and u2 ∈ Vn2 . It
is known that the wordlength patterns are proportional to the split weight
distributions of D⊥ as follows: for i = 0, . . . , n,

Ai,0(D) = Bi,0(D
⊥)/(s − 1) and Ai,1(D) = Bi,1(D

⊥)/(s− 1);(A.1)

see [18] and [5]. By (7),

Kt,1(D) = N−1
n

∑

i1=0

n2
∑

i2=0

(n− i1)
t(n2 − i2)Bi1,i2(D)

= N−1
n

∑

i1=0

n2
∑

i2=0

t
∑

k=0

(

t
k

)

(−1)knt−kik1(n2 − i2)Bi1,i2(D)

= N−1
t

∑

k=0

(

t
k

)

(−1)knt−k
n

∑

i1=0

n2
∑

i2=0

(ik1n2 − ik1i2)Bi1,i2(D).
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By Lemma A.1,

Kt,1(D) =
t

∑

k=0

(

t
k

)

(−1)knt−k
n

∑

j1=0

n2
∑

j2=0

Bj1,j2(D
⊥)Qk(j1;n, s)

× [Q0(j2;n2, s)n2 −Q1(j2;n2, s)].

Recall that Qk(j;n, s) = 0 for j > k. Then

Kt,1(D) =
t

∑

k=0

(

t
k

)

(−1)knt−k
n

∑

j1=0

Qk(j1;n, s)∆(D⊥, j1;n2, s),

where ∆(D⊥, j1;n2, s) = Bj1,0(D
⊥)Q0(0;n2, s)n2 − Bj1,0(D

⊥)Q1(0;n2, s) −
Bj1,1(D

⊥)Q1(1;n2, s). Note that Q0(0;n2, s) = 1, Q1(0;n2, s) = n2(s− 1)s−1

and Q1(1;n2, s) =−s−1. Then

Kt,1(D) =
t

∑

k=0

(

t
k

)

(−1)knt−k
n

∑

j1=0

Qk(j1;n, s)

× [Bj1,0(D
⊥)n2s

−1 + Bj1,1(D
⊥)s−1]

=
n

∑

j1=0

t
∑

k=0

(

t
k

)

(−1)knt−kQk(j1;n, s)

× [Bj1,0(D
⊥)n2s

−1 + Bj1,1(D
⊥)s−1]

=
n

∑

j1=0

ct(j1;n, s)(s− 1)−1[Bj1,0(D
⊥)n2 + Bj1,1(D

⊥)]s−1.

Then (12) follows from (A.1) and the fact that ct(j1;n, s) = 0 when j1 > t.
�

Proof of Lemma 3. By (8) and (15),

Kt,1(D) = N−2
N

∑

i=1

N
∑

j=1

[δij(DT )]tLp−1

+ N−2
sp
∑

m=1

∑

i∈Bm

∑

j∈Bm

[δij(DT )]t(Lp −Lp−1)

= Lp−1Kt,0(D) + (Lp −Lp−1)s
−2p

sp
∑

m=1

Kt(Dm).

Then the result follows from (16). �
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Proof of Lemma 4. Let N1 = sn−k−p and Jt(D1) =
∑

1≤i<j≤N1
[δij(D1)]

t/
[N1(N1 − 1)/2] for t ≥ 0. It is easy to verify that, for t ≥ 0,

Kt(D1) = N−1
1 [(N1 − 1)Jt(D1) + nt].(A.2)

(i) Recall that for an (sn−k :sp) RME design D, K1,0(D) = s−1n and
K1,1(D) = s−2nLp. Then, by Lemma 3, K1(D1) = s[K1,1(D)−Lp−1K1,0(D)] =
s−1n. By (A.2), J1(D1) = (N1 − 1)−1[N1K1(D1) − n] = n(N1 − s)[(N1 −
1)s]−1 = J . On the other hand, Xu [22] showed that J1(D1) ≥ J , with
equality if and only if D1 is an OA(N1, n, s,1). Therefore, D1 must be an
OA(N1, n, s,1).

(ii) Since the number of coincidences, δij(D1), must be an integer, it is
easy to verify that, given J1(D1) = J , J2(D1) achieves the minimum value
of J2 + η(1− η) when all δij(D1), i < j, take on only one of the two values,
⌊J⌋ and ⌊J⌋ + 1, where ⌊x⌋ is the largest integer that does not exceed x.
Then the result follows from (A.2).

(iii) By Lemma 3, K2,1(D) = Lp−1K2,0(D) + s−1K2(D1). The result fol-
lows from (ii) and the fact that K2,0(D) = s−2n(n + s− 1). �

Proof of Lemma 5. By the binomial theorem,

Kt(Dun) = N−2
N

∑

i=1

N
∑

j=1

[δij(DT ) + δij(DF )]t

= N−2
N

∑

i=1

N
∑

j=1

t
∑

r=0

(

t
k

)

[δij(DT )]t−r[δij(DF )]r.

By (8), (15) and (16),

Kt(Dun) = N−2
t

∑

r=0

(

t
k

) N
∑

i=1

N
∑

j=1

[δij(DT )]t−rLr
p−1

+ N−2
t

∑

r=0

(

t
k

) sp
∑

m=1

∑

i∈Bm

∑

j∈Bm

[δij(DT )]t−r(Lr
p −Lr

p−1)

=
t

∑

r=0

(

t
k

)

Lr
p−1Kt−r,0(D) +

t
∑

r=0

(

t
k

)

(Lr
p −Lr

p−1)s
−2p

sp
∑

m=1

Kt−r(Dm)

= Kt,0(D) +
t

∑

r=1

(

t
k

)

Lr
p−1Kt−r,0(D)

+ s−p
t

∑

r=1

(

t
k

)

(Lr
p −Lr

p−1)Kt−r(D1).
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Then the result follows from Lemma 3 with some algebra. �

Proof of Lemma 6. First A3,0(D), A2,1(D) and A4,0(D) are mini-
mized sequentially because D has MA with respect to Wscf . Next, among
designs with the same values of A3,0(D), A2,1(D) and A4,0(D), A5,0(D) is
minimized because D has MA with respect to W1, and A3,1(D) is minimized
because D has MA with respect to Wscf . Continuing this type of argument
shows that D has MA with respect to W2. �

Proof of Lemma 7. First 3A3,0(D) + A2,1(D) = (3 − α)A3,0(D) +
[αA3,0(D) + A2,1(D)] is minimized because both A3,0(D) and αA3,0(D) +
A2,1(D) are minimized. For designs with the same value of 3A3,0(D) +
A2,1(D), they must have the same values of A3,0(D) and A2,1(D). Then
A4,0(D) is minimized among designs with the minimum of 3A3,0(D)+A2,1(D)
because D has MA with respect to Wscf . Among designs with the same values
of 3A3,0(D)+A2,1(D) and A4,0(D), A5,0(D) is minimized because D has MA
with respect to W2 and A3,1(D) is minimized because D has MA with respect
to Wscf ; therefore, 10A5,0(D) + A3,1(D) is also minimized. For designs with
the same values of 3A3,0(D) + A2,1(D), A4,0(D) and 10A5,0(D) + A3,1(D),
they must have the same A5,0(D) and A3,1(D) values. Continuing this type
of argument shows that D has MA with respect to Wcc. �

Proof of Theorem 3. Note that D achieves the lower bound in The-
orem 2 if and only if D1 achieves the lower bound in Lemma 4(ii). When the
latter lower bound is achieved, K2(D1) is minimized and Kt(D1) is uniquely
determined for t ≥ 3. By Lemma 3, Kt,1(D) is determined by Kt,0(D) for
t ≥ 3. Because DT has MA, by Lemma 2, K3,0(D),K4,0(D), . . . ,Kn,0(D) are
minimized sequentially. Then any combined sequence of (K3,0(D), K4,0(D),
. . . ,Kn,0(D)) and (K2,1(D), K3,1(D), . . . ,Kn,1(D)) is also minimized sequen-
tially as long as Kt,1(D) is minimized after Kt,0(D) for t = 2, . . . , n. Hence,
D has minimum moment aberration and MA with respect to Wscf , W1 and
W2. Finally, because A2,1(D) is minimized among all possible designs, by
Lemma 7, D has MA with respect to Wcc. �

Proof of Theorem 4. Necessity. When p = n−k−1, by Lemma 4(i),
the principal block D1 is an OA(s,n, s,1). Then it must contain a row of all
zeros and other s− 1 rows without zeros.

Sufficiency. Let u = (u1, . . . , un) be a row vector of DT without zeros.
Because none of ui is zero, the linear equation

∑n−k
i=1 xiui = 0 has sn−k−1

solutions over GF (s). Let F be an (n − k) × Ln−k−1 matrix, where the
columns correspond to the solutions with the first nonzero element being
unity. Clearly, F has rank n− k− 1, and it is an (n− k− 2)-flat in PG(n−
k− 1, s). On the other hand, DT is an [n,n− k] linear code over GF (s). Let
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T = (tij) be the (n− k)× n generator matrix of DT . We need to show that
T and F have no columns in common so that the resulting blocked design
D = (DT ,DF ) is an RME design.

Without loss of generality, let T = [In−k,E], where In−k is the n − k
identity matrix and E is an (n−k)×k matrix. Because the row vectors of T
form a basis for DT , u can be uniquely represented as a linear combination of
the row vectors of T . Then it is clear that

∑n−k
i=1 tijui = uj 6= 0 for j = 1, . . . , n.

This proves that T and F have no columns in common. �

Proof of Theorem 5. We only need to prove the MA optimality. Fol-
lowing the argument preceding the theorem, we can write an (sn−k : sn−k−1)
RME design as D = (DT ,DF ), where DT is a projection design of H̃n−k.
Recall that the principal block D1 is an OA(s,n, s,1); therefore, each level
appears exactly once in each column. It is evident that δij(D1) = 0 when i 6= j
and δij(D1) = n when i = j; hence, Kt(D1) = s−1nt for t > 0. By Lemma 3,
Kt,1(D) is determined by Kt,0(D) for t > 0. By (11) and (12), At,1(D) is de-
termined by A1,0(D), . . . ,At,0(D) uniquely. Thus, to sequentially minimize
the sequences in (1), (2), (3) and (4), it is sufficient to sequentially minimize
A1,0(D), . . . ,An,0(D). Then the result follows from the condition that DT

has MA among all projection designs of H̃n−k. �

Proof of Theorem 6. Given K3,0(D), K4,0(D), . . . ,Kt,0(D), 3 ≤ t ≤
n, by Lemma 5, sequentially minimizing K2,1(D),K3,1(D), . . . ,Kt−1,1(D) is
equivalent to sequentially minimizing K3(Dun),K4(Dun), . . . ,Kt(Dun). Be-
cause DT has MA, by Lemma 2, K3,0(D),K4,0(D), . . . ,Kn,0(D) are mini-
mized sequentially. Because Dun has MA, K3(Dun),K4(Dun), . . . ,Kn(Dun)
are minimized sequentially. Then any combined sequence of (K3,0(D),K4,0(D),
. . . ,Kn,0(D)) and (K2,1(D),K3,1(D), . . . ,Kn,1(D)) is also minimized sequen-
tially as long as Kt−1,1(D) is minimized after Kt,0(D) for t = 3, . . . , n. Hence,
D has minimum moment aberration and MA with respect to Wscf , W1 and
W2. By Lemma 5, K3(Dun) = K3,0(D) + 3K2,1(D) + constant ; therefore,
K3,0(D) + 3K2,1(D) is minimized and, by (13) and (14), A3,0(D) + A2,1(D)
is minimized. Then, by Lemma 7, D has MA with respect to Wcc. �

Proof of Theorem 7. Because DT has MA, A3,0(D),A4,0(D), . . . ,
An,0(D) are minimized sequentially. Note that A2,1(D),A3,1(D), and so on
are minimized in W1 or W2 no sooner than in Wscf . Therefore, if D has MA
with respect to Wscf , it must have MA with respect to W1 and W2. The MA
Wcc optimality follows from Lemma 7. �
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