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Approximate conditional inference for panel logit models

allowing for state dependence and

unobserved heterogeneity
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Abstract

We show that a dynamic logit model for binary panel data allowing for state dependence

and unobserved heterogeneity may be accurately approximated by a quadratic exponen-

tial model, the parameters of which have the same interpretation that they have in the

true model. We also show how we can eliminate the parameters for the unobserved het-

erogeneity from the approximating model by conditioning on the total scores, i.e. sum

of the response variables for any individual in the panel. This allows to construct an

approximate conditional likelihood for the dynamic logit model, by maximizing which

we can estimate the parameters for the covariates and the state dependence. This esti-

mator is very simple to compute and, by means of a simulation study, we show that it

is competitive in terms of efficiency with the estimator of Honoré & Kyriazidou (2000).

Finally, we outline the extension of the proposed approach to the case of more elaborated

structures for the state dependence and to that of categorical response variables with

more than two levels.
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1 Introduction

An important issue in the econometric literature is the investigation of the so-called state

dependence, i.e. how the experience of an event in the past can influence the occurrence

of the same event in the future (see Heckman, 1981a, 1981b). This phenomenon arises in

many economic applications, such as job decision, investment choice and brand choice. A

correct analysis of this phenomenon should take into account the unobserved heterogeneity

between individuals for what concerns the propensity to experience a certain outcome in all

periods. The latter gives rise to a spurious state dependence that, as underlined by Heckman,

is important to disentangle from the true state dependence in the analysis of a panel data set,

as it can determine, for instance, different policy implications.

In the case of binary response variables, panel data are usually analyzed through a dynamic

logit or probit model which includes, among the explanatory variables, the lagged response

variable (true state dependence) and has an individual-specific intercept (unobserved hetero-

geneity); see Hsiao (1986) and Arellano & Honoré (2001), among others. When the latter is

considered as a fixed parameter, the approach suffers from the so-called incidental parame-

ter problem (Neyman & Scott, 1948), which leads to inconsistent estimates of the structural

parameters for the covariates and the true state dependence. For this reason, the individual

specific intercept is frequently considered as a random parameter (see, for instance, Hyslop,

1999). This requires the formulation of a certain distribution for this parameter, the depen-

dence of which on the covariates has to be suitably modelled. In this case, the problem of the

specification of the initial conditions of the dynamic panel process also arises and the estima-

tion of the resulting model usually involves multiple integrals which may be cumbersome to

compute.

When a logit model is assumed, an alternative approach for eliminating the dependence of

the joint distribution of the response variables on the incidental parameters is by condition-

ing on suitable statistics. In particular, when the lagged response variable is omitted from

the model, and therefore true state dependence is not considered, obvious statistics on which

conditioning are the sums of the response variables at individual level. These are sufficient



statistics for the incidental parameters, which, using a terminology derived from Rasch (1961),

will be referred to as total scores. The resulting maximum likelihood estimator of the other pa-

rameters may be computed by means of a simple Newton-Raphson algorithm and has optimal

asymptotic properties (see Andersen, 1970, 1972). A conditional likelihood approach can also

be followed when the assumed logit model includes the lagged response variable. In particu-

lar, by exploiting an intuition of Chamberlain (1985), Honoré & Kyriazidou (2000) proposed

a weighted conditional likelihood that may be used to consistently estimate the structural

parameters. The statistics on which conditioning are different from the total scores and are

such that a larger number of response configurations does not contribute to the likelihood.

Moreover, the approach requires the specification of a suitable kernel function for weighting

the response configuration of any subject on the basis of the covariates.

In this paper, we propose a conditional approach for estimating the parameters of a dy-

namic logit model for binary panel data which is based on the approximation of the model

through a particular quadratic exponential model (Cox, 1972). This approximation is found by

following a method similar to that adopted by Cox & Wermuth (1994) in a different context.

The approximating model is in practice a log-linear model for the conditional distribution of

the response variables given the initial observation and the covariates. The main effects of this

model depend on the covariates and on an individual-specific parameter for the unobserved

heterogeneity, while the two-way interaction effects are equal to a common parameter when

they are referred to a pair of consecutive response variables and to 0 otherwise. We show that

this interaction parameter has the same interpretation as in the dynamic logit model in terms

of log-odds ratio, a measure of association between binary variables which is well known in the

statistical literature on categorical data analysis (Agresti, 2002, Ch. 8).

An interesting feature of the approximating model is that the parameters for the unob-

served heterogeneity may be eliminated by conditioning on the total scores. This allows to

construct an approximate conditional likelihood for the dynamic logit model, by maximiz-

ing which we obtain an estimator of the structural parameters. This estimator is simple to

compute as the one used in absence of state dependence and does not require to formulate

a weighting function as the estimator of Honoré & Kyriazidou (2000) does. The asymptotic



properties of this estimator, when the approximating model holds, are proved on the basis

of standard inferential results (Newey and McFadden, 1994). Under the true model, instead,

they are studied by means of a simulation study performed along the same lines as Honoré

& Kyriazidou (2000). These simulations show that the proposed estimator is usually more

efficient than their estimator. This is mainly due to the fact that our approach is based on a

likelihood to which a larger number of response configurations contribute with respect to the

likelihood on which their estimator is based. We also outline the extension of the proposed

approach to the case in which the logit model includes a second-order lagged response variable

and to that of categorical response variables with more than two levels.

The paper is organized as follows. In the next section we briefly review the dynamic logit

model for binary panel data and describe the weighted conditional likelihood approach of

Honoré & Kyriazidou (2000); we consider this as a benchmark approach for the estimation

of the model at issue. The proposed approximating model is described in Section 3, where

its conditional distribution given the total scores is also derived. The resulting conditional

maximum likelihood estimator is described in Section 4, where the asymptotic properties of this

estimator under the approximating model are also illustrated. The results of the simulation

study are shown in Section 5. Finally, in Section 6 we outline some possible extensions of the

proposed approach and in Section 7 we draw the main conclusions.

All the algorithms described in this paper have been implemented in Matlab functions

which are available at the webpage www.stat.unipg.it/∼bart.

2 Dynamic logit models for binary panel data

In the following, we first review the dynamic logit model for binary panel data and then we

discuss conditional maximum likelihood estimation of its structural parameters.

2.1 Basic assumptions

Let yit be a binary random variable equal to 1 if the subject i (i = 1, . . . , n) in the panel makes

a certain choice at time t (t = 1, . . . , T ) and to 0 otherwise; also let xit be a corresponding



vector of strictly exogenous covariates of size k. The standard econometric model for variables

of this type assumes that

yit = 1{αi + x′
itβ + yi,t−1γ + εit > 0}, i = 1, . . . , n, t = 1, . . . , T, (1)

where 1{·} is the indicator function, αi is a fixed or random individual-specific parameter,

the zero-mean random variables εit represent error terms and the initial observations yi0 are

assumed to be exogenous. Moreover, β is a vector of parameters for the covariates and γ

is a parameter measuring the state dependence effect. The interest is mostly on the last

two. These will be referred to as structural parameters and, in the following, will be jointly

denoted by θ = (β′, γ)′. The parameters αi are instead considered as incidental parameters,

the estimation of which is of minor interest.

The typical assumption when the incidental parameters are treated as fixed parameters

is that the errors terms εit are independent and identically distributed conditionally on the

covariates, and with standard logistic distribution. Therefore, for any subject i, the conditional

distribution of yit given αi, X i = (xi1 · · · xiT ) and yi0, . . . , yi,t−1 may be expressed as

p(yit|αi,X i, yi0, . . . , yi,t−1) = p(yit|αi,xit, yi,t−1) =

=
exp[yit(αi + x′

itβ + yi,t−1γ)]

1 + exp(αi + x′
itβ + yi,t−1γ)

, t = 1, . . . , T. (2)

This is a dynamic logit formulation which implies the following conditional distribution of the

overall vector of response variables yi = (yi1, . . . , yiT ) given αi,X i and yi0:

p(yi|αi,X i, yi0) =
exp(yi+αi +

∑
t yitx

′
itβ + yi×γ)∏

t[1 + exp(αi + x′
itβ + yi,t−1γ)]

, (3)

where yi+ =
∑

t yit and yi× =
∑

t yi,t−1yit, with the product
∏

t and the sum
∑

t ranging over

t = 1, . . . , T .

For what follows, it is important to note some features of the dependence structure between

the response variables in yi, given αi, X i and yi0, implied by the model above. First of all we

have that, for t = 1, . . . , T − 1, yit is conditionally independent of any other response variable

given yi,t−1 and yi,t+1. Moreover, since for t = 1, . . . , T we have that

log
p(yit = 0|αi,xit, yi,t−1 = 0)p(yit = 1|αi,xit, yi,t−1 = 1)

p(yit = 0|αi,xit, yi,t−1 = 1)p(yit = 1|αi,xit, yi,t−1 = 0)
= log

exp(αi + x′
itβ + γ)

exp(αi + x′
itβ)

= γ,



the parameter γ for the state dependence is nothing else than the log-odds ratio between any

pair of variables (yi,t−1, yit), conditionally on all the other response variables or marginally

with respect to these variables.

2.2 Conditional inference

As mentioned in Section 1, an interesting approach for estimating the fixed effect model

illustrated above is based on the maximization of the conditional likelihood given suitable

statistics. For the case in which the model includes the lagged response variable, one of the

first authors to deal with this approach was Chamberlain (1985). In particular, he noticed

that when T = 3 and the covariates are omitted from the model, so that

p(yit|αi, yi0, . . . , yi,t−1) = p(yit|αi, yi,t−1) =
exp[yit(αi + yi,t−1γ)]

1 + exp(αi + yi,t−1γ)
, t = 1, . . . , T,

then p(yi|αi, yi0, yi1 + yi2 = 1, yi3) does not depend on αi for any yi0 and yi3. On the basis of

this conditional distribution it is therefore possible to construct a likelihood which depends on

the response configurations of only certain subjects (those for which yi1 + yi2 = 1) and which

allows to consistently estimate the parameter γ.

The conditional approach above was extended by Honoré & Kyriazidou (2000) to the case

where, as in (2), the model includes exogenous covariates. In particular, they noticed that

p(yi|αi,Xi, yi0, yi1 + yi2 = 1, yi3) is independent of αi provided that xi2 = xi3. When this

happens with positive probability, we can therefore estimate the structural parameters θ by

maximizing a conditional likelihood whose logarithm may be expressed as

∑

i

1{yi1 + yi2 = 1}1{xi2 − xi3 = 0} log[p(yi|αi,Xi, yi0, yi1 + yi2 = 1, yi3)].

For the case in which p(xi2 = xi3) = 0, which typically occurs in the presence of continuous

covariates, Honoré & Kyriazidou (2000) proposed to estimate θ by maximizing a weighted

conditional likelihood defined as above, with the exception that 1{xi2−xi3 = 0} is substituted

by a Kernel density function K(·). The logarithm of this likelihood is

∑

i

1{yi1 + yi2 = 1}K
(

xi2 − xi3

σn

)
log[p(yi|αi,X i, yi0, yi1 + yi2 = 1, yi3)], (4)



with the bandwidth σn a priori fixed. Note that the weight given to the response configuration

of the subject i decreases with the distance between xi2 and xi3, while a large weight is given

to the response configuration of this subject when xi2 is close to xi3 and so the property of

independence of p(yi|αi,X i, yi0, yi1 + yi2 = 1, yi3) from αi approximately holds.

Honoré & Kyriazidou (2000) also shown how the weighted conditional approach may be

used in the case of T > 3. In this case, the approach is based on a pairwise weighted likelihood

whose logarithm is given by the sum, for any pair of response variables (yis, yit), 1 < s < t < T ,

of an expression similar to (4) referred to this pair of variables. They also dealt with dynamic

logit models including more than one lagged response variables and multinomial logit models

for response variables having more than two levels and suggested a version of the Manski (1987)

conditional maximum score estimator which does not require to formulate any distribution for

the error terms.

Although the weighted conditional estimator of Honoré & Kyriazidou (2000) is of great

interest, its use requires careful choice of the kernel function and of its bandwidth. This choice

obviously affects the performance of the estimator. Moreover, since only certain response

configurations are considered (e.g. those for which yi1 + yi2 = 1 and xi2 near to xi3 in the

binary case with T = 3), the actual sample size, i.e. the number of response configurations

which contribute to the likelihood, is usually much smaller than the nominal sample size

n. This may obviously limit the efficiency of the estimator. Moreover, Honoré & Kyriazidou

(2000) referred of some problem of applicability of their approach in presence of time dummies.

3 Proposed approximation

In this section, we introduce a quadratic exponential model for binary panel data that ap-

proximates the dynamic logit model illustrated above and we discuss its main features in

comparison to the true model.



3.1 Approximating quadratic exponential model

Along the same lines followed by Cox & Wermuth (1994) in a different context, we first take

the logarithm of p(yi|αi,X i, yi0) as defined in (3), i.e.

log[p(yi|αi,X i, yi0)] = yi+αi +
∑

t

yitx
′
itβ + yi×γ −

∑

t

log[1 + exp(αi + x′
itβ + yi,t−1γ)]. (5)

We then approximate the component which is not linear in the parameter on the basis of a

first-order Taylor series expansion around αi = 0, β = 0 and γ = 0 obtaining

∑

t

log[1 + exp(αi + x′
itβ + yi,t−1γ)] ≈

∑

t

[log(2) + 0.5αi + 0.5x′
itβ] + 0.5yi∗γ, (6)

with yi∗ =
∑

t yi,t−1 = yi0 + yi+ − yiT .

Note that the first term at rhs of the expression above is constant with respect to yi; there-

fore, by substituting (6) in (5) and renormalizing the exponential of the resulting expression

we obtain the approximation

p(yi|αi,X i, yi0) ≈ p∗(yi|αi,X i, yi0) =
exp(yi+αi +

∑
t yitx

′
itβ − 0.5yi∗γ + yi×γ)∑

z exp(z+αi +
∑

t ztx
′
itβ − 0.5z∗γ + z×γ)

, (7)

where the sum at the denominator ranges over all the binary vectors z = (z1, . . . , zT ) of

dimension T and z+, z∗ and z× are defined in an obvious way with z0 ≡ yi0. The approximating

model is therefore a quadratic exponential model for binary variables (Cox, 1972), in which

the main effect for yit is equal to αi +x′
itβ−0.5γ when t = 1, . . . , T −1 and to αi +x′

itβ when

t = T and the two-way interaction effect for (yis, yit) is equal to γ when t = s + 1 and to 0

otherwise.

The above expression closely resembles (3), the main difference being in the denominator

which in (7) does not depend on yi and it is simply a normalizing constant that may be

denoted by µit. The strong connection between the two models is clarified by the following

Theorem, the proof of which is given in Appendix.

Theorem 1 For i = 1, . . . , n, the quadratic exponential model (7) implies that the conditional

logit of yit, given αi,Xi and yi0, . . . , yi,t−1, is equal to

log
p∗(yit = 1|αi,X i, yi0, . . . , yi,t−1)

p∗(yit = 0|αi,X i, yi0, . . . , yi,t−1)
=





αi + x′

itβ + yi,t−1γ + log
gi,t+1(1)

gi,t+1(0)
− 0.5γ if t < T

αi + x′
itβ + yi,t−1γ if t = T,

(8)



with git(z) denoting a function depending on the data only through xi,t+1, . . . ,xi,T and such

that log[git(1)/git(0)] ≈ 0.5γ, t = 2, . . . , T , where the approximation is in the sense defined

above.

For i = 1, . . . , n, model (7) also implies that:

(i) yit is conditional independent of yi0, . . . , yi,t−2 given αi, X i, yi0 and yi,t−1 (t = 2, . . . , T );

(ii) yit is conditional independent on yi0, . . . , yi,t−2, yi,t+2, . . . , yiT , given αi, X i, yi0 and

yi,t−1, yi,t+1 (t = 2, . . . , T − 1).

Note that, for t = T , logit (8) has exactly the same parametrization that it has un-

der the dynamic logit model (2). When t < T , this equivalence holds approximately since

log[git(1)/git(0)] ≈ 0.5γ. The above Theorem also implies that

log
p∗(yit = 1|αi,X i, yi,t−1 = 1)

p∗(yit = 0|αi,X i, yi,t−1 = 1)
−log

p∗(yit = 1|αi,X i, yi,t−1 = 0)

p∗(yit = 0|αi,X i, yi,t−1 = 0)
= γ, i = 1, . . . , n, t = 1, . . . , T,

and then, under the approximating model, γ has the same interpretation that it has under the

true model, i.e. log-odds ratio between any consecutive pair of response variables, conditionally

on all the other response variables or marginally with respect to these variables. Moreover,

the approximating model reproduces the same conditional independence relations between the

response variables (see (i) and (ii) above) of the dynamic logit model.

3.2 Conditional approximating model

The main advantage of the above approximating model with respect to the true one is in the

availability of minimal sufficient statistics for the heterogeneity parameters αi. These statistics

are yi+, i = 1, . . . , n, which will be referred to as total scores. As we show below, in fact, the

conditional distribution of yi given X i, yi0 and yi+ does not depend on αi for any i.

First of all note that, under the approximating model,

p∗(yi+|αi,X i, yi0) =
∑

z:z+=yi+

p∗(z|αi,Xi, yi0) =
exp(yi+αi)

µit

∑

z:z+=yi+

exp(
∑

t

ztx
′
itβ−0.5z∗γ+z×γ),



where the sum is extended to all the binary vectors z such that z+ = yi+. Then, after some

algebra, the conditional distribution at issue becomes

p∗(yi|αi,X i, yi0, yi+) =
p∗(yi|αi,X i, yi0)

p∗(yi+|αi,X i, yi0)
=

exp(
∑

t yitx
′
itβ − 0.5yi∗γ + yi×γ)∑

z:z+=yi+
exp(

∑
t ztx

′
itβ − 0.5z∗γ + z×γ)

. (9)

The expression above does not depend on αi and therefore may also be denoted by p∗(yi|X i, yi+, yi0).

The same happens for the elements of β corresponding to covariates which are time-invariant.

To make this more clear, consider that we can multiply the numerator and the denominator

of (9) by exp(yi+x′
i1β) and, after rearranging terms, obtain

p∗(yi|X i, yi0, yi+) = p∗(yi|Di, yi0, yi+) =
exp(

∑
t>1 yitd

′
itβ − 0.5yi∗γ + yi×γ)∑

z:z+=yi+
exp(

∑
t>1 ztd

′
itβ − 0.5z∗γ + z×γ)

, (10)

with dit = xit − xi1 and Di = ( di2 · · · diT ). We consequently assume that β does not

include the intercept and parameters for the covariates which are time-invariant because these

parameters are not identified. The same happens for the approach of Honoré & Kyriazidou

(2000).

In Section 4.1 we will show how the structural parameters in θ may be estimated by

maximizing a conditional likelihood constructed on the basis of (10).

3.3 Improving the approximation

The quality of approximation (7) depends on the distance of the parameters from 0 since it

is based on the Taylor series expansion around αi = 0, β = 0 and γ = 0 which is reported

in (6). Obviously, when one or more of these parameters are far from 0, the quality of the

approximation may considerably be improved by choosing another point of the parameter

space around which performing the Taylor series expansion.

Consider, in particular, the following expansion around αi = 0, β = β̄ and γ = 0:

∑

t

log[1+exp(αi+x′
itβ+yi,t−1γ)] ≈

∑

t

log{1+exp(x′
itβ̄)+qit[αi+x′

it(β−β̄)]}+
∑

t

qityi,t−1γ,

where β̄ is any fixed value of β and

qit =
exp(x′

itβ̄)

1 + exp(x′
itβ̄)

. (11)



The latter is equal to the probability that yit = 1 when the parameters are fixed as above.

This expansion is equal to a component independent of yi plus
∑

t qityi,t−1γ and so, along the

same lines as in Section 3.1, it results in following approximating model

p†(yi|αi,Xi, yi0) =
exp(yi+αi +

∑
t yitx

′
itβ −∑t qityi,t−1γ + yi×γ)∑

z exp(z+αi +
∑

t ztx
′
itβ −∑t qitzt−1γ + z×γ)

. (12)

This is a quadratic exponential model which closely resembles the initial approximating model

(7), also in terms of dependence structure between the response variables and interpretation

of the parameters, and such that the total score yi+ is still a sufficient statistic for αi. We in

fact have that

p†(yi|X i, yi0, yi+) =
exp(

∑
t yitx

′
itβ −∑t qityi,t−1γ + yi×γ)∑

z:z+=yi+
exp(

∑
t ztx

′
itβ −∑t qitzt−1γ + z×γ)

,

which may also be expressed as

p†(yi|Di, yi0, yi+) =
exp(

∑
t>1 yitd

′
itβ −∑t qityi,t−1γ + yi×γ)∑

z:z+=yi+
exp(

∑
t>1 ztd

′
itβ −∑t qitzt−1γ + z×γ)

. (13)

On the basis of this distribution, we develop a conditional likelihood, by maximizing which

we obtain an estimator of θ which should be more efficient than that based on the conditional

distribution of the initial approximating model, provided that β̄ is suitably chosen. This

estimator will be illustrated in Section 4.3.

A natural question that rises at this point is why we still rely on an expansion around a

point of the parameter space at which αi = 0 and γ = 0, instead of considering a generic

point of type αi = ᾱi, β = β̄, γ = γ̄. The first reason for doing this is that, since within our

approach we do not estimate the parameters αi, which are ruled out by conditioning on the

total scores, we have no way to choose the ᾱi’s in practical applications. We could use another

estimation method to do this, but this would complicate considerably the proposed approach.

Moreover, an expansion around γ = γ̄ results in a model that, though rather similar to (12),

has sufficient statistics for the incidental parameters αi which differ from the total scores. On

the other hand, a series of simulations, the results of which are illustrated in Section 5, have

shown that the estimator of θ obtained by maximizing the conditional likelihood based on

(13) performs considerably better than that obtained by maximizing the conditional likelihood

based on (10). In particular, this estimator have a surprisingly low bias even though samples



are generated from a dynamic logit model of type (2) in which most of the parameters αi

and/or γ are far from 0.

4 Approximate conditional inference

On the basis of distribution (10), we can derive an approximate conditional likelihood for the

dynamic logit model that, for an observed sample (X i, yi0,yi), i = 1, . . . , n, has logarithm

ℓ∗(θ) =
∑

i

log[p∗(yi|Di, yi0, yi+)] (14)

and obviously does not depend on the heterogeneity parameters αi. Since log[p∗(yi|Di, yi0, yi+)]

is always equal to 0 when yi+ = 0 or yi+ = T , the response configurations for which this hap-

pens do not contribute to (14). An equivalent expression for ℓ∗(θ) is then

ℓ∗(θ) =
∑

i

1{0 < yi+ < T} log[p∗(yi|Di, yi0, yi+)]. (15)

The actual sample size is then smaller than the nominal one, but it is always larger than that

we have in the approach of Honoré & Kyriazidou (2000), which is based on a log-likelihood

of type (4). With T = 3, for instance, the response configurations yi omitted from (15) are

(0, 0, 0) and (1, 1, 1), whereas also the response configurations (0, 0, 1) and (1, 1, 0) are omitted

from (4).

In the following, we show how it is possible to estimate θ by maximizing ℓ∗(θ) and we

study the properties of the resulting estimator under the approximating model and then, by

simulation, under the true model.

4.1 Computing the approximate conditional maximum likelihood

estimator

First of all note that distribution (10) may be expressed in the canonical exponential family

form as

p∗(yi|Di, yi0, yi+) =
exp[u(Di, yi0,yi)

′θ]

C(θ,Di, yi0, yi+)
, C(θ,Di, yi0, yi+) =

∑

z:z+=yi+

exp[u(Di, yi0, z)′θ],



with u(Di, yi0,yi) = (
∑

t>1 yitd
′
it,−0.5yi∗ + yi×)′. This implies that

log[p∗(yi|Di, yi0, yi+)] = u(Di, yi0,yi)
′θ − log[C(θ,Di, yi0, yi+)]

has first derivative vector and second derivative matrix equal, respectively, to

∇θ log[p∗(yi|Di, yi0, yi+)] = v(Di, yi0,yi) and ∇θθ log[p∗(yi|Di, yi0, yi+)] = −S(Di, yi0, yi+),

where v(Di, yi0,yi) = u(Di, yi0,yi)−m(Di, yi0, yi+), and with m(Di, yi0, yi+) and S(Di, yi0, yi+)

denoting, respectively, the conditional expected value and the conditional variance of u(Di, yi0,yi)

given αi, Di and yi+ under the approximating model. These are given by

m(Di, yi0, yi+) =
∑

z:z+=yi+

p∗(z|Di, yi0, yi+)u(Di, yi0, z)

S(Di, yi0, yi+) =
∑

z:z+=yi+

p∗(z|Di, yi0, yi+)v(Di, yi0, z)v(D, yi0, z)′.

Consequently, for the conditional log-likelihood ℓ∗(θ) defined in (14), we have score vector

s(θ) =
∑

i

v(Di, yi0,yi) (16)

and observed information matrix

J(θ) =
∑

i

S(Di, yi0, yi+). (17)

Note that J(θ) is always non-negative definite since it corresponds to the sum of a series

of variance-covariance matrices and therefore ℓ∗(θ) is always concave. When the sample size

is large enough, this matrix is almost surely positive definite (see the proof of Theorem 2).

In practical application, we should therefore find that ℓ∗(θ) is also strictly concave and has a

unique maximum corresponding to the conditional maximum likelihood estimate θ̂ = (β̂
′
, γ̂)′.

This estimate may be found by a simple Newton-Raphson algorithm. At the hth step, this

algorithm updates the estimate of θ at the previous step, θ(h−1), as

θ(h) = θ(h−1) + J(θ(h−1))−1s(θ(h−1)).

Since we also have that the parameter space Θ is equal to R
k+1, this algorithm is very simple

to implement and usually converges in a few steps to θ̂, regardless of the starting value θ(0).



4.2 Asymptotic properties under the approximating model

Suppose that the individuals in the samples are independent of each other with αi, X i, yi0

and yi drawn, for i = 1, . . . , n, from the model

f0(α,X, y0,y) = f0(α,X, y0)p
∗
0(y|α,X, y0), (18)

where f0(α,X, y0) denotes the joint distribution of heterogeneity effect (which is not observed),

covariates and initial observation and p∗0(y|α,X, y0) denotes the conditional distribution of

the response variables under the approximating quadratic exponential model (7) when θ = θ0,

with θ0 denoting the true value of its structural parameters.

Under very mild conditions on the distribution of the covariates, we have that θ̂ exists, is

a
√
n-consistent estimator of θ0 and has asymptotic Normal distribution as n → ∞. These

results is stated more precisely in the following Theorem, where E0(·) denote the expected

value under the true model (18). As we show in Appendix, the Theorem may be proved on

the basis of standard asymptotic results (see, for instance, Newey and McFadden, 1994).

Theorem 2 Assume that the distribution f0(α,X, y0) is such that E0(DD′) exists and is of

full rank, with D = (x2 − x1 . . . xT − x1 ). Then, for T > 2, we have that:

• (Existence) θ̂ exists with probability approaching 1 as n→ ∞;

• (Consistency) θ̂
p→ θ0;

• (Normality)
√
n(θ̂ − θ0)

d→ N(0, I−1
0 ), with I0 = E0[S(D, y0, y+)].

On the basis of the maximum likelihood estimator θ̂, we can consistently estimate the

matrix I0 as

Î =
1

n
J(θ̂) =

1

n

∑

i

Ŝ(Di, yi0, yi+),

where Ŝ(Di, yi0, yi+) is the variance-covariance matrix of the ith score component, computed

under the estimated model. The standard errors of the elements of θ̂ are then estimated by

the corresponding diagonal elements of (nÎ)−1 under squared root. This directly derives from



Newey & McFadden (1994, Sec. 4.2). Note that nÎ is equal to J(θ̂) and so it is obtained as

a by-product from the Newton-Raphson algorithm described in Section 4.1.

Because of the asymptotic normality of θ̂, it is also possible to construct an approximate

(1 − α)-level confidence interval for any parameter βh in β and for γ as follows:

β̂h ∓ zα/2se(β̂h) and γ̂ ∓ zα/2se(γ̂), (19)

where se denotes the standard error estimated as above and zα/2 is the 100(1−α/2)th percentile

of the standard Normal distribution.

We must again recall that the results above hold under the approximating quadratic ex-

ponential model. Therefore, these results hold approximately under the dynamic logit model,

with the quality of the approximation depending on the distance between the two models.

To study more precisely these properties under the logit model, we performed a simulation

study along the same lines as Honoré & Kyriazidou (2000). The results of simulation study

are illustrated in Section 5.

4.3 Improved approximate conditional estimator

Once an estimate θ̂ of θ is obtained by maximizing the log-likelihood ℓ∗(θ), an improved

estimate may be obtained by maximizing

ℓ†(θ) =
∑

i

log[p†(yi|Di, yi0, yi+)],

with p†(yi|Di, yi0, yi+) denoting the approximating distribution derived in (13) with β̄ = β̂.

We expect an improvement since distribution p†(yi|αi,X i, yi0) should be a better approxi-

mation of the true distribution p(yi|αi,X i, yi0) with respect to p∗(yi|αi,X i, yi0). We recall

that the main difference between the two approximating distributions is in the correction

factor 0.5yi∗γ that in p†(yi|αi,X i, yi0), and thus also in p†(yi|Di, yi0, yi+), is substituted by

∑
t qityi,t−1γ, with qit defined in (11).

Maximization of ℓ†(θ) with respect to θ may be performed on the basis of the same iterative

algorithm outlined at the end of Section 4.1. The only difference is in the computation of the

score vector and the information matrix which are still defined, respectively, as in (16) and



(17), but with u(Di, yi0,yi) = (
∑

t>1 yitd
′
it,−

∑
t qityi,t−1 + yi×)′. Provided that the sample is

large enough, also ℓ†(θ) is almost surely a strictly concave function of θ. This ensures that,

in practical applications, the iterative algorithm converges very easily to the maximum of this

function.

In the algorithm above, the vector β̄ used to compute the probabilities p†(yi|Di, yi0, yi+)

of the approximating model is held fixed at any iteration. However, it may be reasonable to

update β̄ at any step of the algorithm with the estimate of β obtained at end of the previous

step. This in practice means that the quantities qit are dynamic and not fixed. As we observed,

also this algorithm usually converges very quickly. We denote the value of θ at convergence by

θ̃ = (β̃
′
, γ̃)′. To understand if θ̃ represent a real improvement over θ̂ as an estimator of θ, we

compared the two estimators by simulation (see Section 5). Standard errors for the elements

of θ̃ may be estimated on the basis (nĨ)−1, where nĨ is an estimate of the information matrix

at θ̃ which is directly produced by the above iterative algorithm. From these standard errors

it is possible to construct approximate confidence intervals for θ as described in the previous

section, i.e.

β̃h ∓ zα/2se(β̃h) and γ̃ ∓ zα/2se(γ̃). (20)

5 Simulation study of the proposed estimators

In this section, we illustrate a simulation study carried out to assess the finite sample prop-

erties of the proposed estimators under the dynamic logit model (2). In order to give more

comparability to our work with the previous literature, we decided to follow the same simu-

lation design adopted by Honoré & Kyriazidou (2000), to whom we refer for a more detailed

description of this design. The results concern both the estimator θ̂, built on the basis of

the initial approximation and described in Section 4.1 (basic conditional estimator, for short),

and the estimator θ̃, built on the basis of the improved approximation and illustrated in Sec-

tion 4.3 (improved conditional estimator, for short). These results also concern the confidence

intervals that may be constructed, following (19) and (20), based around these estimators.



5.1 Benchmark design

Under the benchmark design of Honoré & Kyriazidou (2000), samples of different dimension

(n = 250, 500, 1000, 2000, 4000) are initially generated from a dynamic logit model for T = 3

time occasions, with only one covariate and parameters β = 1 and γ = 0.5. The covariate

is generated by drawing any xit (i = 1, . . . , n, t = 0, . . . , T ) from a Normal distribution with

mean 0 and variance π2/3, while any αi (i = 1, . . . , n) is generated as (xi0+
∑

t xit)/(T+1). To

study the sensitivity of the results on T and γ, Honoré & Kyriazidou (2000) then considered

a number of time occasions T equal to 7 and different values of γ (0.25, 1, 2).

Within our simulation study, we generated 1000 samples from any of the models described

above and, for each sample, we estimated β and γ. For both parameters we also constructed

a 95% and a 80% confidence interval. The results in terms of mean bias, root mean squared

error (RMSE), median bias and median absolute error (MAE) of the estimators are displayed

in Table 1 and 2. For any γ, these tables also show the ratio1 between the actual sample size

and the nominal sample size n. The results, in terms, of actual coverage level of the confidence

intervals are displayed in Table 3.

For what concerns the bias of the basic estimator β̂, from Tables 1 and 2 we can see that

this bias is always moderate when T = 3 and is negligible when T = 7. For what concerns

the efficiency of β̂, we can note that both RMSE and MAE of this estimator decrease as n

and T grow. In particular they decrease with n at a rate close to
√
n and much faster with T .

This depends on the fact that the number of observations that contribute to the approximate

conditional likelihood increases more than proportionally with T because an increase of T also

determines and increase of the actual sample size. Moreover, both RMSE and MAE increase

with γ. This is mainly due to the fact that an increase of γ, when this is positive, implies

a reduction of the actual sample size, while the approximation on which our approach is

based becomes less sharp. A completely different scenario may be seen for the basic estimator

γ̂ which is always downward biased. Its bias is not negligible in most of the cases under

consideration and tends to increase with γ and, surprisingly, with n and T . The dependence

on n is much stronger for T = 3 than for T = 7. This bias has obviously a negative effect on

1It is computed as the expected proportion of response configuration y
i
such that 0 < yi+ < T .



Table 1: Performance of the basic and improved conditional estimators under some benchmark

simulation designs with T = 3. Percentual numbers are referred to the ratio between the actual

sample size and the nominal one.

Estimation of β Estimation of γ

Mean Median Mean Median
γ n Estimator Bias RMSE Bias MAE Bias RMSE Bias MAE

0.25 250 Basic 0.039 0.144 0.025 0.110 -0.033 0.374 -0.036 0.299
(60%) Improved 0.026 0.142 0.010 0.110 -0.017 0.360 -0.029 0.286

500 Basic 0.024 0.096 0.017 0.075 -0.038 0.274 -0.033 0.221
Improved 0.010 0.093 0.003 0.073 -0.013 0.265 -0.012 0.213

1000 Basic 0.020 0.069 0.016 0.054 -0.034 0.191 -0.035 0.156
Improved 0.005 0.066 0.002 0.053 -0.007 0.183 -0.011 0.146

2000 Basic 0.019 0.048 0.017 0.038 -0.040 0.134 -0.043 0.108
Improved 0.004 0.045 0.002 0.035 -0.012 0.125 -0.011 0.099

4000 Basic 0.016 0.036 0.017 0.029 -0.040 0.101 -0.040 0.081
Improved 0.001 0.033 0.001 0.026 -0.011 0.090 -0.011 0.072

0.5 250 Basic 0.055 0.155 0.035 0.116 -0.067 0.390 -0.079 0.313
(57%) Improved 0.027 0.146 0.010 0.111 -0.026 0.361 -0.027 0.285

500 Basic 0.036 0.102 0.030 0.079 -0.070 0.288 -0.064 0.233
Improved 0.008 0.094 0.003 0.074 -0.021 0.272 -0.020 0.219

1000 Basic 0.033 0.075 0.029 0.059 -0.069 0.208 -0.072 0.167
Improved 0.005 0.066 0.002 0.053 -0.017 0.189 -0.017 0.148

2000 Basic 0.031 0.057 0.028 0.045 -0.074 0.152 -0.078 0.123
Improved 0.003 0.047 0.001 0.037 -0.020 0.130 -0.013 0.103

4000 Basic 0.028 0.043 0.028 0.035 -0.077 0.122 -0.077 0.099
Improved 0.000 0.033 0.000 0.027 -0.023 0.095 -0.021 0.077

1 250 Basic 0.081 0.179 0.062 0.134 -0.117 0.443 -0.120 0.352
(52%) Improved 0.029 0.154 0.012 0.116 -0.035 0.405 -0.039 0.319

500 Basic 0.060 0.120 0.055 0.094 -0.127 0.333 -0.134 0.268
Improved 0.011 0.101 0.005 0.079 -0.038 0.294 -0.043 0.234

1000 Basic 0.053 0.090 0.050 0.072 -0.127 0.249 -0.132 0.202
Improved 0.004 0.070 0.002 0.056 -0.034 0.203 -0.040 0.161

2000 Basic 0.050 0.071 0.046 0.057 -0.137 0.200 -0.143 0.165
Improved 0.001 0.048 -0.003 0.038 -0.042 0.146 -0.043 0.116

4000 Basic 0.047 0.059 0.046 0.050 -0.140 0.174 -0.143 0.149
Improved -0.002 0.034 -0.002 0.027 -0.044 0.110 -0.045 0.089

2 250 Basic 0.119 0.234 0.084 0.169 -0.144 0.592 -0.168 0.471
(42%) Improved 0.040 0.185 0.015 0.139 -0.030 0.526 -0.056 0.419

500 Basic 0.086 0.154 0.070 0.116 -0.196 0.423 -0.216 0.345
Improved 0.014 0.119 0.000 0.092 -0.060 0.358 -0.078 0.286

1000 Basic 0.070 0.108 0.065 0.086 -0.200 0.326 -0.200 0.264
Improved -0.003 0.078 -0.008 0.062 -0.073 0.252 -0.083 0.200

2000 Basic 0.065 0.087 0.062 0.070 -0.211 0.279 -0.213 0.235
Improved -0.007 0.055 -0.009 0.044 -0.078 0.191 -0.081 0.154

4000 Basic 0.066 0.078 0.066 0.067 -0.211 0.247 -0.217 0.217
Improved -0.006 0.039 -0.006 0.031 -0.079 0.148 -0.079 0.120



Table 2: Performance of the basic and improved conditional estimators under some benchmark

simulation designs with T = 7. Percentual numbers are referred to the ratio between the actual

sample size and the nominal one.

Estimation of β Estimation of γ

Mean Median Mean Median
γ n Estimator Bias RMSE Bias MAE Bias RMSE Bias MAE

0.25 250 Basic 0.011 0.060 0.008 0.047 -0.057 0.151 -0.058 0.120
(92%) Improved 0.006 0.059 0.003 0.047 -0.006 0.152 -0.011 0.123

500 Basic 0.009 0.043 0.007 0.034 -0.056 0.115 -0.057 0.092
Improved 0.003 0.042 0.002 0.033 -0.002 0.110 -0.002 0.088

1000 Basic 0.004 0.030 0.004 0.024 -0.056 0.090 -0.056 0.074
Improved -0.001 0.030 -0.001 0.024 -0.007 0.079 -0.007 0.062

2000 Basic 0.006 0.022 0.006 0.018 -0.057 0.075 -0.055 0.063
Improved 0.001 0.021 0.000 0.017 -0.006 0.052 -0.006 0.042

4000 Basic 0.006 0.016 0.007 0.013 -0.056 0.065 -0.055 0.057
Improved 0.000 0.015 0.001 0.012 -0.005 0.038 -0.006 0.031

0.5 250 Basic 0.014 0.063 0.009 0.049 -0.111 0.180 -0.113 0.147
(91%) Improved 0.006 0.061 0.001 0.049 -0.008 0.153 -0.009 0.124

500 Basic 0.012 0.044 0.009 0.035 -0.112 0.151 -0.115 0.127
Improved 0.003 0.042 0.001 0.034 -0.007 0.111 -0.009 0.089

1000 Basic 0.007 0.030 0.007 0.024 -0.112 0.133 -0.113 0.116
Improved -0.001 0.029 -0.001 0.024 -0.012 0.082 -0.013 0.066

2000 Basic 0.009 0.024 0.009 0.019 -0.112 0.122 -0.110 0.112
Improved 0.000 0.022 0.000 0.017 -0.010 0.054 -0.011 0.043

4000 Basic 0.009 0.018 0.009 0.014 -0.111 0.116 -0.110 0.111
Improved 0.001 0.015 0.001 0.012 -0.009 0.039 -0.010 0.032

1 250 Basic 0.012 0.065 0.007 0.051 -0.220 0.264 -0.227 0.229
(87%) Improved 0.006 0.063 0.002 0.050 -0.020 0.157 -0.018 0.124

500 Basic 0.010 0.045 0.009 0.036 -0.218 0.243 -0.218 0.221
Improved 0.004 0.044 0.004 0.035 -0.015 0.120 -0.014 0.095

1000 Basic 0.006 0.031 0.005 0.025 -0.219 0.232 -0.221 0.219
Improved -0.001 0.030 -0.001 0.024 -0.021 0.087 -0.021 0.069

2000 Basic 0.007 0.023 0.005 0.018 -0.218 0.224 -0.217 0.218
Improved 0.000 0.022 -0.001 0.017 -0.018 0.059 -0.018 0.047

4000 Basic 0.007 0.017 0.007 0.014 -0.219 0.222 -0.219 0.219
Improved 0.000 0.016 0.000 0.013 -0.021 0.045 -0.021 0.036

2 250 Basic -0.017 0.072 -0.022 0.058 -0.423 0.456 -0.431 0.425
(76%) Improved 0.007 0.071 0.001 0.055 -0.065 0.191 -0.072 0.156

500 Basic -0.020 0.052 -0.023 0.042 -0.421 0.439 -0.423 0.421
Improved 0.003 0.049 0.001 0.039 -0.058 0.151 -0.060 0.122

1000 Basic -0.024 0.041 -0.024 0.034 -0.426 0.435 -0.426 0.426
Improved -0.001 0.035 -0.002 0.028 -0.064 0.116 -0.066 0.095

2000 Basic -0.024 0.034 -0.025 0.028 -0.425 0.430 -0.424 0.425
Improved -0.001 0.024 -0.002 0.019 -0.064 0.092 -0.065 0.077

4000 Basic -0.024 0.030 -0.024 0.026 -0.428 0.430 -0.428 0.428
Improved -0.001 0.017 -0.001 0.014 -0.066 0.081 -0.066 0.069



Table 3: Coverage levels of the confidence intervals based on the basic and improved condi-

tional estimators under some benchmark simulation designs.

T = 3 T = 7

Interval for β Interval for γ Interval for β Interval for γ

γ n Method 95% 80% 95% 80% 95% 80% 95% 80%

0.25 250 Basic 0.944 0.802 0.947 0.812 0.944 0.801 0.931 0.754
Improved 0.950 0.808 0.950 0.802 0.949 0.804 0.958 0.797

500 Basic 0.945 0.814 0.953 0.798 0.944 0.788 0.913 0.738
Improved 0.955 0.823 0.955 0.798 0.944 0.792 0.952 0.791

1000 Basic 0.932 0.791 0.952 0.794 0.949 0.800 0.870 0.663
Improved 0.950 0.807 0.944 0.805 0.956 0.796 0.953 0.800

2000 Basic 0.920 0.765 0.945 0.765 0.940 0.789 0.769 0.548
Improved 0.946 0.809 0.956 0.782 0.948 0.804 0.955 0.797

4000 Basic 0.939 0.751 0.936 0.754 0.932 0.763 0.627 0.380
Improved 0.955 0.798 0.950 0.797 0.955 0.790 0.947 0.810

0.5 250 Basic 0.928 0.802 0.948 0.798 0.940 0.798 0.883 0.658
Improved 0.946 0.825 0.943 0.804 0.953 0.802 0.951 0.813

500 Basic 0.937 0.811 0.951 0.793 0.934 0.783 0.813 0.564
Improved 0.952 0.814 0.955 0.793 0.941 0.800 0.949 0.801

1000 Basic 0.916 0.758 0.946 0.769 0.953 0.796 0.658 0.396
Improved 0.953 0.787 0.951 0.810 0.953 0.802 0.946 0.787

2000 Basic 0.896 0.734 0.913 0.745 0.928 0.778 0.380 0.159
Improved 0.952 0.799 0.950 0.781 0.945 0.801 0.952 0.810

4000 Basic 0.878 0.666 0.867 0.669 0.918 0.720 0.131 0.029
Improved 0.959 0.798 0.941 0.782 0.950 0.802 0.948 0.797

1 250 Basic 0.919 0.796 0.941 0.792 0.941 0.800 0.675 0.412
Improved 0.946 0.827 0.949 0.799 0.945 0.794 0.947 0.798

500 Basic 0.912 0.763 0.937 0.763 0.938 0.800 0.479 0.226
Improved 0.946 0.811 0.948 0.793 0.946 0.807 0.950 0.791

1000 Basic 0.875 0.711 0.913 0.721 0.940 0.815 0.181 0.052
Improved 0.961 0.793 0.949 0.802 0.945 0.808 0.945 0.789

2000 Basic 0.833 0.629 0.847 0.627 0.941 0.787 0.009 0.002
Improved 0.949 0.819 0.939 0.791 0.952 0.799 0.936 0.771

4000 Basic 0.746 0.485 0.729 0.469 0.938 0.758 0.000 0.000
Improved 0.955 0.788 0.928 0.757 0.948 0.808 0.921 0.751

2 250 Basic 0.903 0.785 0.948 0.788 0.940 0.794 0.286 0.118
Improved 0.944 0.830 0.947 0.825 0.940 0.833 0.941 0.755

500 Basic 0.892 0.752 0.921 0.737 0.926 0.771 0.090 0.021
Improved 0.952 0.830 0.946 0.805 0.946 0.808 0.931 0.749

1000 Basic 0.855 0.697 0.891 0.675 0.879 0.687 0.004 0.001
Improved 0.956 0.797 0.937 0.787 0.946 0.799 0.896 0.703

2000 Basic 0.796 0.607 0.790 0.542 0.824 0.592 0.000 0.000
Improved 0.961 0.785 0.929 0.761 0.955 0.799 0.840 0.616

4000 Basic 0.654 0.380 0.625 0.357 0.708 0.441 0.000 0.000
Improved 0.948 0.781 0.902 0.697 0.948 0.798 0.686 0.445



the efficiency of the estimator. More precisely, both RMSE and MAE decrease as n grows at

a rate much slower than
√
n, especially when T and γ are large. With T = 7 and γ = 2, for

instance, the MAE of γ̂ is close to be constant with respect to n and may be larger than that

for the case in which T = 3 and γ = 2.

For what concerns the improved estimators β̃ and γ̃, Tables 1 and 2 show that these

estimators perform, in terms of bias and efficiency, much better than the basic estimators

illustrated above. In particular, β̃ has a bias which is always negligible and its gain in terms of

efficiency with respect to β̂ increases with n and γ and does not seem to be strongly affected

by T . With T = 3, for instance, β̂ and β̃ have the same MAE when n = 250 and γ = 0.25, but

the MAE of the first estimator is more than the double than that of the second estimator when

n = 4000 and γ = 2. The advantage of the improved estimator γ̃ over the basic estimator γ̂

is also more evident. Even though γ̃ is downward biased, its bias is almost always moderate

and seems to increase very slowly with n and γ and to decrease as T grows. Moreover, both

RMSE and MAE of γ̃ decrease as n grows at a rate close to
√
n and much faster in T and

increase with γ. The gain in the terms of efficiency of γ̃ over γ̂ increases with n, T and γ.

When T = 3, n = 250 and γ = 0.25, for instance, the median bias and the MAE of γ̃ are

equal respectively to -0.029 and 0.286 whereas, for γ̂, they are equal respectively to -0.036 and

0.299. When T = 7, n = 4000 and γ = 2, instead, the median bias and the MAE of γ̃ are

equal respectively to -0.066 and 0.069, whereas for γ̂ they are equal respectively to -0.428 and

0.428.

The superiority of the improved estimators over the basic estimators is confirmed by the

behavior of the confidence intervals constructed around these estimators. In particular, as

may be deduced from Table 3, the actual coverage level of the confidence intervals for β based

on β̂ (see (19)) tends to decrease with n and γ and to increase with T . In practice, the actual

coverage level is significantly smaller than the nominal level only when T = 3 and γ > 1. The

confidence intervals based on β̃ (see (20)) behave even better, with an actual coverage level

which is always very close to the nominal one. Similar conclusions may be drawn about the

confidence intervals for γ. In this case however, the actual coverage level of the confidence

interval based on γ̂ may be completely inadequate; this is mainly due to the bias of this



estimator. We have a strong improvement with the confidence intervals based on γ̃, even

though also the latter may not be width enough when γ is large. With T = 7, n = 1000

and γ = 2, for instance, the 95% confidence interval based on γ̂ has a coverage level of 0.004,

whereas that of the confidence interval based on γ̃ is equal to 0.896.

5.2 Other designs

Following Honoré & Kyriazidou (2000), we considered other simulation designs based on the

same dynamic logit model used in the benchmark design with T = 3, γ = 0.5 and β = 1. In

particular, we considered the following designs:

• χ2(1) regressor: the only difference with respect to the benchmark design is that any xit

(i = 1, . . . , n, t = 0, . . . , T ) is generated from a χ2(1) distribution transformed to have

mean 0 and variance π2/3;

• additional regressors: samples are generated as in the benchmark design, but three

more covariates are used in the estimation of the parameters. These covariates, which

obviously have no real effect on the response variables, are generated from the same

Normal distribution used to generate xit;

• trending regressors, T = 3: the only difference with respect to the benchmark design is

that the covariate is generated as xit = φ(ψ + 0.1t+ ζit), with φ and ψ suitably chosen

and where ζi0, . . . , ζiT follow a Gaussian AR(1) process with autoregressive coefficient

equal to 0.5, normalized to have variance π2/3;

• trending regressors, T = 7: as in the previous design, but with T = 7.

The results in terms mean bias, RMSE, median bias and MAE are displayed in Table 4,

while the results in terms of actual coverage level of the confidence intervals are displayed

in Table 5. Given their superiority over the basic estimators, the results concern only the

improved estimators β̃ and γ̃ and the confidence intervals based on these estimators.

On the basis of the results in Table 4 we can conclude that the improved estimators have

not a considerably different behavior with respect to the benchmark design. Even when the



Table 4: Performance of the improved conditional estimator under different simulation designs.

Percentual numbers are referred to the ratio between the actual sample size and the nominal

one.

Estimation of β Estimation of γ

Mean Median Mean Median
Type of design n Bias RMSE Bias MAE Bias RMSE Bias MAE

regressors χ2(1) 250 0.020 0.157 0.006 0.123 -0.020 0.326 -0.026 0.261
(56%) 500 0.007 0.106 0.002 0.084 -0.016 0.230 -0.017 0.184

1000 0.002 0.073 -0.002 0.058 -0.031 0.163 -0.028 0.130
2000 -0.001 0.052 -0.002 0.042 -0.024 0.113 -0.023 0.091
4000 0.000 0.039 -0.001 0.031 -0.024 0.080 -0.022 0.063

additional regressors 250 0.052 0.155 0.041 0.118 -0.022 0.398 -0.039 0.320
(57%) 500 0.017 0.097 0.013 0.076 -0.015 0.257 -0.022 0.205

1000 0.013 0.064 0.013 0.051 -0.033 0.182 -0.037 0.147
2000 0.003 0.048 0.001 0.038 -0.022 0.130 -0.022 0.104
4000 0.003 0.032 0.001 0.026 -0.016 0.090 -0.011 0.072

trending regressors, 250 0.030 0.171 0.016 0.129 -0.029 0.417 -0.036 0.328
T = 3 500 0.013 0.117 0.001 0.092 -0.030 0.281 -0.028 0.225
(42%) 1000 0.002 0.080 -0.004 0.064 -0.019 0.198 -0.014 0.158

2000 0.002 0.059 0.001 0.047 -0.034 0.145 -0.036 0.115
4000 -0.001 0.039 -0.003 0.031 -0.024 0.100 -0.028 0.080

trending regressors, 250 0.009 0.072 0.004 0.056 -0.015 0.168 -0.018 0.135
T = 7 500 0.006 0.050 0.004 0.041 -0.013 0.122 -0.011 0.095
(78%) 1000 0.002 0.035 0.001 0.028 -0.015 0.087 -0.013 0.068

2000 0.002 0.026 0.002 0.021 -0.014 0.060 -0.017 0.048
4000 0.002 0.018 0.001 0.015 -0.015 0.044 -0.015 0.036

estimators perform worse, in terms of bias and/or efficiency, with respect to the benchmark

design, the difference is slight. This happens, for the χ2(1) design (limited to β̃), for the

additional regressors design when n is small and for the trending regressor design when T = 3.

Occasionally, it also happens that the estimators perform better with respect to the benchmark

design. Limited to γ̃, this happens, for instance, for the χ2(1) design.

Finally, for what concerns the confidence intervals, we observed that actual coverage value

is always very close to the nominal level for both parameters α and β. This confirms the good

quality of the method proposed in Section 4.3 for constructing confidence intervals, already

noticed for the benchmark design.



Table 5: Coverage levels of the confidence intervals based on the improved conditional esti-

mator under different simulation designs.

Interval for β Interval for γ

Type of design n 95% 80% 95% 80%

regressors χ2(1) 250 0.947 0.815 0.951 0.803
500 0.948 0.821 0.948 0.798

1000 0.960 0.794 0.940 0.802
2000 0.960 0.805 0.947 0.803
4000 0.952 0.805 0.934 0.779

additional regressors 250 0.941 0.811 0.955 0.817
500 0.942 0.800 0.946 0.810

1000 0.945 0.803 0.945 0.795
2000 0.950 0.816 0.951 0.782
4000 0.946 0.794 0.956 0.800

trending regressors, 250 0.951 0.826 0.952 0.813
T = 3 500 0.945 0.820 0.948 0.801

1000 0.949 0.796 0.948 0.798
2000 0.955 0.805 0.943 0.789
4000 0.952 0.793 0.940 0.786

trending regressors, 250 0.940 0.805 0.949 0.796
T = 7 500 0.954 0.799 0.945 0.815

1000 0.946 0.808 0.942 0.800
2000 0.947 0.798 0.945 0.801
4000 0.952 0.801 0.941 0.785

5.3 Comparison with the weighted conditional estimator

An important issue is how the improved version of our approximate conditional estimator,

which we established to be much better than its basic version, performs in comparison to

the weighted conditional estimator of Honoré & Kyriazidou (2000). We then compared their

simulation results with the simulation results illustrated above. An advantage of our estimator

over their estimator, in terms of bias and efficiency, seems clearly to emerge. The results of

this comparison are summarized in Table 6, which, for certain reference situations and for

both β and γ, shows the median bias and the MAE of our estimator in comparison to those

of the weighted conditional estimator. For both estimators, the table also shows the rate2

between the actual sample size and the nominal sample size.

From Table 6 we can see that, as regards the parameter β, the advantage of our estimator

2For the weighted conditional estimator, this rate is computed as the expected proportion of pairs of

response variables (yis, yit), 0 < s < t < T , such that yis + yit = 1.



Table 6: Comparison between the weighted and the improved conditional estimator. Per-

centual numbers in the first two columns are referred to actual sample size under the two

approaches. Percentual numbers in the other columns are referred to the reduction of median

bias (in absolute value) and MAE from the first to the second estimator.

Estimation of β Estimation of γ

Median Median
γ T n Estimator Bias MAE Bias MAE

0.5 3 250 Weighted 0.076 0.154 -0.039 0.403
(37% - 57%) Approximated 0.010 0.111 -0.027 0.285

(87%) (28%) (31%) (29%)
1000 Weighted 0.038 0.086 -0.035 0.178

Approximated 0.002 0.053 -0.017 0.148
(95%) (38%) (51%) (17%)

4000 Weighted 0.019 0.044 -0.035 0.102
Approximated 0.000 0.027 -0.021 0.077

(100%) (39%) (40%) (25%)

7 250 Weighted 0.014 0.050 -0.053 0.131
(43% - 91%) Approximated 0.001 0.049 -0.009 0.124

(93%) (2%) (83%) (5%)
1000 Weighted 0.009 0.027 -0.041 0.075

Approximated -0.001 0.024 -0.013 0.066
(89%) (11%) (68%) (12%)

4000 Weighted 0.005 0.015 -0.033 0.039
Approximated 0.001 0.012 -0.010 0.032

(80%) (20%) (70%) (18%)

2 3 250 Weighted 0.196 0.251 -0.056 0.620
(26% - 42%) Approximated 0.015 0.139 -0.056 0.419

(92%) (45%) (0%) (32%)
1000 Weighted 0.113 0.136 -0.148 0.321

Approximated -0.008 0.062 -0.083 0.200
(93%) (54%) (44%) (38%)

4000 Weighted 0.063 0.074 -0.118 0.163
Approximated -0.006 0.031 -0.079 0.120

(90%) (58%) (33%) (26%)

7 250 Weighted 0.016 0.064 -0.195 0.227
(34% - 76%) Approximated 0.001 0.055 -0.072 0.156

(94%) (14%) (63%) (31%)
1000 Weighted 0.016 0.034 -0.160 0.164

Approximated -0.002 0.028 -0.066 0.095
(88%) (18%) (59%) (42%)

4000 Weighted 0.006 0.017 -0.116 0.116
Approximated -0.001 0.014 -0.066 0.069

(83%) (18%) (43%) (41%)



β̃ is particularly evident for the case n = 250, T = 3 and γ = 2, case in which β̃ has a median

bias of 0.015, whereas the weighted conditional estimator has a median bias of 0.196. For what

concerns the efficiency, the gain of our estimator seems to increase with n and γ and is more

evident for T = 3 then for T = 7. For the case of n = 250, T = 3 and γ = 0.5, for instance,

the reduction of MAE is just of 2%, which increases to 58% for the case in which n = 4000,

T = 3 and γ = 2. In most of the cases considered in Table 6, the reduction of MAE is at least

of 15%.

As regards the parameter γ, the reduction of bias is particularly relevant when T and γ

are large. For instance, with n = 250, T = 7 and γ = 2, their estimator has a median bias

of -0.195, whereas our estimator has a median bias of -0.072. Similarly, the efficiency of our

estimator with respect to their estimator seems to increase with γ, whereas it has not a clear

trend in n and T . For instance, with n = 250, T = 7 and γ = 0.5, the reduction of MAE from

their estimator to our estimator is of 5%, while it is equal to 41% for the case of n = 4000,

T = 7 and γ = 2. In most of the cases considered in Table 6, the reduction of MAE is at least

of 25% and is usually more evident than for the estimation of β.

The main explanation that we can give for the results above is that, as may also be deduced

from Table 6, the actual sample size used in our approach is always much larger than that

used in the approach of Honoré & Kyriazidou (2000). This difference increases with γ and T .

For instance, with γ = 0.5 and T = 3, the actual sample size used in our approach is about

1.5 times that used in their approach. This ratio becomes equal to about 2.1 for γ = 0.5 and

T = 7 and to 2.2 for γ = 2 and T = 7. Note however that the gain in median bias and MAE

does not closely follows the gain in the actual sample size. Other factors have therefore to be

taken into consideration which may affect the performance of the two estimators in a way that

depends on γ and T . We recall, in particular, that the performance of our estimator depends

on the quality of the approximation we are relying on, while the performance of the estimator

of Honoré & Kyriazidou (2000) depends also on the fact that the response configurations are

differently weighted on the basis of the corresponding covariate configurations and that, for

T > 3, they are indeed relying on a pairwise likelihood.



6 Possible extensions

In the following, we illustrate two possible extensions of the proposed approach to the case

of dynamic logit models including more than one lagged response variables and to that of

multinomial logit models for categorical response variables with more than two levels. In

both cases, the approximate conditional inference outlined in the previous sections may be

implemented with minor adjustments.

6.1 More than one lagged response variables among the regressors

Sometimes, it may be interesting to know how long is the dynamics of a certain phenomenon.

In our context, to have the possibility to test for its length it is necessary to use a dynamic

logit model with more than one lagged response variables.

As an illustration consider the case of two lagged response variables. The model described

in Section 2.1 becomes

p(yit|αi,X i, yi,−1, . . . , yi,t−1) = p(yit|αi,xit, yi,t−2, yi,t−1) =

=
exp[yit(αi + x′

itβ + yi,t−1γ1 + yi,t−2γ2)]

1 + exp(αi + x′
itβ + yi,t−1γ1 + yi,t−2γ2)

, i = 1, . . . , n, t = 1, . . . , T, (21)

with γ1 and γ2 having an obvious interpretation and yi,−1 and yi0 assumed to be exogenous.

Along the same lines as in Section 2.1, it is straightforward to write the distribution of yi,

given αi, X i, yi,−1 and yi0, as

p(yi|αi,Xi, yi,−1, yi0) =
exp(yi+αi +

∑
t yitx

′
itβ + yi×1γ1 + yi×2γ2)∏

t[1 + exp(αi + x′
itβ + yi,t−1γ1 + yi,t−2γ2)]

, (22)

where yi×1 =
∑

t yi,t−1yit and yi×2 =
∑

t yi,t−2yit.

In this case, we can approximate the logarithm of the denominator with a first-order Taylor

series expansion around αi = 0, β = 0 and γ1 = γ2 = 0 obtaining

∑

t

log[1 + exp(αi + x′
itβ + yi,t−1γ1 + yi,t−2γ2)] ≈

≈
∑

t

[log(2) + 0.5αi + 0.5x′
itβ] + 0.5

∑

t

(yi,t−1γ1 + yi,t−2γ2).

Therefore, by substituting the latter into (22) and after some algebra, we find that p(yi|αi,X i, yi,−1, yi0)



may be approximated with

p∗(yi|αi,X i, yi,−1, yi0) =
exp(yi+αi +

∑
t yitx

′
itβ − 0.5yi∗1γ1 − 0.5yi∗2γ2 + yi×1γ1 + yi×2γ2)∑

z exp(z+αi +
∑

t ztx
′
itβ − 0.5z∗1γ1 − 0.5z∗2γ2 + z×1γ1 + z×2γ2)

,

where yi∗h =
∑

t yi,t−h and yi×h =
∑

t yt−hyt, for h = 1, 2, and z∗h and z×h defined in a

similar way, with z−1 ≡ yi,−1 and z0 ≡ yi0. The approximating model is therefore a quadratic

exponential model in which the main effect parameter for yit is equal to αi+x′
itβ−0.5γ1−0.5γ2

when t = 1, . . . , T − 2, to αi + x′
itβ − 0.5γ1 when t = T − 1 and to αi + x′

itβ when t = T ;

moreover, the two-way interaction effect for (yis, yit) is equal to γ1 when t = s + 1, to γ2

when t = s+ 2 and to 0 otherwise. The advantage of this model is that of having a minimal

sufficient statistic for αi which is again yi+, so that the conditional distribution of yi given

X i, yi,−1, yi0 and yi+ does not depend on αi. The estimation of the structural parameters

follows by maximizing a likelihood based on this conditional distribution in a way similar to

that outlined in Section 4.1. In a similar way we can also compute standard errors for these

estimates.

In the case outlined above, it may interesting to test the hypothesis γ2 = 0 under which

model (21) specializes into model (2). In the present approach, this hypothesis may be tested

in the usual way by using the statistic γ̂2/se(γ̂2), where se(γ̂2) is the standard error for γ̂2

estimated as described in Section 4.1. Under the null hypothesis, this statistic should approx-

imately have a standard Normal distribution.

6.2 Categorical response variables

Suppose that any response variable has M , instead of 2, possible levels, from 0 to M −1. The

standard econometric model assumed in this case is the dynamic multinomial logit model

p(yit|αi,X i, yi0, . . . , yi,t−1) = p(yit|αi,xit, yi,t−1) =

=
exp(αiyit

+ x′
itβyit

+ γyi,t−1yit
)

∑
m exp(αim + x′

itβm + γyi,t−1m)
, i = 1, . . . , n, t = 1, . . . , T,

where αi0 = 0 for any i, β0 = 0 and γhm = 0 whenever h = 0 or m = 0. It is now convenient

to use a dummy representation for the response variables yit and so let ait be an (M − 1)-

dimensional vector with all elements equal to 0, apart from the element aitm, m = yit − 1,



equal to 1 when yit > 0. Thus

p(yit|αi,xit, yi,t−1) =
exp(

∑
m aitmαim +

∑
m aitmx′

itβm +
∑

h

∑
m ai,t−1,haitmγhm)∑

bt
exp(

∑
m btmαim +

∑
m btmx′

itβm +
∑

h

∑
m ai,t−1,hbtmγhm)

, t = 1, . . . , T,

where the sums
∑

h and
∑

m are extended to 1, . . . ,M − 1 and bt is an (M − 1)-dimensional

binary vector with elements btm. This vector has M possible configurations, corresponding to

the possible configurations of any ait. Then, the conditional distribution of yi, given αi,Xi

and yi0, is equal to

p(yi|αi,X i, yi0) =
exp(

∑
m ai+mαim +

∑
t

∑
m aitmx′

itβm +
∑

h

∑
m ai×hmγhm)∏

t

∑
bt

exp(
∑

m btmαim +
∑

m btmx′
itβm +

∑
h

∑
m ai,t−1,hbtmγhm)

, (23)

with ai+m =
∑

t aitm and ai×hm =
∑

t ai,t−1,haitm.

Proceeding along the same lines as in Section 3.1, we have to approximate the logarithm

of the denominator of (23) through a first-order Taylor expansion around αi = 0, β = 0 and

γ = 0. We have that

∑

t

log[
∑

bt

exp(
∑

m

btmαim +
∑

m

btmx′
itβm +

∑

h

∑

m

ai,t−1,hbtmγhm)] ≈

≈
∑

t

[
log(M) +

1

M

∑

m

(αim + x′
itβm)

]
+

1

M

∑

m

ai∗mγm+,

with ai∗m =
∑

t ai,t−1,m and γm+ defined in an obvious way. Thus the approximating model is

p∗(yi|αi,X i, yi0) =

=
exp(

∑
m ai+mαim +

∑
t

∑
m aitmx′

itβm +
∑

h

∑
m ai×hmγhm −∑m ai∗mγm+/M)∑

B exp(
∑

m b+mαim +
∑

t

∑
m btmx′

itβm +
∑

h

∑
m b×hmγhm −∑m b∗mγm+/M)

,

where the sum at the denominator is extended to all the possible configurations of the binary

matrix B = ( b1 · · · bT ) and b+m, b×hm and b∗m are defined in an obvious way.

It may be easily realized that ai+m are sufficient statistics for the incidental parameters αim

(i = 1, . . . , n, m = 1, . . . ,M − 1) and so, as usual, we can rely on the conditional distribution

exp(
∑

t

∑
m aitmx′

itβm +
∑

h

∑
m ai×hmγhm −∑m ai∗mγm+/M)∑∗

B exp(
∑

t

∑
m btmx′

itβm +
∑

h

∑
m b×hmγm+ −∑m b∗mγm+/M)

,

to estimate the structural parameters, where the sum
∑∗

B is extended to al the matrices B

such that b+m = ai+m, m = 1, . . . ,M − 1.



7 Conclusions

We proposed an estimation approach for dynamic logit models for binary panel data allowing

for unobserved heterogeneity and lagged response variable beyond strictly exogenous covari-

ates. The approach is based on approximating the assumed logit model with a quadratic

exponential model (Cox, 1972). On the basis of the latter we construct an approximate

conditional likelihood which does not depend on the heterogeneity parameters, which are con-

sidered as incidental parameters. By maximizing this likelihood, we obtain an approximate

conditional estimator for the other parameters of the logit model, i.e. the parameters for the

covariates and that for the state dependence, which are referred to as structural parameters.

We also show how this estimator may be improved by using a more precise approximation of

the assumed logit model. The resulting estimator is the one we suggest to use in practical

applications.

The main feature of the estimator above is that it is simpler to use and performs better

than other conditional estimators existing in the literature. In particular, with respect to the

weighted conditional estimator of Honoré & Kyriazidou (2000), that we consider a benchmark

estimator in this literature, our estimator does not require a kernel function for weighting the

response configurations, may also be used when T > 2, instead of T > 3, and in the presence

of time dummies, without requiring particular adjustments. A more important aspect is that,

usually, our estimator also has a smaller bias and a greater efficiency. This conclusion is based

on a simulation study that we performed along the same lines as Honoré & Kyriazidou (2000).

In particular, we noticed that our estimator has always a limited bias. It also has a root

mean square error and a median absolute error that decrease, as n grows, at a rate close to

√
n. Moreover, the advantage in terms of bias and efficiency over the estimator of Honoré

& Kyriazidou (2000) is more consistent when there is a strong state dependence effect. An

intuitive explanation of the better performance of our estimator over their estimator is that the

first is based on a conditional likelihood to which a larger number of response configurations

contribute (actual sample size) with respect to the likelihood on which the other estimator is

based. The larger actual sample size more than compensate the fact that we are relying on



an approximate conditional likelihood.

In our approach, we also show how it is possible to estimate standard errors for the proposed

estimator. These standard errors are estimated in the usual way on the basis of an information

matrix which is obtained as a by-product from the estimation algorithm. On the basis of these

standard errors we can construct confidence intervals for the structural parameters. As our

simulation study shows, these confidence intervals usually have an actual coverage level very

close to the nominal one and so we conclude that the suggested method for estimating the

standard errors is adequate in practical applications. For this reason, we had not the exigence

to develop more sophisticated methods, based for instance on a bootstrap procedure, for

estimating the standard errors.

In the present paper, we also outlined the extension of the approach to more complex

structures for the state dependence, based on more than one lagged response variables among

the regressors, and to that of dynamic multinomial logit models for categorical response vari-

ables having more than two categories. We reserve the development of both of them and the

assessment of the quality of the inference produced in these cases to future research.

Appendix

Proof of Theorem 1. First of all consider that, under the quadratic exponential model

(7), we can express the conditional distribution of any yi, given αi, X i and yi0, as

p∗(yi|αi,X i, yi0) =
exp(−0.5yi0γ)

µit

∏

t

ηit(yi,t−1, yit),

with ηit(yi,t−1, yit) = δit(yit) exp(yi,t−1yitγ) and δit(yit) = exp(yitαi + yitx
′
itβ − 0.5yitγ) if t < T

and δit(yit) = exp(yitαi + yitx
′
itβ) if t = T . Therefore, by marginalizing with respect to any

response variable in backward order (from t = T ), we obtain

p∗(yi, . . . , yit|αi,X i, yi0) =
exp(−0.5yi0γ)

µit

[
∏

s6t

ηis(yi,s−1, yis)

]
gi,t+1(yit), t = 1, . . . , T − 1,

where, since ηit(yi,t−1, 0) is always equal to 1, the function git(yi,t−1) is defined recursively as

git(yi,t−1) =

{
1 + ηiT (yi,T−1, 1) if t = T
gi,t+1(0) + ηit(yi,t−1, 1)gi,t+1(1) if t < T

.



We therefore have that

p∗(yi1, . . . , yit|αi,X i, yi0)

p∗(yi1, . . . , yi,t−1|αi,X i, yi0)
=

[∏
s6t ηis(yi,s−1, yis)

]
gi,t+1(yit)[∏

s6t−1 ηis(yi,s−1, yis)
]
git(yi,t−1)

= ηit(yi,t−1, yit)
gi,t+1(yit)

git(yi,t−1)
,

which does not depend on yi0, . . . , yi,t−2 and so yit is conditional independent on these variables

given αi, X i, yi0 and yi,t−1. From this conditional probability, expression (8) directly follows.

Finally, on the basis of a Taylor series expansion around αi = 0, β = 0 and γ = 0, we

obtain

log[giT (yi,T−1)] ≈ log(2) + 0.5(αi + x′
iT β + yi,T−1γ)

and then

giT (yi,T−1) ≈ 2 exp[0.5(αi + x′
iT β)] exp(0.5yi,T−1γ) = exp(ciT ) exp(0.5yi,T−1γ),

with ciT denoting a constant term with respect to yi,T−1. By substituting the latter in

gi,T−1(yi,T−2) and following the same recursion above with the Taylor approximation used

at any iteration, we obtain

git(yi,t−1) ≈ exp(cit) exp(0.5yi,t−1γ), t = 1, . . . , T.

The approximation log[git(1)/git(0)] ≈ 0.5γ then follows.

Proof of Theorem 2: Let Q̂n(θ) = ℓ∗(θ)/n and Q0(θ) = E0{log[p∗(y|α,X, y0, y+)]}. We

first prove existence and consistency of θ̂ and then asymptotic normality.

• (Existence and consistency) Under our assumptions, conditions (i), (ii) and (iii) of Theo-

rem 2.7 of Newey & McFadden (1994) are satisfied and then, since θ̂n = argmaxθQ̂n(θ),

we have that θ̂n exists with probability 1 as n→ ∞ and θ̂n
p→ θ0. In particular:

(i) Q0(θ) is uniquely maximized at θ0. Using a notation derived from Section 4.1, let

u(D, y0,y) = (
∑

t>1 ytd
′
t,−0.5y∗ + y×)′. The first derivative of Q0(θ) at θ0 may be

then expressed as

∇θQ0(θ0) = E0{u(D, y0,y) −E0[u(D, y0,y)|D, y0, y+]} = 0. (24)

Moreover, the second derivative may be expressed as

∇θθQ0(θ0) = −E0[S(D, y0, y+)], (25)



where S(D, y0, y+) = V0[u(D, y0,y)|D, y0, y+], with V0(·) denoting the variance-

covariance operator under the true model. Note however that u(D, y0,y) may also

be expressed as A(D)w(y0,y), with

A(D) =

(
D 0

0′ 1

)
and w(y0,y) =

(
y−1

−0.5y∗ + y×

)

and y−1 denoting the reduced vector y without the first element. Therefore, (25)

may also be expressed as −E0{A(D)V0[w(y0,y)|D, y0, y+]A(D)′}, which exists

and is negative definite provided that E0(DD′) exists and is of full rank. This

is because V0[w(y0,y)|D, y0, y+] is positive definite for any y0 and D and any y+

between 0 and T , but the probability that 0 < y+ < T is always positive.

(ii) θ0 is an element of the interior of a convex set Θ and Q̂n(θ) is concave. That θ0

is an interior point of Θ obvious since Θ = R
k+1. The concavity of Q̂n(θ) directly

derives from the concavity of ℓ∗(θ) discussed at the end of Section 4.1.

(iii) Q̂n(θ)
p→ Q0(θ) for any θ ∈ Θ. Since Q̂n(θ) is the sample mean of random

variables, each with the same expected value equal to Q0(θ), this easily follows

from the law of large number. Note, in particular, that this law may be applied

since Q0(θ) exists for any θ which, in turns, directly derives from the existence of

E0[u(D, y0, y+)] ensured by that of E0(DD′).

• (Normality) It follows form Theorem 3.1 of Newey & McFadden (1994). In particular,

the following conditions of this Theorem hold:

(i) θ̂n
p→ θ0 and θ0 belongs to the interior of Θ (see the proof above).

(ii) Q̂n(θ) is twice continuously differentiable in a neighborhood N of θ0. This deriva-

tive is equal to minus the information matrix (17) divided by n which is clearly

continuous in any N .

(iii)
√
n∇θQ̂n(θ0)

d→ N(0,Σ). First of all we have that, because of (24), E0[∇θQ̂n(θ0)] =

0. This implies that V0[∇θQ̂n(θ0)] = E0{∇θQ̂n(θ0)∇θQ̂n(θ0)
′}. The latter may

however be expressed as

E0{E0[∇θQ̂n(θ0)∇θQ̂n(θ0)
′|D, y0, y+]} = E0{V0[u(D, y0,y)|D, y0, y+]},



which, in turn, is equal the Σ = −∇θθQ0(θ0) which exists and is positive definite.

The convergence to the Normal distribution therefore follows from the Central Limit

Theorem.

(iv) supθ∈N ‖∇θθQ̂n(θ) + Σ‖ p→ 0. This directly follows from Lemma 2.4 of Newey &

McFadden (1994) and the fact that E0[∇θθQ̂n(θ0)] = −Σ and thatE0[‖∇θθQ̂n(θ)‖]

is finite for any θ ∈ N .

(v) Σ is nonsingular. See item (iii) above.
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