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Abstract
In this paper incomplete-information models are developed for the

pricing of securities in a stochastic interest rate setting. In particu-
lar we consider credit-risky assets that may include random recovery
upon default. The market filtration is generated by a collection of
information processes associated with economic factors, on which in-
terest rates depend, and information processes associated with mar-
ket factors used to model the cash flows of the securities. We use
information-sensitive pricing kernels to give rise to stochastic interest
rates. Semi-analytical expressions for the price of credit-risky bonds
are derived, and a number of recovery models are constructed which
take into account the perceived state of the economy at the time of
default. The price of European-style call bond options is deduced,
and it is shown how examples of hybrid securities, like inflation-linked
credit-risky bonds, can be valued. Finally, a cumulative information
process is employed to develop pricing kernels that respond to the
amount of aggregate debt of an economy.

Keywords: Asset pricing, incomplete information, stochastic interest
rates, credit risk, recovery models, credit-inflation hybrid securities,
information-sensitive pricing kernels.

This version: 15 January 2010.
Email: andrea.macrina@kcl.ac.uk, parbhoop@cam.wits.ac.za

1

ar
X

iv
:1

00
1.

35
70

v1
  [

q-
fi

n.
PR

] 
 2

0 
Ja

n 
20

10



1 Introduction

The information-based framework developed by Brody et al. (2007, 2008a) is
a method to price assets based on incomplete information available to market
participants about the cash flows of traded assets. In this approach the value
of a number of different types of assets can be derived by modelling the ran-
dom cash flows defining the asset, and by explicitly constructing the market
filtration that is generated by the incomplete information about independent
market factors that build the cash flows. This principle has been used in
Brody et al. (2007) to derive the price processes of credit-risky securities, in
Brody et al. (2008a) to value equity-type assets with various dividend struc-
tures, in Brody et al. (2008b) to price insurance and reinsurance products,
and in Brody et al. (2009) to price assets in a market with asymmetric in-
formation. However, for simplicity, in this framework it is typically assumed
that interest rates are deterministic.

One of the earliest generalizations of the models developed in Brody et
al. (2007) to include stochastic interest rates can be found in Rutkowski &
Yu (2007). Here, it is assumed that the filtration is generated jointly by
the information processes associated with the future random cash flows of a
defaultable bond and by an independent Brownian motion that drives the
stochastic discount factor.

Pricing kernel models for interest rates have been studied in Flesaker &
Hughston (1996), Hunt & Kennedy (2004) and Rogers (1997), among others.
In such models, the price PtT at time t of a sovereign bond with maturity T
and unit payoff, is given by the formula

PtT =
EP[πT | Ft]

πt
, (1.1)

where {πt}t≥0 is the {Ft}-adapted pricing kernel process and P denotes the
real probability measure. Given the filtration {Ft}t≥0, arbitrage-free inter-
est rate models can be obtained by specifying the dynamics of the pricing
kernel. In particular, term structure models with positive interest rates are
generated by requiring that {πt} is a positive supermartingale. A more re-
cent approach to constructing interest rate models in an information-based
setting, presented in Hughston & Macrina (2009), develops the notion of
an information-sensitive pricing kernel. The pricing kernel is modelled by
a function of time and information processes that are observed by market
participants and that over time reveal genuine information about economic
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factors at a certain rate. In order to obtain positive interest rate models,
such function must be chosen so that the pricing kernel has the supermartin-
gale property. A scheme for generating appropriate functions to construct
such pricing kernels in an information-based approach is considered in Aka-
hori & Macrina (2010). Incomplete information about economic factors that
is available to investors is modelled in Akahori & Macrina (2010) by using
time-inhomogeneous Markov processes. The Brownian bridge information
process considered in Hughston & Macrina (2009) and, more generally, the
subclass of the continuous Lévy random bridges, recently introduced in Hoyle
et al. (2009), are examples of time-inhomogeneous Markov processes.

In this paper we describe how credit-risky securities can be priced within
the framework considered in Brody et al. (2007) while including a stochastic
discount factor by use of information-sensitive pricing kernels. To this end,
we proceed in Section 2 to recap briefly the theory for the pricing of fixed-
income securities in an information-based framework described in Hughston
& Macrina (2009). In Section 3 we recall the result in Akahori & Macrina
(2010) that can be used to obtain the explicit dynamics of the pricing kernel
by use of so-called “weighted heat kernels” with time-inhomogeneous Markov
processes. In Section 4, we derive the price process of a defaultable discount
bond and compute the yield spreads between digital bonds and sovereign
bonds. Section 5 considers a number of random recovery models for default-
able bonds, and in the following section we derive a semi-analytical formula
for the price of a European option on a credit-risky bond. In Section 7 we
demonstrate how to price credit-inflation securities as an example of a hybrid
structure. We investigate the valuation of credit-risky coupon bonds in Sec-
tion 8 and conclude by considering a pricing kernel that reacts to the level
of debt accumulated in a country over a finite period of time.

2 Information-sensitive pricing kernels

We define the probability space (Ω,F , {Ft}t≥0,P), where P denotes the real
probability measure. We fix two dates T and U , where T < U , and introduce
a macroeconomic random variable XU , the value of which is revealed at
time U . Noisy information about the economic factor available to market
participants is modelled by the information process {ξtU}0≤t≤U given by

ξtU = σ tXU + βtU . (2.1)
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Here the parameter σ represents the information flow rate at which the
true value of XU is revealed as time progresses, and the noise component
{βtU}0≤t≤U is a Brownian bridge that is taken to be independent of XU . We
assume that the market filtration {Ft}t≥0 is generated by {ξtU}, and note
that it is shown in, e.g., Brody et al. (2007) that {ξtU} is a Markov process
with respect to its natural filtration. We consider pricing kernels {πt} that
are of the form

πt = Mt f(t, ξtU), (2.2)

where {Mt}0≤ t<U is the density martingale associated with a change of mea-
sure from P to the so-called “bridge measure” B under which the information
process has the law of a Brownian bridge. It is proven in Brody et al. (2007),
that {Mt} satisfies the differential equation

dMt = −σ U

U − t
EP[XU | ξtU ]Mt dWt, (2.3)

where {Wt}0≤ t<U is an ({Ft},P)-Brownian motion given by

Wt = ξtU +

∫ t

0

1

U − s
ξsU ds− σ

∫ t

0

U

U − s
EP[XU | ξsU ] ds. (2.4)

By applying Bayes change-of-measure formula to equation (1.1), we can ex-
press the price PtT at time t of a sovereign discount bond with maturity T
by

PtT =
EB[f(T, ξTU) | ξtU ]

f(t, ξtU)
. (2.5)

Next we introduce the random variable YtT defined by

YtT = ξTU −
U − T
U − t

ξtU , (2.6)

and observe that under the measure B, YtT is a Gaussian random variable
with zero mean and variance given by

v2tT =
(T − t)(U − T )

U − t
. (2.7)

It can be verified that YtT is independent of ξtU under B, see Hughston &
Macrina (2009). Next, we introduce a Gaussian random variable Y , with
zero mean and unit variance; this allows us to write YtT = vtTY . Since ξtU

4



is Ft-measurable and Y is independent of ξtU , we can express the price of a
sovereign bond by the following Gaussian integral:

PtT =
1

f(t, ξtU)

∫ ∞
−∞

f

(
T, vtTy +

U − T
U − t

ξtU

)
1√
2π

exp
(
−1

2
y2
)

dy. (2.8)

Interest rate models of various types can therefore be constructed in this
framework by specifying the function f(t, x). However, pricing kernels con-
structed by the relation (2.2) are not automatically ({Ft},P)-supermartingales.
In particular, to guarantee positive interest rates, it is a requirement that the
function f(t, x) satisfies the following differential inequality, see Hughston &
Macrina (2009):

x

U − t
∂

∂x
f(t, x)− 1

2

∂

∂2x
f(t, x)− ∂

∂t
f(t, x) > 0. (2.9)

We emphasize that finding a function which satisfies relation (2.9) is equiv-
alent to finding a process {f(t, ξtU)}0≤ t<U that is a positive supermartin-
gale under the measure B. Hence the pricing kernel {πt}0≤ t<U is a positive
({Ft},P)-supermartingale since

EP[πT | Ft] = Mt EB[f(T, ξTU) | ξtU ] ≤Mt f(t, ξtU) = πt. (2.10)

We now proceed to construct such positive ({Ft},B)-supermartingales using
a technique known as the “weighted heat kernel approach”, presented in
Akahori et al. (2009) and adapted for time-inhomogeneous Markov processes
in Akahori & Macrina (2010).

3 Weighted heat kernel models

We consider the filtered probability space (Ω,F , {Ft},P) where the filtration
{Ft}t≥0 is generated by the information process {ξtU}. We recall that the
martingale {Mt} satisfying equation (2.3), induces a change of measure from
P to the bridge measure B, and that the information process {ξtU} is a
Brownian bridge under B. The Brownian bridge is a time-inhomogeneous
Markov process with respect to its own filtration. Let w : R+

0 × R+
0 → R+

be a weight function that satisfies

w(t, u− s) ≤ w(t− s, u) (3.1)
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for arbitrary t, u ∈ R+
0 and s ≤ t ∧ u. Then, for t < U and a positive

integrable function F (x), the process {f(t, ξtU)} given by

f(t, ξtU) =

∫ U−t

0

EB[F (ξt+u,U) | ξtU ]w(t, u) du (3.2)

is a positive supermartingale.
The proof of this result goes as follows. For f(t, x) an integrable function,

the process {f(t, ξtU)} is a supermartingale for 0 ≤ s ≤ t < U if

EB[f(t, ξtU) | ξsU ] ≤ f(s, ξsU) (3.3)

is satisfied. We define the process {p(t, u, ξtU)} by

p(t, u, ξtU) = EB [F (ξt+u,U)| ξtU ] , (3.4)

where 0 ≤ u ≤ U − t. Then we have:

EB[f(t, ξtU) | ξsU ] =

∫ U−t

0

EB[p(t, u, ξtU) | ξsU ]w(t, u) du

=

∫ U−t

0

p(s, u+ t− s, ξsU)w(t, u) du

=

∫ U−s

t−s
p(s, v, ξsU)w(t, v − t+ s) dv. (3.5)

Here we have used the tower rule of conditional expectation and the Markov
property of {ξtU}. Next we make use of the relation (3.1) to obtain

EB[f(t, ξtU) | ξsU ] ≤
∫ U−s

t−s
p(s, v, ξsU)w(t− (t− s), v) dv

≤
∫ U−s

0

p(s, v, ξsU)w(s, v) dv

= f(s, ξsU). (3.6)

Thus, {f(t, ξtU)} is a positive ({Ft},B)-supermartingale if F (x) is positive.
The method based on equation (3.2) provides one with a convenient way

to generate positive pricing kernels driven by the information process {ξtU}.
These models can be used to generate information-sensitive dynamics of posi-
tive interest rates. In particular, the functions f(t, x) underlying such interest
rate models satisfy inequality (2.9).
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4 Credit-risky discount bonds

We introduce two dates T and U , where T < U , and attach two independent
factors XT and XU to these dates respectively. We assume that XT is a
discrete random variable that takes values in {x0, x1, . . . , xn} with a priori
probabilities {p0, p1, . . . , pn}, where 1 ≥ xn > xn−1 > . . . > x1 > x0 ≥ 0.
We take XT to be the random variable by which the future payoff of a
credit-risky bond issued by a firm is modelled. The second random variable
XU is assumed to be continuous and represents a macroeconomic factor. For
instance, one might consider the GDP level at time U of an economy in which
the bond is issued. With the two X-factors, we associate the independent
information processes {ξtT}0≤t≤T and {ξtU}0≤t≤U given by

ξtU = σ1 tXU + βtU , ξtT = σ2 tXT + βtT . (4.1)

The market filtration {Ft} is generated by both information processes {ξtT}
and {ξtU}. The price BtT at t ≤ T of a defaultable discount bond with payoff
HT at T < U can be written in the form

BtT =
EP[πTHT | Ft]

πt
(4.2)

where {πt} is the pricing kernel. We consider the positive martingale {Mt}0≤t<U
that satisfies

dMt = −σ1
U

U − t
EP[XU | ξtU ]Mt dWt, (4.3)

and introduce the pricing kernel {πt} given by

πt = Mt f(t, ξtU). (4.4)

The dependence of the pricing kernel on {ξtU} implies that interest rates
fluctuate due to the information flow in the market about the likely value
of the macroeconomic factor XU at time U . Since the information processes
are Markovian, the price of the defaultable discount bond can be expressed
by

BtT =
EP
[
MTf(T, ξTU)HT

∣∣ ξtT , ξtU]
Mtf(t, ξtU)

, (4.5)

where HT is the bond payoff at maturity T . We now suppose that the payoff
of the credit-risky bond is a function of XT and the value of the information
process associated with XU at the bond’s maturity T , that is

HT = H (XT , ξTU) . (4.6)
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Due to the independence property of the information processes, the price of
the credit-risky discount bond can be written as follows:

BtT =
EP
[
EP
[
MTf(T, ξTU)H(XT , ξTU)

∣∣ ξtT ] ∣∣ ξtU]
Mtf(t, ξtU)

. (4.7)

By applying the conditional form of Bayes formula, we change the measure
to the bridge measure B with respect to which the outer expectation is taken:

BtT =
EB
[
EP
[
f(T, ξTU)H(XT , ξTU)

∣∣ ξtT ] ∣∣ ξtU]
f(t, ξtU)

. (4.8)

At this stage, we define a random variable YtT by

YtT = ξTU −
U − T
U − t

ξtU . (4.9)

Since {ξtU} is a Brownian bridge under B, we know that YtT is a Gaussian
random variable with zero mean and variance

VarB[YtT ] =
(T − t)(U − T )

(U − t)
. (4.10)

Next we introduce a standard Gaussian random variable Y and we write
YtT = νtTY , where ν2tT = VarB[YtT ]. We can now express the price of the
defaultable discount bond in terms of Y as

BtT =
EB
[
EP
[
f
(
T, νtTY + U−T

U−t ξtU
)
H
(
XT , νtTY + U−T

U−t ξtU
) ∣∣ ξtT ] ∣∣ ξtU]

f(t, ξtU)
.

(4.11)
Since f(T, Y, ξtU) in the numerator does not depend on ξtT , we can write

BtT =
EB
[
f
(
T, νtTY + U−T

U−t ξtU
)
EP
[
H
(
XT , νtTY + U−T

U−t ξtU
) ∣∣ ξtT ] ∣∣ ξtU]

f(t, ξtU)
.

(4.12)

Because both Y and ξtU are independent of ξtT , the inner conditional expec-
tation in this expression can be carried out explicitly. We obtain

BtT =
EB
[
f
(
T, νtTY + U−T

U−t ξtU
)∑n

i=0 πitH
(
xi, νtTY + U−T

U−t ξtU
) ∣∣ ξtU]

f(t, ξtU)
,

(4.13)

8



where πit denotes the conditional density of XT , given by

πit = P
[
XT = xi

∣∣ ξtT ] =
pi exp

[
T
T−t

(
σ2xiξtT − 1

2
σ2
2x

2
i t
)]∑n

i=0 pi exp
[
T
T−t

(
σ2xiξtT − 1

2
σ2
2x

2
i t
)] . (4.14)

Since the random variable ξtU , appearing in the arguments of f(T, Y, ξtU)
and of H(Y, ξtU) in (4.13), is measurable at time t and Y is independent of
the conditioning random variable ξtU , the conditional expectation reduces to
a Gaussian integral over the range of the random variable Y :

BtT =
1

f(t, ξtU)

n∑
i=0

πit

∫ ∞
−∞

f

(
T, νtTy +

U − T
U − t

ξtU

)
H

(
xi, νtTy +

U − T
U − t

ξtU

)
× 1√

2π
exp

(
−1

2
y2
)

dy. (4.15)

In the case where the payoff is HT = XT , by using the expression for
the sovereign bond given by equation (2.8), we can write the price of the
defaultable bond as:

BtT = PtT

n∑
i=0

xi πit, (4.16)

where πit is defined by equation (4.14). For n = 1, the defaultable bond
pays a principal of x1 units of currency, if there is no default, and x0 units of
currency in the event of default; we call such an instrument a “binary bond”.
In particular, if x0 = 0 and x1 = 1, we call such a bond “digital bond”. The
price of the digital bond is

BtT = PtTπ1t. (4.17)

We can generalize the above situation slightly by considering a pricing
kernel {πt} of the form

πt = Mt f(t, ξtT , ξtU). (4.18)

By following the technique in equations (4.5) to (4.15), and by using the fact
that at time T we have ξTT = σ2XTT , we can show that

BtT =
1

f(t, ξtT , ξtU)

n∑
i=0

πit

∫ ∞
−∞

f

(
T, σ2xiT, νtTy +

U − T
U − t

ξtU

)
× H

(
xi, νtTy +

U − T
U − t

ξtU

)
1√
2π

exp
(
−1

2
y2
)

dy.

(4.19)
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Here we model the situation in which the pricing kernel in the economy is
not only a function of information at that time about the macroeconomic
variable, but is also dependent on noisy information about potential default
of the firm leaked in the market through {ξtT}. This is relevant in light of
events occurring in financial markets where defaults by big companies can
affect interest rates and the market price of risk.

A measure for the excess return provided by a defaultable bond over the
return on a sovereign bond with the same maturity, is the bond yield spread.
This measure is given by the difference between the yields-to-maturity on
the defaultable bond and the sovereign bond, see for example Bielecki &
Rutkowski (2002). That is:

stT = ydtT − ytT (4.20)

for t < T , where ytT and ydtT are the yields associated with the sovereign
bond and the credit-risky bond, respectively. We have:

stT =
1

T − t
(lnPtT − lnBtT ) . (4.21)

In particular, the bond yield spread between a digital bond and the sovereign
bond is given by

stT = − 1

T − t
ln π1t. (4.22)

For bonds with payoff HT = XT , we see that the information related to the
macroeconomic factor XU does not influence the spread. Thus for 0 ≤ t < T ,
the spread at time t depends only on the information concerning potential
default. In this case, the bond yield spread between the defaultable discount
bond and the sovereign bond with stochastic interest rates is identical to that
in the deterministic interest rate setting treated in Brody et al. (2007).

Figure 1 shows the bond yield spreads between a digital bond, with all
trajectories conditional on the outcome that the bond does not default, and a
sovereign bond. The maturities of the bonds are taken to be T = 2 years and
the effect of different values of the information flow parameter is shown by
setting σ2 = 0.04, σ2 = 0.2 and σ2 = 1, σ2 = 5. Since the paths of the digital
bond are conditional on the outcome that default does not occur, we observe
that the bond yield spreads must eventually drop to zero. The parameter σ2
controls the magnitude of genuine information about potential default that
is available to bondholders. For low values of σ2, the bondholder is, so to
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speak,“in the dark” about the outcome until very close to maturity; while for
higher values of σ2, the bondholder is better informed. As σ2 increases, the
noisiness in the bond yield spreads, which is indicative of the bondholder’s
uncertainty of the outcome, becomes less pronounced near maturity. Fur-
thermore, if the bondholders in the market were well-informed, they would
require a smaller premium for buying a credit-risky bond since its behaviour
would be similar to that of the sovereign bond; this is illustrated in Figure
1. It is worth noting that in the information-based asset pricing approach,
an increased level of genuine information available to investors about their
exposure, is manifestly equivalent to a sort of “securitisation” of the risky
investments.

The case for which the paths of the digital bond are conditional on default
can also be simulated. Here, the effect of increasing the information flow rate
parameter σ2 is similar. However, the bondholder now requires an infinitely
high reward for buying a bond that will be worthless at maturity. Thus the
bond-yield spread grows to infinity at maturity.

Figure 1: Bond yield spread between digital bond (with all trajectories con-
ditional on no default) and sovereign bond. The bonds have maturity T = 2.
We use (i) σ2 = 0.04, (ii) σ2 = 0.2, (iii) σ2 = 1, and (iv) σ2 = 5.
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5 Credit-risky bonds with continuous market-

dependent recovery

Let us consider the case in which the credit-risky bond pays HT = XT where
XT is a discrete random variable which takes values {x0, x1, . . . , xn} ∈ [0, 1]
with a priori probabilities {p0, p1, . . . , pn}, where xn > xn−1 > . . . > x1 >
x0. Such a payoff spectrum is a model for random recovery where at bond
maturity one out of a discrete number of recovery levels may be realised. We
can also consider credit-risky bonds with continuous random recovery in the
event of default. In doing so, we introduce the notion of “market-dependent
recovery”. Suppose that the payoff of the defaultable bond is given by

HT = XT + (1−XT )R(ξTU), (5.1)

where XT takes the values {0, 1} with a priori probabilities {p0, p1}. The
recovery level R : R → [0, 1) is dependent on the information at time T
about the macroeconomic factor XU . In this case, if the credit-risky bond
defaults at maturity T , the recovery level of the bond depends on the state
of the economy at time U that is perceived in the market at time T . In
other words, if the sentiment in the market at time T is that the economy
will have good times ahead, then a firm in a state of default at T may have
better chances to raise more capital from liquidation (or restructuring), thus
increasing the level of recovery of the issued bond. We can price the cash
flow (5.1) by applying equation (4.15), with n = 1, x0 = 0 and x1 = 1. The
result is:

BtT = PtTπ1t + π0t
1

f(t, ξtU)

∫ ∞
−∞

f

(
T, νtTy +

U − T
U − t

ξtU

)
×R

(
νtTy +

U − T
U − t

ξtU

)
1√
2π

exp
(
−1

2
y2
)

dy,

(5.2)

where PtT is given by equation (2.8). As an example, suppose that we choose
the recovery function to be of the form R(z) = 1− exp (−z2). In this case, it
is possible to have zero recovery when the value of the information process
at time t is ξtU = −(U − t)/(U − T ) νtTY , thereby capturing the worst-case
scenario in which bondholders lose their entire investment in the event of
default.
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The latter consideration is apt in the situation where the extent of re-
covery is determined by how difficult it is for the firm to raise capital by
liquidating its assets, i.e. the exposure of the firm to the general economic
environment. However, this model does not say much about how the quality
of the management of the firm may influence recovery in the event of default.
This observation brings us to another model of recovery. Default of a firm
may be triggered by poor internal practices and/or tough economic condi-
tions. We now structure recovery by specifying the payoff of the credit risky
bond by

HT = XC [XE + (1−XE)RE] + (1−XC) [XERC + (1−XE)RCE] , (5.3)

where XC and XE are random variables taking values in {0, 1} with a priori
probabilities {pC0 , pC1 } and {pE0 , pE1 }, respectively. We define XC and XE to
be indicators of good management of the company and a strong economy,
respectively. We set RC to be a continuous random variable assuming values
in the interval [0, 1). We take RE to be a function of ξTU , and RCE to be
a function of ξTU and RC , where both RE and RCE assume values in the
interval [0, 1).

The payoff in equation (5.3) covers the following situations: First, we
suppose that despite good overall management of the firm, default is triggered
as a result of a depressed economy. Here, XC = 1 and XE = 0 which implies
that HT = RE. Therefore the recovery is dependent on the state of the
economy at time T and thus, how difficult it has been for the firm to raise
funds. It is also possible that a firm can default in otherwise favourable
economic conditions, perhaps due to the management’s negligence. In this
case we have XE = 1 and XC = 0. Thus HT = RC and the amount recovered
is dependent on the level of mismanagement of the firm. Finally we have
the worst case in which a firm is poorly managed, XC = 0, and difficult
economic times prevail, XE = 0. Recovery is given by the amountHT = RCE,
which is dependent on both, the extent of mismanagement of the firm and
how much capital the firm can raise in the face of an economic downturn.
The particular payoff structure (5.3) is used in Macrina (2006) to model the
dependence structure between two credit-risky discount bonds that share
market factors in common. Further investigation may include the situation
where one models such dependence structures for bonds subject to stochastic
interest rates and featuring recovery functions of the form (5.3).
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6 Call option price process

Let {Cst}0≤s≤t<T be the price process of a European-style call option with
maturity t and strike K, written on a defaultable bond with price process
{BtT}. The price of such an option at time s is given by

Cst =
1

πs
EP [πt (BtT −K)+ | Fs

]
. (6.1)

We recall that if the payoff of the credit-risky bond is HT = XT , then the
price of the bond at time t is

BtT = PtT

n∑
i=0

πit xi, (6.2)

where PtT is given by equation (2.8) and the conditional density πit is de-
fined in equation (4.14). The filtration {Ft} is generated by the information
processes {ξtT} and {ξtU}, and the pricing kernel {πt} is of the form

πt = Mt f(t, ξtU), (6.3)

with {Mt} satisfying equation (4.3). Then the price of the option at time s
is expressed by

Cst =
1

Ms f(s, ξsU)
EP [Mt f(t, ξtU) (BtT −K)+ | ξsT , ξsU

]
. (6.4)

We recall that the two information processes are independent, and use the
martingale {Mt} to change the measure as follows:

Cst =
1

f(s, ξsU)
EBU

[
f(t, ξtU)EP

[(
PtT

n∑
i=0

xi πit −K

)+ ∣∣∣∣ ξsT
] ∣∣∣∣ ξsU

]
.

(6.5)
We first simplify the inner conditional expectation by following an analogous
calculation to that in Brody et al. (2007), Section 9. The difference is that the
discount factor {PtT} in (6.5) is stochastic. However since {PtT} is driven by
{ξtU}, it is unaffected by the conditioning of the inner expectation, allowing
us to use the result in Brody et al. (2007). Let us introduce {Φt} by

Φt =
n∑
i=0

pit, (6.6)
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where pit = pi exp
[
T
T−t

(
σ2xi ξtT − 1

2
σ2
2 x

2
i t
)]

. We write the inner expectation
as

EP

[(
PtT

n∑
i=0

xi πit −K

)+ ∣∣∣∣ ξsT
]

= EP

[
1

Φt

(
n∑
i=0

(PtT xi −K) pit

)+ ∣∣∣∣ ξsT
]
.

(6.7)
The process {Φ−1t } induces a change of measure from P to the bridge measure
BT , under which {ξsT} is a Brownian bridge; this allows us to use Bayes
formula to express the expectation as follows:

EP

[
1

Φt

(
n∑
i=0

(PtT xi −K) pit

)+ ∣∣∣∣ ξsT
]

=
1

Φs

EBT

[(
n∑
i=0

(PtT xi −K) pit

)+ ∣∣∣∣ ξsT
]
.

(6.8)

In order to compute the expectation we introduce the Gaussian random vari-
able Zst, defined by

Zst =
ξtT
T − t

− ξsT
T − s

, (6.9)

which is independent of {ξuT}0≤u≤s. It is possible to find the critical value,
for which the argument of the expectation vanishes, in closed form if it is
assumed that the defaultable bond is binary. So, for n = 1, the critical value
z∗ is given by

z∗ =
ln
[
π0s(K−x0PtT )
π1s(x1PtT−K)

]
+ 1

2
σ2
2 (x21 − x20)α2

st T
2

σ2 (x1 − x0)αst T
, (6.10)

where α2
st = VarBT [Zst]. The computation of the expectation amounts to

two Gaussian integrals reducing to cumulative normal distribution functions,
which we denote by N [x]. We obtain the following:

EP

(PtT 1∑
i=0

xi πit −K

)+ ∣∣∣∣ ξsT
 =π1s(PtTx1 −K)N [d+s ]

− π0s(K − PtTx0)N [d−s ], (6.11)
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where

d±s =
ln
[
π1s(x1PtT−K)
π0s(K−x0PtT )

]
± 1

2
σ2
2 (x1 − x0)2 α2

st T
2

σ2 (x1 − x0)αst T
. (6.12)

We can now insert this intermediate result into equation (6.5) for n = 1; we
have

Cst =
1

f(s, ξsU)
EBU

[
f(t, ξtU)

[
π1s(PtTx1 −K)N [d+s ]

−π0s(K − PtTx0)N [d−s ]
]
| ξsU

]
. (6.13)

We emphasize that {PtT} is given by a function P (t, T, ξtU) and thus is
affected by the conditioning with respect to ξsU . To compute the expectation
in equation (6.13), we use the same technique as in Section 4 and introduce
the Gaussian random variable Yst, defined by

Yst = ξtU −
U − t
U − s

ξsU , (6.14)

with mean zero and variance ν2st = VarBU [Yst]. Thus, as shown in the previous
sections, the outer conditional expectation reduces to a Gaussian integral:

Cst =
1

f(s, ξsU)

∫ ∞
−∞

f

(
t, νsty −

U − t
U − s

ξsU

)
1√
2π

exp
(
−1

2
y2
)

×
[
π1s

(
P

(
t, T, νsty −

U − t
U − s

ξsU

)
x1 −K

)
N [d+s (y)]

−π0s
(
K − P

(
t, T, νsty −

U − t
U − s

ξsU

)
x0

)
N [d−s (y)]

]
dy.

(6.15)

Therefore we obtain a semi-analytical pricing formula for a call option on a
defaultable bond in a stochastic interest rate setting. The integral in equation
(6.15) can be evaluated using numerical methods once the function f(t, x) is
specified.

7 Hybrid securities

So far we have focused on the pricing of credit-risky bonds with stochas-
tic discounting. The formalism presented in the above sections can also be
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applied to price other types of securities. In particular, as an example of a
hybrid security, we show how to price an inflation-linked credit-risky discount
bond. While such a security has inherent credit risk, it offers bondholders
protection against inflation. This application also gives us the opportunity
to extend the thus far presented pricing models to the case where n inde-
pendent information processes are employed. We shall call such models,
“multi-dimensional pricing models”.

In what follows, we consider three independent information processes,
{ξtT}, {ξtU1} and {ξtU2}, defined by

ξtT = σ tXT + βtT , ξtU1 = σ1 tXU1 + βtU1 , ξtU2 = σ2 tXU2 + βtU2 , (7.1)

where 0 ≤ t ≤ T < U1 ≤ U2. The positive random variable XT is discrete,
while XU1 , XU2 are assumed to be continuous. The market filtration {Ft} is
generated jointly by the three information processes. Let {Ct}t≥0 be a price
level process, e.g., the process of the consumer price index. The price QtT , at
time t, of an inflation-linked discount bond that pays CT units of a currency
at maturity T , is

QtT =
EP [πTCT | Ft]

πt
. (7.2)

We now make use of the “foreign exchange analogy” [see, e.g., Brigo & Mer-
curio (2006), Brody et al. (2008), Hinnerich (2008), Hughston (1998), Mer-
curio (2005)] in which the nominal pricing kernel {πt}, and the real pricing
kernel {πRt }, are viewed as being associated with “domestic” and “foreign”
economies respectively, with the price level process {Ct}, acting as an “ex-
change rate”. The process {Ct} is expressed by the following ratio:

Ct =
πRt
πt
. (7.3)

For further details about the modelling of the real and the nominal pricing
kernels, and the pricing of inflation-linked assets, we refer to Hughston &
Macrina (2009). In what follows, we make use of the method proposed in
Hughston & Macrina (2009) to price an example of an inflation-linked credit-
risky discount bond (ILCR) that, at maturity T , pays a cash flow HT =
CTH(XT , ξTU1 , ξTU2). The price HtT at time t ≤ T of such a bond is

HtT =
1

πt
EP [πRT H(XT , ξTU1 , ξTU2)

∣∣Ft] , (7.4)
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where we have used relation (7.3). We choose to model the real and the
nominal pricing kernels by

πt = M
(1)
t M

(2)
t f(t, ξtU1 , ξtU2) and πRt = M

(1)
t M

(2)
t g(t, ξtU1 , ξtU2), (7.5)

where f(t, x, y) and g(t, x, y) are two functions of three variables. The process

{M (i)
t }0≤t≤T<Ui for i = 1, 2 is a martingale that induces a change of measure

to the bridge measure BUi . We recall that the information process {ξtUi} has
the law of a Brownian bridge under the measure BUi . In order to work out
the expectation in (7.4) with the pricing kernel models introduced in (7.5),
we can also define a process {Mt} by

Mt = M
(1)
t M

(2)
t , (7.6)

where 0 ≤ t ≤ T < U1 ≤ U2. Since the information processes {ξtU1} and
{ξtU2} are independent, {Mt} is itself an ({Ft},P)-martingale, with M0 = 1
and EP[Mt] = 1. Thus {Mt} can be used to effect a change of measure from
P to a bridge measure B, under which the random variables ξtU1 and ξtU2

have the distribution of a Brownian bridge for 0 ≤ t ≤ T < U1. This can be
verified as follows: {ξtU1} is a Gaussian process with mean

EB[ξtU1 ] = EB1

[
Mt

M
(1)
t

ξtU1

]
= EB1

[
M

(2)
t

]
EB1 [ξtU1 ] = 0, (7.7)

due to the independence property of {ξtU1} and {ξtU2}. Furthermore, for
0 ≤ s ≤ t ≤ T < U1, the covariance is given by

EB[ξsU1ξtU1 ] = EB1

[
M

(2)
t

]
EB1 [ξsU1ξtU1 ] = EP[Mt]EB1 [ξsU1ξtU1 ] =

s(U1 − t)
U1

.

(7.8)
The same can be shown for {ξtU2}.

By use of {Mt} and the Bayes formula, and the fact that {ξtT}, {ξtU1}
and {ξtU2} are {Ft}-Markov processes, equation (7.4) reduces to

HtT =

1

f(t, ξtU1 , ξtU2)
EB [EP [g(T, ξTU1 , ξTU2)H (XT , ξTU1 , ξTU2)

∣∣ ξtT ] ∣∣ ξtU1 , ξtU2

]
.

(7.9)
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Next we repeat an analogous calculation to the one leading from equation
(4.8) to expression (4.15). For the ILCR discount bond under consideration,
we obtain

HtT =
1

f(t, ξtU1 , ξtU2)

n∑
i=0

∫ ∞
−∞

∫ ∞
−∞

g (T, z(y1), z(y2))H (xi, z(y1), z(y2))πit

× 1
2π

exp
[
−1

2

(
y21 + y22

)]
dy1 dy2. (7.10)

Here the conditional density πit is given by equation (4.14) and, z(yk) is
defined for k = 1, 2 by

z(yk) = ν
(k)
tT yk +

Uk − T
Uk − t

ξtUk , where ν
(k)
tT =

√
(T − t)(Uk − T )

Uk − t
. (7.11)

In the special case where HT = XT , the expression for the price at time t of
the ILCR discount bond simplifies to

HtT = QtT

n∑
i=1

πit xi. (7.12)

Here QtT is the price of an inflation-linked discount bond that depends on the
information processes {ξtU1} and {ξtU2}. In particular, a formula similar to
(6.15) can be derived for the price of a European-style call option written on
an ILCR bond with price process given by (7.12) with n = 1. We note here
that similar pricing formulae can be derived for credit-risky discount bonds
traded in a foreign currency. In this case the real pricing kernel, and thus the
real interest rate, is associated with the pricing kernel denominated in the
foreign currency. On the other hand, the nominal pricing kernel is associated
with the domestic currency, thus giving rise to the domestic interest rate.

8 Credit-risky coupon bonds

Let {Tk}k=1,...,n be a collection of fixed dates where 0 ≤ t ≤ T1 ≤ . . . ≤ Tn.
We consider the valuation of a credit-risky bond with coupon payment HTk

at time Tk and maturity Tn. The bond is in a state of default as soon as
the first coupon payment does not occur. We denote the price process of
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the coupon bond by {BtTn} and introduce n independent random variables
XT1 , . . . , XTn that are applied to construct the cash flows HTk given by

HTk = c
k∏
j=1

XTj , (8.1)

for k = 1, . . . , n− 1, and for k = n by

HTn = (c + p)
n∏
j=1

XTj . (8.2)

Here c and p denote the coupon and principal payment, respectively, and
the random variables {XTk}k=1,...,n take values in {0, 1}. With each factor
XTk we associate an information process {ξtTk} defined by

ξtTk = σk tXTk + βtTk . (8.3)

Furthermore we introduce another information process {ξtU} given by

ξtU = σ tXU + βtU (0 ≤ t ≤ Tn < U) (8.4)

that we reserve for the modelling of the pricing kernel. The market filtra-
tion {Ft} is generated jointly by the n + 1 information processes, that is
{ξtTk}k=1,...,n and {ξtU}. Following the method in Section 4, we model the
pricing kernel {πt} by

πt = Mt f(t, ξtU), (8.5)

where the density martingale {Mt} which induces a change of measure to the
bridge measure satisfies equation (2.3). Armed with these ingredients we are
now in the position to write down the formula for the price BtTn at time t of
the credit-risky coupon bond:

BtTn =
1

πt

n∑
k=1

EP [πTk HTk

∣∣ ξtT1 , . . . , ξtTk , ξtU] , (8.6)

=
1

Mt f(t, ξtU)

n∑
k=1

EP

[
MTk f(Tk, ξTkU) c

k∏
j=1

XTj

∣∣∣∣ ξtT1 , . . . , ξtTk , ξtU
]

+
1

Mt f(t, ξtU)
EP

[
MTn f(Tn, ξTnU)p

n∏
j=1

XTj

∣∣∣∣ ξtT1 , . . . , ξtTn , ξtU
]
.
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To compute the expectation, we use the approach presented in Section 4.
Since the pricing kernel and the cash flow random variables HTk , k = 1, . . . , n,
are independent, we conclude that the expression for the bond price BtTn

simplifies to

BtTn = c
n∑
k=1

PtTkE
P

[
k∏
j=1

XTj

∣∣∣∣ ξtT1 , . . . , ξtTk
]

+ pPtTnEP

[
n∏
j=1

XTj

∣∣∣∣ ξtT1 , . . . , ξtTn
]
, (8.7)

where the discount bond system {PtTk} is given by

PtTk =
1

f(t, ξtU)

∫ ∞
−∞

f

(
Tk, νtTkyk +

U − Tk
Tk − t

ξtU

)
1√
2π

exp
(
−1

2
y2k
)

dyk,

(8.8)
and ν2tTk = (Tk − t)(U − Tk)/(U − t). We note that formula (8.6) can be
simplified further since the expectations therein can be worked out explicitly
due to the independence property of the information processes. We have,

EP

[
k∏
j=1

XTj

∣∣∣∣ ξtT1 , . . . , ξtTk
]

=
k∏
j=1

π
(j)
1t , (8.9)

where the conditional density π
(j)
1t at time t that the random variable XTj

takes value one is given by

π
(j)
1t =

p
(j)
1 exp

[
Tj
Tj−t

(
σj ξtTj − 1

2
σ2
j t
)]

p
(j)
0 + p

(j)
1 exp

[
Tj
Tj−t

(
σj ξtTj − 1

2
σ2
j t
)] . (8.10)

Here p
(j)
1 = P[XTj = 1]. Thus, the price BtTn at time t of the credit-risky

coupon bond is given by

BtTn =
n∑
k=1

cPtTk

k∏
j=1

π
(j)
1t + pPtTn

n∏
j=1

π
(j)
1t . (8.11)

At this stage, we observe that the price of a credit-risky coupon bond has
been derived for the case in which the cash flow functions HTk , k = 1, . . . , n,
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do not depend on the information available at time Tk about the macroe-
conomic factor XU , thereby leading to independence between the discount
bond system and the credit-risky component of the bond. This is generalized
in a straightforward manner by considering cash flow functions of the form

HTk = H(XT1 , . . . , XTk , ξTkU), (8.12)

for k = 1, . . . , n. The valuation of such cash flows at time t may include the
case treated in (4.15), however endowed with coupon payments.

As an illustration we consider the situation in which the bond pays a
coupon c at Tk, k = 1, . . . , n, and the principal amount p at Tn. Upon
default, market-dependent recovery given by Rk(ξTkU) (as a percentage of
coupon plus principal) is paid at Tk. For simplicity, we consider n = 2. In
this case, the random cash flows of the bond are given by

HT1 = cXT1 + (c + p)R1(ξT1U)(1−XT1),

HT2 = (c + p)XT1 [XT2 +R2(ξT2U)(1−XT2)] .

By making use of the technique presented in Section 5, we can express the
price of the credit-risky coupon bond by

BtT2 = cPtT1π
(1)
1t + (c + p)PtT2π

(1)
1t π

(2)
1t

+ (c + p)

[
π
(1)
0 t

1

f(t, ξtU)

∫ ∞
−∞

f (T1,m(y1)) R (m(y1))
1√
2π

exp
(
−1

2
y21
)

dy1

+π
(1)
1t π

(2)
0 t

1

f(t, ξtU)

∫ ∞
−∞

f (T2,m(y2)) R (m(y2))
1√
2π

exp
(
−1

2
y22
)

dy2

]
,

where, for k = 1, 2, we define

m(yk) = νtTk yk +
U − Tk
U − t

ξtU , νtTk =

√
(Tk − t)(U − Tk)

U − t
. (8.13)

9 Credit-sensitive pricing kernels

We fix the dates T1 and T2, where T1 < T2, to which we associate the economic
factors XT1 and XT2 respectively. The first factor is identified with a debt
payment at time T1. For example XT1 could be a coupon payment that a
country is obliged to make at time T1. The second factor, XT2 , could be
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identified with the measured growth (possibly negative) in the employment
level in the same country at time T2 since the last published figure. In such an
economy, with two random factors only, it is plausible that the prices of the
treasuries fluctuate according to the noisy information market participants
will have about the outcome of XT1 and XT2 . Thus the price of a sovereign
bond with maturity T , where 0 ≤ t ≤ T < T1 < T2, is given by:

PtT =
1

f(t, ξtT1 , ξtT2)

∫ ∞
−∞

∫ ∞
−∞

f

(
T, ν

(1)
tT y1 +

T1 − T
T1 − t

ξtT1 , ν
(2)
tT y2 +

T2 − T
T2 − t

ξtT2

)
× 1

2π
exp

[
−1

2

(
y21 + y22

)]
dy2 dy1. (9.1)

In particular, the resulting interest rate process in this model is subject to
the information processes {ξtT1} and {ξtT2} making it fluctuate according to
information (both genuine and misleading) about the economy’s factors XT1

and XT2 .

We now ask the following question: What type of model should one con-
sider if the goal is to model a pricing kernel that is sensitive to an accu-
mulation of losses? Or in other words, how should one model the nominal
short rate of interest and the market price of risk processes if both react to
the amount of debt accumulated by a country over a finite period of time?

To treat this question we need to introduce a model for an accumulation
process. We shall adopt the method developed in Brody et al. (2008b), where
the idea of a gamma bridge information process is introduced. It turns out
that the use of such cumulative process is suitable to provide an answer to
the question above. In fact, if in the example above the factor XT1 is iden-
tified with the total accumulated debt at time T1, then the gamma bridge
information process {ξγtT1}, defined by

ξγtT1 = XT1 γtT1 (9.2)

where {γtT1}0≤t≤T1 is a gamma bridge process that is independent of XT1 ,
measures the level of the accumulated debt as of time t, 0 ≤ t ≤ T1. If the
market filtration is generated, among other information processes, also by
the debt accumulation process, then asset prices that are calculated by use
of this filtration, will fluctuate according to the updated information about
the level of the accumulated debt of a country. We now work out the price
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of a sovereign bond for which the price process reacts both to Brownian and
gamma information.

We consider the time line 0 ≤ t ≤ T < T1 < T2 < ∞. Time T is
the maturity date of a sovereign bond with unit payoff and price process
{PtT}0≤t≤T . With the date T1 we associate the factor XT1 and with the date
T2 the factor XT2 . The positive random variable XT1 is independent of XT2 ,
and both may be discrete or continuous random variables. Then we introduce
the following information processes:

ξγtT1 = XT1 γtT1 , ξtT2 = σ tXT2 + βtT2 . (9.3)

The process {ξγtT1} is what is called a gamma bridge information process,
and it is taken to be independent of {ξtT2}. The properties of the gamma
bridge process {γtT1} are described in great detail in Brody et al. (2008b).
We assume that the market filtration {Ft}t≥0 is generated jointly by {ξγtT1}
and {ξtT2}.

In this setting, the pricing kernel reacts to the updated information about
the level of accumulated debt and, for the sake of example, also to noisy
information about the likely level of employment growth at T2. Thus we
propose the following model for the pricing kernel:

πt = Mt f
(
t, ξγtT1 , ξtT2

)
(9.4)

where the process {Mt} is the change-of-measure martingale from the prob-
ability measure P to the Brownian bridge measure B, satisfying

dMt = −σ T2
T2 − t

E [XT2 | ξtT2 ]Mt dWt. (9.5)

Here {Wt} is an ({Ft},P)-Brownian motion. The formula for the price of
the sovereign bond is given by

PtT =
EP
[
MTf

(
T, ξγTT1 , ξTT2

) ∣∣ ξγtT1 , ξtT2]
Mt f

(
t, ξγtT1 , ξtT2

) . (9.6)

We make again use of the Markov property and the independence property
of the information processes, together with the change of measure to express
the bond price by

PtT =
EP
γ

[
EB
[
f
(
T, ξγTT1 , ξTT2

) ∣∣ ξtT2] ∣∣ ξγtT1]
f
(
t, ξγtT1 , ξtT2

) . (9.7)
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Here, the expectations EP
γ and EB are operators that apply according to

the dependence of their argument on the random variables ξγTT1 and ξTT2
respectively. This is a direct consequence of the independence of {ξγtT1} and
{ξtT2}. We now use the technique adopted in the preceding sections, where
we introduce the Gaussian random variable YtT with mean zero and standard
deviation νtT = (T − t)(T2−T )/(T2− t), and the standard Gaussian random
variable Y . By following the approach taken in Section 4, we can compute
the inner expectation explicitly since the conditional expectation reduces to a
Gaussian integral over the range of the random variable Y . Thus we obtain:

PtT =

∫ ∞
−∞

EP
γ

[
f
(
T, ξγTT1 , νtTy + T2−T

T2−t ξtT2

) ∣∣ ξγtT1]
f
(
t, ξγtT1 , ξtT2

) 1√
2π

exp
(
−1

2
y2
)

dy.

(9.8)
The feature of this model which sets it apart from those considered in pre-
ceding sections, is the fact that we have to calculate a gamma expectation
EP
γ . In this case, we cannot adopt the “usual” change-of-measure method we

have used thus far. To this end we refer to the work in Brody et al. (2008b),
where the price process of the Arrow-Debreu security for the case that it
is driven by a gamma bridge information process is derived. We use this
result and obtain for the Arrow-Debreu density process {AtT} the following
expression:

AtT (yγ) = EP [δ(ξγTT1 − yγ) ∣∣ ξγtT1] (9.9)

=
1{yγ > ξγtT1} (yγ − ξγtT1)

m(T−t)−1

B[m(T − t),m(T1 − T )]

∫∞
yγ
p(x)x1−mT1(x− yγ)m(T1−T )−1dx∫∞

ξγtT1
p(z) z1−mT1(z − ξγtT1)m(T1−t)−1dz

,

(9.10)

where δ(y) is the Dirac distribution and p(x) is the a priori probability
density of XT1 . Here B[a, b] is the beta function. Following Macrina (2006),
Section 3.4, we consider a function h(ξγTT1) of the random variable ξγTT1 and
note that for a suitable function h we may write:

EP
γ

[
h
(
ξγTT1

) ∣∣ ξγtT1] =

∫ ∞
−∞

EP
γ

[
δ
(
ξγTT1 − yγ

) ∣∣ ξγtT1]h(yγ) dyγ. (9.11)

Next we see that the conditional expectation under the integral is the Arrow-
Debreu density (9.9) for which there is the closed-form expression (9.10).
We go back to equation (9.8) and observe that the conditional expectation
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under the integral is of the form EP
γ

[
h
(
ξγTT1

) ∣∣ξγtT1]. Thus we can use (9.11)
to calculate the gamma expectation in (9.8). We write:

EP
γ

[
f

(
T, ξγTT1 , νtT y +

T2 − T
T2 − t

ξtT2

) ∣∣∣ ξγtT1]
=

∫ ∞
−∞

AtT (yγ) f

(
T, yγ, νtT y +

T2 − T
T2 − t

ξtT2

)
dyγ. (9.12)

We are now in the position to write down the bond price (9.8) in explicit
form by using equation (9.12). We thus obtain:

PtT =

∫ ∞
−∞

∫ ∞
−∞

AtT (yγ) f
(
T, yγ, νtT y + T2−T

T2−t ξtT2

)
f
(
t, ξγtT1 , ξtT2

) 1√
2π

exp
(
−1

2
y2
)

dyγ dy.

(9.13)
The bond price can be written more concisely by defining

f̃
(
T, t, ξγtT1 , ξtT2

)
=

∫ ∞
−∞

∫ ∞
−∞

AtT (yγ) f

(
T, yγ, νtTy +

T2 − T
T2 − t

ξtT2

)
× 1√

2π
exp

(
−1

2
y2
)

dyγ dy. (9.14)

We thus have:

PtT =
f̃
(
T, t, ξγtT1 , ξtT2

)
f
(
t, ξγtT1 , ξtT2

) . (9.15)

Future investigation in this line of research incorporates the constructions
of processes {f(t, ξγtT1 , ξtT2)} such that the resulting pricing kernel (9.4) is
an ({Ft},P)-supermartingale. The appropriate choice of f(t, x, y) depends
also on a suitable description of the economic interplay of the information
flows modelled by {ξγtT1} and {ξtT2}. One might begin with looking at the
situation in which the price of the bond depreciates due to a rising debt
level and a higher level of employment. We conclude by observing that the
gamma bridge information process may also be considered for the modelling
of credit-risky bonds, where default is triggered by the firm’s accumulated
debt exceeding a specified threshold at bond maturity. Random recovery
models may be constructed using the technique in Section 5.
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