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Abstract

We introduce a new principle for model selection in regression and classifica-
tion. Many regression models are controlled by some smoothness or flexibility
or complexity parameter c, e.g. the number of neighbors to be averaged over
in k nearest neighbor (kNN) regression or the polynomial degree in regression
with polynomials. Let f̂ c

D be the (best) regressor of complexity c on data D.
A more flexible regressor can fit more data D′ well than a more rigid one. If
something (here small loss) is easy to achieve it’s typically worth less. We
define the loss rank of f̂ c

D as the number of other (fictitious) data D′ that

are fitted better by f̂ c
D′ than D is fitted by f̂ c

D. We suggest selecting the
model complexity c that has minimal loss rank (LoRP). Unlike most penal-
ized maximum likelihood variants (AIC,BIC,MDL), LoRP only depends on
the regression functions and the loss function. It works without a stochastic
noise model, and is directly applicable to any non-parametric regressor, like
kNN. In this paper we formalize, discuss, and motivate LoRP, study it for
specific regression problems, in particular linear ones, and compare it to other
model selection schemes.
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1 Introduction

Regression. Consider a regression or classification problem in which we want to de-
termine the functional relationship yi≈ftrue(xi) from data D={(x1,y1),...,(xn,yn)}∈
D, i.e. we seek a function fD such that fD(x) is close to the unknown ftrue(x) for all
x. One may define regressor fD directly, e.g. ‘average the y values of the k nearest
neighbors (kNN) of x in D’, or select the f from a class of functions F that has
smallest (training) error on D. If the class F is not too large, e.g. the polynomials
of fixed reasonable degree d, this often works well.

Model selection. What remains is to select the right model complexity c, like k
or d. This selection cannot be based on the training error, since the more complex
the model (large d, small k) the better the fit on D (perfect for d = n and k = 1).
This problem is called overfitting, for which various remedies have been suggested:

We will not discuss empirical test set methods like cross-validation, but only
training set based methods. See e.g. [Mac92] for a comparison of cross-validation
with Bayesian model selection. Training set based model selection methods allow
using all data D for regression. The most popular ones can be regarded as penalized
versions of Maximum Likelihood (ML). In addition to the function class F , one
has to specify a sampling model P(D|f), e.g. that the yi have independent Gaus-
sian distribution with mean f(xi). ML chooses f̂ c

D =argmaxf∈Fc
P(D|f), Penalized

ML (PML) then chooses ĉ=argminc{−logP(D|f̂ c
D)+Penalty(c)}, where the penalty

depends on the used approach (MDL [Ris78], BIC [Sch78], AIC [Aka73]). In par-
ticular, modern MDL [Grü04] has sound exact foundations and works very well in
practice. All PML variants rely on a proper sampling model (which may be difficult
to establish), ignore (or at least do not tell how to incorporate) a potentially given
loss function, and are typically limited to (semi)parametric models.

Main idea. The main goal of the paper is to establish a criterion for selecting
the “best” model complexity c based on regressors f̂ c

D given as a black box without
insight into the origin or inner structure of f̂ c

D, that does not depend on things
often not given (like a stochastic noise model), and that exploits what is given (like
the loss function). The key observation we exploit is that large classes Fc or more
flexible regressors f̂ c

D can fit more data D′∈D well than more rigid ones, e.g. many
D′ can be fit well with high order polynomials. We define the loss rank of f̂ c

D as
the number of other (fictitious) data D′∈D that are fitted better by f c

D′ than D is
fitted by f̂ c

D, as measured by some loss function. The loss rank is large for regressors
fitting D not well and for too flexible regressors (in both cases the regressor fits
many other D′ better). The loss rank has a minimum for not too flexible regressors
which fit D not too bad. We claim that minimizing the loss rank is a suitable
model selection criterion, since it trades off the quality of fit with the flexibility of
the model. Unlike PML, our new Loss Rank Principle (LoRP) works without a
noise (stochastic sampling) model, and is directly applicable to any non-parametric
regressor, like kNN.
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Contents. In Section 2, after giving a brief introduction to regression, we formally
state LoRP for model selection. To make it applicable to real problems, we have
to generalize it to continuous spaces and regularize infinite loss ranks. In Section
3 we derive explicit expressions for the loss rank for the important class of linear
regressors, which includes kNN, polynomial, linear basis function (LBFR), Kernel,
and projective regression. In Section 4 we compare linear LoRP to Bayesian model
selection for linear regression with Gaussian noise and prior, and in Section 5 to
PML, in particular MDL, BIC, AIC, and MacKay’s [Mac92] and Hastie’s et al.
[HTF01] trace formulas for the effective dimension. In this paper we just scratch at
the surface of LoRP. Section 6 contains further considerations, to be elaborated on
in the future.

2 The Loss Rank Principle (LoRP)

After giving a brief introduction to regression, classification, model selection, over-
fitting, and some reoccurring examples (polynomial regression Example 1 and kNN
Example 2), we state our novel Loss Rank Principle for model selection. We first
state it for classification (Principle 3 for discrete values), and then generalize it
for regression (Principle 5 for continuous values), and exemplify it on two (over-
simplistic) artificial Examples 4 and 6. Thereafter we show how to regularize LoRP
for realistic regression problems.

Setup. We assume data D=(x,y) :={(x1,y1),...,(xn,yn)}∈ (X×Y)n =:D has been
observed. We think of the y as having an approximate functional dependence on
x, i.e. yi≈ftrue(xi), where ≈ means that the yi are distorted by noise or otherwise
from the unknown “true” values ftrue(xi).

Regression and classification. In regression problems Y is typically (a subset
of) the real numbers IR or some more general measurable space like IRm. In clas-
sification, Y is a finite set or at least discrete. We impose no restrictions on X .
Indeed, x will essentially be fixed and plays only a spectator role, so we will of-
ten notationally suppress dependencies on x. The goal of regression is to find a
function fD ∈F ⊂X →Y “close” to ftrue based on the past observations D. Or
phrased in another way: we are interested in a regression function r :D→F such
that ŷ :=r(x|D)≡r(D)(x)≡fD(x)≈ftrue(x) for all x∈X .

Notation. We will write (x,y) or (x0,y0) for generic data points, use vector notation
x = (x1,...,xn)⊤ and y = (y1,...,yn)⊤, and D′ = (x′,y′) for generic (fictitious) data of
size n.

Example 1 (polynomial regression) For X = Y = IR, consider the set Fd :=
{fw(x) = wdx

d−1+...w2x+w1 : w∈ IRd} of polynomials of degree d−1. Fitting the
polynomial to data D, e.g. by least squares regression, we estimate w with ŵD. The
regression function ŷ = rd(x|D) = fŵD

(x) can be written down in closed form (see
Example 9). ♦
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Example 2 (k nearest neighbors, kNN) Let Y be some vector space like IR
and X be a metric space like IRm with some (e.g. Euclidian) metric d(·,·). kNN
estimates ftrue(x) by averaging the y values of the k nearest neighbors Nk(x) of x
in D, i.e. rk(x|D)= 1

k

∑

i∈Nk(x)yi with |Nk(x)|=k such that d(x,xi)≤d(x,xj) for all
i∈Nk(x) and j 6∈Nk(x). ♦

Parametric versus non-parametric regression. Polynomial regression is an
example of parametric regression in the sense that rd(D) is the optimal function
from a family of functions Fd indexed by d<∞ real parameters (w). In contrast,
the kNN regressor rk is directly given and is not based on a finite-dimensional
family of functions. In general, r may be given either directly or be the result of an
optimization process.

Loss function. The quality of fit to the data is usually measured by a loss
function Loss(y,ŷ), where ŷi = f̂D(xi) is an estimate of yi. Often the loss is ad-
ditive: Loss(y,ŷ) =

∑n
i=1Loss(yi,ŷi). If the class F is not too large, good re-

gressors r can be found by minimizing the loss w.r.t. all f ∈ F . For instance,
rd(D)=argminf∈Fd

∑n
i=1(yi−f(xi))

2 and ŷ=rd(x|D) in Example 1.

Regression class and loss. In the following we assume a (typically countable)
class of regressors R (whatever their origin), e.g. the kNN regressors {rk : k ∈ IN}
or the least squares polynomial regressors {rd : d ∈ IN0}. Note that unlike f ∈F ,
regressors r∈R are not functions of x alone but depend on all observations D, in
particular on y. Like for functions f , we can compute the loss of each regressor
r∈R:

Lossr(D) ≡ Lossr(y|x) := Loss(y, ŷ) =
n

∑

i=1

Loss(yi, r(xi|x, y))

where ŷi = r(xi|D) in the third expression, and the last expression holds in case of
additive loss.

Overfitting. Unfortunately, minimizing Lossr w.r.t. r will typically not select the
“best” overall regressor. This is the well-known overfitting problem. In case of
polynomials, the classes Fd⊂Fd+1 are nested, hence Lossrd

is monotone decreasing
in d with Lossrn

≡ 0 perfectly fitting the data. In case of kNN, Lossrk
is more

or less an increasing function in k with perfect regression on D for k =1, since no
averaging takes place. In general, R is often indexed by a “flexibility” or smoothness
or complexity parameter, which has to be properly determined. More flexible r can
closer fit the data and hence have smaller loss, but are not necessarily better, since
they have higher variance. Clearly, too inflexible r also lead to a bad fit (“high
bias”).

Main goal. The main goal of the paper is to establish a selection criterion for the
“best” regressor r∈R

4



• based on r given as a black box that does not require insight into the origin
or inner structure of r,

• that does not depend on things often not given (like a stochastic noise model),
• that exploits what is given (like the loss function).

While for parametric (e.g. polynomial) regression, MDL and Bayesian methods work
well (effectively the number of parameters serve as complexity penalty), their use is
seriously limited for non-parametric black box r like kNN or if a stochastic/coding
model is hard to establish (see Section 4 for a detailed comparison).

Main idea: loss rank. The key observation we exploit is that a more flexible r
can fit more data D′∈D well than a more rigid one. For instance, rd can perfectly
fit all D′ for d=n, all D′ that lie on a parabola for d=3, but only linear D′ for d=2.
We consider discrete Y i.e. classification first, and fix x. y is the observed data and
y′ are fictitious others.

Instead of minimizing the unsuitable Lossr(y|x) w.r.t. r, we could ask how many
y′∈Yn lead to smaller Lossr than y. Many y′ have small loss for flexible r, and so
smallness of Lossr is less significant than if y is among very few other y′ with small
Lossr. We claim that the loss rank of y among all y′∈Yn is a suitable measure of
fit. We define the rank of y under r as the number of y′∈Yn with smaller or equal
loss than y:

Rankr(y|x) ≡ Rankr(L) := #{y′ ∈ Yn : Lossr(y
′|x) ≤ L}, (1)

where L := Lossr(y|x)

For this to make sense, we have to assume (and will later assure) that Rankr(L)<∞,
i.e. there are only finitely many y′ ∈ Yn having loss smaller than L. In a sense,
ρ=Rankr(y|x) measures how compatible y is with r; y is the ρth most compatible
with r.

Since the logarithm is a strictly monotone increasing function, we can also con-
sider the logarithmic rank LRr(y|x) := logRankr(y|x), which will be more conve-
nient.

Principle 3 (loss rank principle (LoRP) for classification) For discrete Y,
the best classifier/regressor r : D×X →Y in some class R for data D = (x,y) is
the one of smallest loss rank:

rbest = arg min
r∈R

LRr(y|x) ≡ arg min
r∈R

Rankr(y|x) (2)

where Rankr is defined in (1).

We give a simple example for which we can compute all ranks by hand to help
better grasping how the principle works, but the example is too simplistic to allow
any conclusion on whether the principle is appropriate.
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Example 4 (simple discrete) Consider X = {1,2}, Y = {0,1,2}, and two points
D={(1,1),(2,2)} lying on the diagonal x=y, with polynomial (zero, constant, linear)
least squares regression R= {r0,r1,r2} (see Ex.1). r0 is simply 0, r1 the y-average,
and r2 the line through points (1,y1) and (2,y2). This, together with the quadratic
Loss for generic y′ and observed y =(1,2) (and fixed x = (1,2)), is summarized in
the following table

d rd(x|x, y′) Lossd(y
′|x) Lossd(D)

0 0 y′
1
2 + y′

2
2 5

1 1
2
(y′

1 + y′
2)

1
2
(y′

2 − y′
1)

2 1
2

2 (y′
2 − y′

1)(x − 1) + y′
1 0 0

From the Loss we can easily compute the Rank for all nine y′∈{0,1,2}2. Equal rank
due to equal loss is indicated by a = in the table below. Whole equality groups are
actually assigned the rank of their right-most member, e.g. for d = 1 the ranks of
(y′

1,y
′
2)=(0,1),(1,0),(2,1),(1,2) are all 7 (and not 4,5,6,7).

Rankrd
(y′

1y
′
2|12)

d 1 2 3 4 5 6 7 8 9 Rankrd
(D)

0 y′
1y

′
2 = 00 < 01 = 10 < 11 < 02 = 20 < 21 = 12 < 22 8

1 y′
1y

′
2 = 00 = 11 = 22 < 01 = 10 = 21 = 12 < 02 = 20 7

2 y′
1y

′
2 = 00 = 01 = 02 = 10 = 11 = 20 = 21 = 22 = 12 9

So LoRP selects r1 as best regressor, since it has minimal rank on D. r0 fits D too
badly and r2 is too flexible (perfectly fits all D′). ♦

LoRP for continuous Y. We now consider the case of continuous or measurable
spaces Y , i.e. normal regression problems. We assume Y=IR in the following expo-
sition, but the idea and resulting principle hold for more general measurable spaces
like IRm. We simply reduce the model selection problem to the discrete case by con-
sidering the discretized space Yε = εZZ for small ε>0 and discretize y ;yε ∈εZZn.
Then Rankε

r(L) := #{y′
ε ∈ Yn

ε : Lossr(y
′
ε|x) ≤ L} with L = Lossr(yε|x) counts the

number of ε-grid points in the set

Vr(L) := {y′ ∈ Yn : Lossr(y
′|x) ≤ L} (3)

which we assume (and later assure) to be finite, analogous to the discrete case.
Hence Rankε

r(L) ·εn is an approximation of the loss volume |Vr(L)| of set Vr(L),
and typically Rankε

r(L) ·εn = |Vr(L)| ·(1+O(ε)) → |Vr(L)| for ε → 0. Taking the
logarithm we get LRε

r(y|x)=logRankε
r(L)=log|Vr(L)|−nlogε+O(ε). Since nlogε is

independent of r, we can drop it in comparisons like (2). So for ε→0 we can define
the log-loss “rank” simply as the log-volume

LRr(y|x) := log |Vr(L)|, where L := Lossr(y|x) (4)

6



Principle 5 (loss rank principle for regression) For measurable Y, the best
regressor r : D×X →Y in some class R for data D = (x,y) is the one of small-
est loss volume:

rbest = arg min
r∈R

LRr(y|x) ≡ arg min
r∈R

|Vr(L)|

where LR, Vr, and L are defined in (3) and (4), and |Vr(L)| is the volume of Vr(L)⊆
Yn.

For discrete Y with counting measure we recover the discrete Loss Rank Principle
3.
Example 6 (simple continuous) Consider Example 4 but with interval Y=[0,2].
The first table remains unchanged, while the second table becomes

d Vd(L) = {y′ ∈ [0, 2]2 : ...} |Vd(L)| |Vd(Lossd(D))|
0 y′

1
2 + y′

2
2 ≤ L

2
√

max{L−4,0}+

L(π
4
−cos−1(min{ 2√

L
,1}))

≈ 3.6

1 1
2
(y′

2 − y′
1)

2 ≤ L 4
√

2L − 2L 3
2 0 ≤ L 4 4

So LoRP again selects r1 as best regressor, since it has smallest loss volume on D.
♦

Infinite rank or volume. Often the loss rank/volume will be infinite, e.g. if we
had chosen Y =ZZ in Ex.4 or Y = IR in Ex.6. We will encounter such infinities in
Section 3. There are various potential remedies. We could modify (a) the regressor
r or (b) the Loss to make LRr finite, (c) the Loss Rank Principle itself, or (d) find
problem-specific solutions. Regressors r with infinite rank might be rejected for
philosophical or pragmatic reasons. We will briefly consider (a) for linear regression
later, but to fiddle around with r in a generic (blackbox way) seems difficult. We
have no good idea how to tinker with LoRP (c), and also a patched LoRP may be
less attractive. For kNN on a grid we later use remedy (d). While in (decision)
theory, the application’s goal determines the loss, in practice the loss is often more
determined by convenience or rules of thumb. So the Loss (b) seems the most
inviting place to tinker with. A very simple modification is to add a small penalty
term to the loss.

Lossr(y|x) ; Lossα
r (y|x) := Lossr(y|x) + α||y||2, α > 0 “small” (5)

The Euclidian norm ||y||2 :=
∑n

i=1y
2
i is default, but other (non)norm regularizes are

possible. The regularized LRα
r (y|x) based on Lossα

r is always finite, since {y :||y||2≤
L} has finite volume. An alternative penalty αŷ⊤ŷ, quadratic in the regression
estimates ŷi =r(xi|x,y) is possible if r is unbounded in every y→∞ direction.

A scheme trying to determine a single (flexibility) parameter (like d and k in
the above examples) would be of no use if it depended on one (or more) other
unknown parameters (α), since varying through the unknown parameter leads to
any (non)desired result. Since LoRP seeks the r of smallest rank, it is natural to
also determine α by minimizing LRα

r w.r.t. α. The good news is that this leads to
meaningful results.
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3 LoRP for Linear Models

In this section we consider the important class of linear regressors with quadratic
loss function. Since linearity is only assumed in y and the dependence on x can be
arbitrary, this class is richer than it may appear. It includes kNN (Example 7), kernel
(Example 8), and many other regressors. For linear regression and Y = IR, the loss
rank is the volume of an n-dimensional ellipsoid, which can efficiently be computed
in time O(n3) (Theorem 10). For the special case of projective regression, e.g. linear
basis function regression (Example 9), we can even determine the regularization
parameter α analytically (Theorem 11).

Linear regression. We assume Y = IR in this section; generalization to IRm is
straightforward. A linear regressor r can be written in the form

ŷ = r(x|x, y) =
n

∑

j=1

mj(x, x)yj ∀x ∈ X and some mj : X × X n → IR (6)

Particularly interesting is r for x=x1,...,xn.

ŷi = r(xi|x, y) =
∑

j

Mij(x)yj with M : X n → IRn×n (7)

where matrix Mij(x)=mj(xi,x). Since LoRP needs r only on the training data x,
we only need M .

Example 7 (kNN ctd.) For kNN of Ex.2 we have mj(x,x)= 1
k

if j∈Nk(x) and 0
else, and Mij(x)= 1

k
if j∈Nk(xi) and 0 else. ♦

Example 8 (kernel regression) Kernel regression takes a weighted average over
y, where the weight of yj to y is proportional to the similarity of xj to x, measured by
a kernel K(x,xj), i.e. mj(x,x)=K(x,xj)/

∑n
j=1K(x,xj). For example the Gaussian

kernel for X =IRm is K(x,xj)=e−||x−xj||22/2σ2

. ♦
Example 9 (linear basis function regression, LBFR) Let φ1(x),...,φd(x) be a
set or vector of “basis” functions often called “features”. We place no restrictions
on X or φ :X →IRd. Consider the class of functions linear in φ:

Fd = {fw(x) =
∑d

a=1waφa(x) = w⊤φ(x) : w ∈ IRd}

For instance, for X =IR and φa(x)=xa−1 we would recover the polynomial regression
Example 1. For quadratic loss function Loss(yi,ŷi)=(yi−ŷi)

2 we have

Lossw(y|φ) :=

n
∑

i=1

(yi − fw(xi))
2 = y⊤y − 2y⊤Φw + w⊤Bw

where matrix Φ is defined by Φia = φa(xi) and B is a symmetric matrix with
Bab =

∑n
i=1φa(xi)φb(xi) = [Φ⊤Φ]ab. The loss is quadratic in w with minimum at

w = B−1Φ⊤y. So the least squares regressor is ŷ = y⊤ΦB−1φ(x), hence mj(x,x) =
(ΦB−1φ(x))j and M(x)=ΦB−1Φ⊤. ♦

8



Consider now a general linear regressor M with quadratic loss and quadratic
penalty

Lossα
M(y|x) =

n
∑

i=1

(

yi −
∑n

j=1Mijyj

)2

+ α||y||2 = y⊤Sαy,

where1 Sα = (11 − M)⊤(11 − M) + α11 (8)

(11 is the identity matrix). Sα is a symmetric matrix. For α>0 it is positive definite
and for α = 0 positive semidefinite. If λ1,...λn ≥ 0 are the eigenvalues of S0, then
λi+α are the eigenvalues of Sα. V (L)={y′∈IRn :y′⊤Sαy′≤L} is an ellipsoid with the
eigenvectors of Sα being the main axes and

√

L/(λi+α) being their length. Hence
the volume is

|V (L)| = vn

n
∏

i=1

√

L

λi + α
=

vnLn/2

√
det Sα

where vn=πn/2/n
2
! is the volume of the n-dimensional unit sphere, z! :=Γ(z+1), and

det is the determinant. Taking the logarithm we get

LRα
M(y|x) = log |V (Lossα

M(y|x))| = n
2

log(y⊤Sαy) − 1
2
log det Sα + log vn (9)

Consider now a class of linear regressors R={M}, e.g. the kNN regressors {Mk :k∈
IN} or the d-dimensional linear basis function regressors {Md :d∈IN0}.

Theorem 10 (LoRP for linear regression) For Y=IR, the best linear regressor
M :X n→IRn×n in some class M for data D=(x,y) is

M best = arg min
M∈M,α≥0

{n
2

log(y⊤Sαy) − 1
2
log det Sα} = arg min

M∈M α≥0

{ y⊤Sαy

(det Sα)1/n

}

(10)

where Sα is defined in (8).

Since vn is independent of α and M it was possible to drop vn. The last expression
shows that linear LoRP minimizes the Loss times the geometric average of the
squared axes lengths of ellipsoid V (1). Note that M best depends on y unlike the
M ∈M.

Nullspace of S0. If M has an eigenvalue 1, then S0 = (11−M)⊤(11−M) has a
zero eigenvalue and α > 0 is necessary, since detS0 = 0. Actually this is true for
most practical M . Nearly all linear regressors are invariant under a constant shift
of y, i.e. r(yi+c|D) = r(yi|D)+c, which implies that M has eigenvector (1,...,1)⊤

with eigenvalue 1. This can easily be checked for kNN (Ex.2), Kernel (Ex.8), and

1The mentioned alternative penalty α||ŷ||2 would lead to Sα =(11−M)⊤(11−M)+αM⊤M . For
LBFR, penalty α||ŵ||2 is popular (ridge regression). Apart from being limited to parametric
regression, it has the disadvantage of not being reparametrization invariant. For instance, scaling
φa(x);γaφa(x) doesn’t change the class Fd, but changes the ridge regressor.

9



LBFR (Ex.9). Such a generic 1-eigenvector effecting all M ∈M could easily and
maybe should be filtered out by considering only the orthogonal space or dropping
these λi =0 when computing detS0. The 1-eigenvectors that depend on M are the
ones where we really need a regularizer α>0 for. For instance, Md in LBFR has d
eigenvalues 1, and MkNN has as many eigenvalues 1 as there are disjoint components
in the graph determined by the edges Mij >0 In general we need to find the optimal
α numerically. If M is a projection we can find αmin analytically.

Projective regression. Consider a projection matrix M = P = P 2 with d = trP
eigenvalues 1, and n−d zero eigenvalues. For instance, M =ΦB−1Φ⊤ of LBFR Ex.9
is such a matrix, since MΦ=Φ and MΨ=0 for Ψ such that Φ⊤Ψ=0. This implies
that Sα has d eigenvalues α and n−d eigenvalues 1+α. Hence

det Sα = αd(1 + α)n−d, where Sα = S0 + α11 = 11 − P + α11

y⊤Sαy = (ρ + α)y⊤y, where ρ :=
y⊤S0y

y⊤y
= 1 − y⊤Py

y⊤y

⇒ LRα
P = n

2
log y⊤y + n

2
log(ρ + α) − d

2
log α − n−d

2
log(1 + α) (11)

The first term is independent of α. Consider 1−ρ > d
n
, the reasonable region in

practice. Solving ∂LRα
P /∂α=0 w.r.t. α we get a minimum at α=αmin := ρd

(1−ρ)n−d
.

After some algebra we get

LRαmin

P = n
2
logy⊤y − n

2
KL( d

n
||1− ρ), where KL(p||q) = p log p

q
+ (1− p) log 1−p

1−q

(12)
is the relative entropy or Kullback-Leibler divergence. Minimizing LRαmin

P w.r.t. M
is equivalent to maximizing KL( d

n
||1−ρ). This is an unusual task, since one mostly

encounters D minimizations. For fixed d, LRαmin

P is monotone increasing in ρ. Since
Lossα

P ∝ ρ+α, LoRP suggests to minimize Loss for fixed model dimension d. For
fixed ρ, LRαmin

P is monotone increasing in d, i.e. LoRP suggests to minimize model
dimension d for fixed Loss. Normally there is a tradeoff between minimizing d and
ρ, and LoRP suggests that the optimal choice is the one that maximizes KL.

Theorem 11 (LoRP for projective regression) The best projective regressor
P :X n→IRn×n with P =P 2 in some projective class P for data D=(x,y) is

P best = arg max
P∈P

KL( trP (x)
n

||y⊤P (x)y
y⊤y

), provided trP
n

< y
⊤Py

y⊤y

4 Comparison to Gaussian Bayesian Linear Re-

gression

We now consider linear basis function regression (LBFR) from a Bayesian perspec-
tive with Gaussian noise and prior, and compare it to LoRP. In addition to the noise
model as in PML, one also has to specify a prior. Bayesian model selection (BMS)
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proceeds by selecting the model that has largest evidence. In the special case of
LBFR with Gaussian noise and prior and an ML-II estimate for the noise variance,
the expression for the evidence has a similar structure as the expression of the loss
rank.

Gaussian Bayesian LBFR / MAP. Recall from Sec.3 Ex.9 that Fd is the class
of functions fw(x)=w⊤φ(x) (w∈IRd) that are linear in feature vector φ. Let

GaussN(z|µ, Σ) :=
exp(−1

2
(z − µ)⊤Σ−1(z − µ))

(2π)N/2
√

det Σ
(13)

denote a general N -dimensional Gaussian distribution with mean µ and covariance
matrix Σ. We assume that observations y are perturbed from fw(x) by independent
additive Gaussian noise with variance β−1 and zero mean, i.e. the likelihood of y

under model w is P(y|w)=Gaussn(y|Φw,β−111), where Φia =φa(xi). A Bayesian
assumes a prior (before seeing y) distribution on w. We assume a centered Gaussian
with covariance matrix (αC)−1, i.e. P(w) = Gaussd(w|0,α−1C−1). From the prior
and the likelihood one can compute the evidence and the posterior

Evidence: P(y) =

∫

P(y|w)P(w)dw = Gaussn(y|0, β−1S−1) (14)

Posterior: P(w|y) = P(y|w)P(w)/P (y) = Gaussd(w|ŵ, A−1)

B := Φ⊤Φ, A := αC + βB, M := βΦA−1Φ⊤, S := 11 − M, (15)

ŵ := βA−1Φ⊤y, ŷ := Φŵ = My

A standard Bayesian point estimate for w for fixed d is the one that maximizes
the posterior (MAP) (which in the Gaussian case coincides with the mean) ŵ =
argmaxwP(w|y) = βA−1Φ⊤y. For α → 0, MAP reduces to Maximum Likelihood
(ML), which in the Gaussian case coincides with the least squares regression of
Ex.9. For α>0, the regression matrix M is not a projection anymore.

Bayesian model selection. Consider now a family of models {F1,F2,...}. Here
the Fd are the linear regressors with d basis functions, but in general they could
be completely different model classes. All quantities in the previous paragraph
implicitly depend on the choice of F , which we now explicate with an index. In
particular, the evidence for model class F is PF (y). Bayesian Model Selection
(BMS) chooses the model class (here d) F of highest evidence:

FBMS = arg max
F

PF(y)

Once the model class FBMS is determined, the MAP (or other) regression function
fwFBMS

or MFBMS are chosen. The data variance β−1 may be known or estimated
from the data, C is often chosen 11, and α has to be chosen somehow. Note that
while α→0 leads to a reasonable MAP=ML regressor for fixed d, this limit cannot
be used for BMS.

11



Comparison to LoRP. Inserting (13) into (14) and taking the logarithm we see
that BMS minimizes

− log PF (y) = β
2
y⊤Sy − 1

2
log det S − n

2
log β

2π
(16)

w.r.t. F . Let us estimate β by ML: We assume a broad prior α≪β so that β ∂S
∂β

=

O(α
β
) can be neglected. Then ∂logPF (y)

∂β
= 1

2
y⊤Sy− n

2β
+O(α

β
n)=0 ⇔ β≈β̂ :=n/(y⊤Sy).

Inserting β̂ into (16) we get

− log PF(y) = n
2

log y⊤Sy − 1
2
log det S − n

2
log n

2πe
(17)

Taking an improper prior P(β)∝β−1 and integrating out β leads for small α to a
similar result. The last term in (17) is a constant independent of F and can be
ignored. The first two terms have the same structure as in linear LoRP (10), but
the matrix S is different. In both cases, α act as regularizers, so we may minimize
over α in BMS like in LoRP. For α=0 (which neither makes sense in BMS nor in
LoRP), M in BMS coincides with M of Ex.9, but still the S0 in LoRP is the square
of the S in BMS. For α>0, M of BMS may be regarded as a regularized regressor
as suggested in Sec.2 (a), rather than a regularized loss function (b) used in LoRP.
Note also that BMS is limited to (semi)parametric regression, i.e. does not cover the
non-parametric kNN Ex.2 and Kernel Ex.8, unlike LoRP.

Since B only depends on x (and not on y), and all P are implicitly conditioned
on x, one could choose C = B. In this case, M = γΦB−1Φ⊤, with γ = β

α+β
< 1

for α>0, is a simple multiplicative regularization of projection ΦB−1Φ⊤, and (17)
coincides with (11) for suitable α, apart from an irrelevant additive constant, hence
minimizing (17) over α also leads to (12).

5 Comparison to other Model Selection Schemes

In this section we give a brief introduction to Penalized Maximum Likelihood (PML)
for (semi)parametric regression, and its major instantiations, the Akaike and the
Bayesian Information Criterion (AIC and BIC), and the Minimum Description
Length (MDL) principle, whose penalty terms are all proportional to the number of
parameters d. The effective number of parameters is often much smaller than d, e.g.
if there are soft constraints like in ridge regression. We compare MacKay’s [Mac92]
trace formula for Gaussian Bayesian LBFR and Hastie’s et al. [HTF01] trace formula
for general linear regression with LoRP.

Penalized ML (AIC, BIC, MDL). Consider a d-dimensional stochastic model
class like the Gaussian Bayesian linear regression example of Section 4. Let Pd(y|w)
be the data likelihood under d-dimensional model w∈IRd. The maximum likelihood
(ML) estimator for fixed d is

ŵ = arg max
w

Pd(y|w) = arg min
w

{− log Pd(y|w)}

12



Since −logPd(y|w) decreases with d, we cannot find the model dimension by sim-
ply minimizing over d (overfitting). Penalized ML adds a complexity term to get
reasonable results

d̂ = arg min
d

{− log Pd(y|ŵ) + Penalty(d)}

The penalty introduces a tradeoff between the first and second term with a minimum
at d̂<∞. Various penalties have been suggested: The Akaike Information Criterion
(AIC) [Aka73] uses d, the Bayesian Information Criterion (BIC) [Sch78] and the
(crude) Minimum Description Length (MDL) principle use d

2
logn [Ris78, Grü04] for

Penalty(d). There are at least three important conceptual differences to LoRP:

• In order to apply PML one needs to specify not only a class of regression
functions, but a full probabilistic model Pd(y|w),

• PML ignores or at least does not tell how to incorporate a potentially given
loss-function,

• PML (AIC,BIC,MDL) is mostly limited to (semi)parametric models (with d
“true” parameters).

We discuss two approaches to the last item in the remainder of this section: AIC,
BIC, and MDL are not directly applicable (a) for non-parametric models like kNN
or Kernel regression, or (b) if d does not reflect the “true” complexity of the model.
For instance, ridge regression can work even for d larger than n, because a penalty
pulls most parameters towards (but not exactly to) zero. MacKay [Mac92] suggests
an expression for the effective number of parameters deff as a substitute for d in case
of (b), and Hastie et al. [HTF01] more generally also for (a).

The trace penalty for parametric Gaussian LBFR. We continue with the
Gaussian Bayesian linear regression example (see Section 4 for details and notation).
Performing the integration in (14), MacKay [Mac92, Eq.(21)] derives the following
expression for the Bayesian evidence for C =11

− log P(y) = (αÊW + βÊD) + (1
2
log det A − d

2
log α) − n

2
log β

2π
(18)

ÊD = 1
2
||Φŵ − y||22, ÊW = 1

2
||ŵ||22

(the first bracket in (18) equals β
2
y⊤Sy and the second equals −1

2
logdetS, cf. (16)).

Minimizing (18) w.r.t. α leads to the following relation:

0 = −∂ log P(y)
∂α

= ÊW + 1
2
trA−1 − d

2α
( ∂

∂α
log det A = trA−1)

He argues that α||ŵ||22 corresponds to the effective number of parameters, hence

dMcK
eff := α||ŵ||22 = 2αÊW = d − αtrA−1 (19)

The trace penalty for general linear models. We now return to general linear
regression ŷ =M(x)y (7). LBFR is a special case of a projection matrix M =M2
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with rank d = trM being the number of basis functions. M leaves d directions
untouched and projects all other n−d directions to zero. For general M , Hastie et
al. [HTF01, Sec.5.4.1] argue to regard a direction that is only somewhat shrunken,
say by a factor of 0 < β < 1, as a fractional parameter (β degrees of freedom). If
β1,...,βn are the shrinkages = eigenvalues of M , the effective number of parameters
could be defined as [HTF01, Sec.7.6]

dHTF
eff :=

n
∑

i=1

βi = trM

which generalizes the relation d=trM beyond projections. For MacKay’s M (15),
trM =d−trA−1, i.e. dHTF

eff is consistent with and generalizes dMcK
eff .

Problems. Though nicely motivated, the trace formula is not without problems.
First, since for projections, M =M2, one could equally well have argued for dHTF

eff =
trM2. Second, for kNN we have trM = n

k
(since M is 1

k
on the diagonal), which does

not look unreasonable. Consider now kNN’ where we average over the k nearest
neighbors excluding the closest neighbor. For sufficiently smooth functions, kNN’
for suitable k is still a reasonable regressor, but trM = 0 (since M is zero on the
diagonal). So dHTF

eff =0 for kNN’, which makes no sense and would lead one to always
select the k=1 model.

Relation to LoRP. In the case of kNN’, trM2 would be a better estimate for
the effective dimension. In linear LoRP, −logdetSα serves as complexity penalty.
Ignoring the nullspace of S0=(11−M)⊤(11−M) (8), we can Taylor expand −1

2
logdetS0

in M

−1
2
log det S0 = −tr log(11−M) =

∞
∑

s=1

1
s
tr(Ms) = trM + 1

2
trM2 + ...

For BMS (17) with S =11−M (15) we get half of this value. So the trace penalty
may be regarded as a leading order approximation to LoRP. The higher order terms
prevent peculiarities like in kNN’.

6 Outlook

So far we have only scratched at the surface of the Loss Rank Principle. LoRP
seems to be a promising principle with a lot of potential, leading to a rich field.
In the following we briefly summarize miscellaneous considerations, which may be
elaborated on in the future: Experiments, Monte Carlo estimates for non-linear
LoRP, numerical approximation of detSα, LoRP for classification, self-consistent
regression, explicit expressions for kNN on a grid, loss function selection, and others.

Experiments. Preliminary experiments on selecting k in kNN regression confirm
that LoRP selects a “good” k. (Even on artificial data we cannot determine whether
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the “right” k is selected, since kNN is not a generative model). LoRP for LBFR
seems to be consistent with rapid convergence.

Monte Carlo estimates for non-linear LoRP. For non-linear regression we
did not present an efficient algorithm for the loss rank/volume LRr(y|x). The
high-dimensional volume |Vr(L)| (3) may be computed by Monte Carlo algorithms.
Normally Vr(L) constitutes a small part of Yn, and uniform sampling over Yn is not
feasible. Instead one should consider two competing regressors r and r′ and compute
|V ∩V ′|/|V | and |V ∩V ′|/|V ′| by uniformly sampling from V and V ′ respectively e.g.
with a Metropolis-type algorithm. Taking the ratio we get |V ′|/|V | and hence the
loss rank difference LRr−LRr′, which is sufficient for LoRP. The usual tricks and
problems with sampling apply here too.

Numerical approximation of detSα. Even for linear regression, a Monte Carlo
algorithm may be faster than the naive O(n3) algorithm [BFG96]. Often M is a
very sparse matrix (like in kNN) or can be well approximated by a sparse matrix
(like for Kernel regression), which allows to approximate detSα, sometimes in linear
time [Reu02].

LoRP for classification. A classification problem is or can be regarded as a
regression problem in which Y is finite. This implies that we need to compute
(count) LRr for non-linear r somehow, e.g. approximately by Monte Carlo.

Self-consistent regression. So far we have considered only “on-data” regression.
LoRP only depends on the regressor r on data D and not on x 6∈{x1,...,xn}. One can
construct canonical regressors for off-data x from regressors given only on-data in the
following way: We add a virtual data point (x,y) to D, where x is the off-data point
of interest. If we knew y we could estimate ŷ=r(x|{(x,y)}∪D), but we don’t know
y. But if we require consistency, namely that ŷ=y, we get a canonical estimate for
ŷ. First, this bootstrap may ease the specification of the regression models, second,
it is a canonical way for interpolation (LoRP can’t distinguish between r that are
identical on D), and third, many standard regressors (kNN, Kernel, LBFR) are
self-consistent in the sense that they are canonical.

Explicit expressions for kNN on a grid. In order to get more insight into
LoRP, a case that allows an analytic solution is useful. For k nearest neighbors
classification with x lying on a hypercube of the regular grid X =ZZd one can derive
explicit expressions for the loss rank as a function of k, n, and d. For n≫k≫3d, the
penalty −1

2
logdetS is proportional to trM with proportionality constant decreasing

from about 3.2 for d=1 to 1.5 for d→∞.

LoRP for hybrid model classes. LoRP is not restricted to model classes indexed
by a single integral “complexity” parameter, but may be applied more generally to
selecting among some (typically discrete) class of models/regressors. For instance,
the class could contain kNN and polynomial regressors, and LoRP selects the com-
plexity and type of regressor (non-parametric kNN versus parametric polynomials).
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General additive loss. Linear LoRP ŷ=M(x)y of Section 3 can easily be gener-
alized from quadratic to ρ-norm LossM(y|x)= ||y−ŷ||pρ (any p). For α=0, y⊤S0y

in (9) becomes ||y−ŷ||2ρ and vρ the volume of the unit d-dimensional ρ-norm “ball”.
Useful expressions for general additive LossN =

∑

ih(yi− ŷi) can also be derived.
Regularization may be performed by M ;γM with optimization over γ<1.

Loss-function selection. In principle, the loss function should be part of the
problem specification, since it characterizes the ultimate goal. In reality, though,
having to specify the loss function can be a nuisance. We could interpret the regu-
larized loss (5) as a class of loss functions parameterized by α, and argminαLRa

r as
a loss function optimization or selection. This suggests to choose in general the loss
function that has minimal loss rank. This leads to sensible results if the considered
class of loss functions is not too large (e.g. all ρ-norm losses in the previous para-
graph). So LoRP can be used not only for model selection, but also for loss function
selection.
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