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ERROR ESTIMATES FOR MULTINOMIAL APPROXIMATIONS

OF AMERICAN OPTIONS IN MERTON’S MODEL

YAN DOLINSKY
DEPARTMENT OF MATHEMATICS

HEBREW UNIVERSITY, JERUSALEM, ISRAEL

Abstract. We derive error estimates for multinomial approximations of Amer-
ican options in a multidimensional jump–diffusion Merton’s model. We assume
that the payoffs are Markovian and satisfy Lipschitz type conditions. Error
estimates for such type of approximations were not obtained before. Our main
tool is the strong approximations theorems for i.i.d. random vectors which were
obtained in [14]. For the multidimensional Black–Scholes model our results can
be extended also to a general path dependent payoffs which satisfy Lipschitz
type conditions. For the case of multinomial approximations of American op-
tions for the Black–Scholes model our estimates are a significant improvement
of those which were obtained in [8] (for game options in a more general setup).

1. Introduction

This paper deals with multinomial approximations of American options arbitrage–
free prices in the multidimensional jump–diffusion Merton’s model with finite hori-
zon. The Merton model is a generalization of the Black–Scholes model and it
allows the stock to have jumps of compound Poisson type. We consider a Markov-
ian payoffs which satisfy Lipschitz type conditions and derive error estimates for an
appropriate multinomial approximations. In the multidimensional Black–Scholes
model these error estimates can be also derived for general path dependent payoffs
which satisfy Lipschitz type conditions.

For American options in finite horizon Merton’s model arbitrage–free prices can
not be calculated explicitly. Since multinomial models are active on a discrete set
of times and defined on a discrete probability space, then arbitrage–free prices in
these models can be calculated efficiently by dynamical programming algorithm.
Thus convergence results for multinomial approximations provides an efficient tool
to evaluate arbitrage free prices in the Merton model.

Several papers dealt with multinomial approximations of American options in
models with jumps (see, [10] and [12]). In both of the papers the authors considered
the case with one risky asset and used the weak convergence approach. The main
tool that was used in the above papers is the stability results for Snell’s envelopes
under weak convergence which were obtained in [11]. In [2] the weak convergence
approach was used to show convergence results for multinomial approximations
of game options (which were introduced in [6]) in the Merton model. The main
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disadvantage of the weak convergence approach is that this machinery can not
provide, in principle, speed of convergence estimates. Thus no error estimates were
obtained for multinomial approximations of American options in the Merton model.

Clearly, from practical point of view it is valuable to find estimates of the cor-
responding errors. In order to obtain error estimates we should consider all the
market models on the same probability space, and so methods based on strong
approximation theorems come into picture. Strong approximation theorem allows
to construct a probability space which contain all the markets models such that
the risky assets in the discrete time models will be ”close” with respect to the sup
norm to the risky assets in the continuous model. Several authors applied strong
invariance principles in order to obtain error estimates for American and game op-
tions in the one dimensional BS model (see, [5],[7] and [3]). In all of these papers
the authors used the Skorokhod embedding tool of i.i.d. random variables into the
one dimensional Brownian motion. This tool can not be applied for the multidi-
mensional case. In [8] the author studied discrete time approximations of Dynkin’s
game values for the multidimensional Brownian motion. The main tool that was
used there is strong approximation theorems which were developed in [1] and they
work for sequences of random vectors with close characteristic functions.

In [14] the author considered a new approach to strong approximations in the
multidimensional case. He showed that for a given sequence of i.i.d. random vec-
tors X(1), X(2)...., and a random vector Y which has the same expectation and
covariance matrix as X(1), it is possible to construct a sequence of i.i.d. vectors
Y (1), Y (2).... such that Y (1) ∼ Y and the normalized sums of the last sequence will
be ”close” to the normalized sums of the first sequence. Furthermore for any k < m,
Y (k) is independent of X(m). The above approach will be the main tool that we use
in order to establish the results in this paper. For Merton’s model strong approxi-
mation theorems were not used before. An interesting question which is still open,
is whether the method from [14] can be applied for game options approximations.

Let us remark, that the estimates for the Brownian motion by means of normal-
ized sums of independent random vectors obtained in [14] are much better than
those which were obtained in [1].

Main results of this paper are formulated in the next section where we also
introduce the notations that will be used. In Section 3 we derive auxiliary lemmas
that we use. In Section 4 we complete the proof of main results of the paper.

2. Preliminaries and main results

Consider a complete probability space (Ω,F , P ) together with a standard d–
dimensional continuous in time Brownian motion {W (t) = (W1(t), ...,Wd(t))}∞t=0,
a Poisson process {N(t)}∞t=0 with intensity λ and independent ofW , and a sequence

of i.i.d. random vectors {U (i) = (U
(i)
1 , ..., U

(i)
d )}∞i=1 with values in (−1,∞)d, inde-

pendent of W and N . We also assume that for any 1 ≤ j ≤ d, E|U (1)
j |2 <∞ where

E denotes the expectation with respect to P . A d–dimensional Merton’s model
with horizon T <∞ consists of a savings account which given by

b(t) = b(0) exp(rt), b(0), r > 0, 0 ≤ t ≤ T(2.1)
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and of d risky stocks {S(t) = (S1(t), ..., Sd(t))}Tt=0 given by

Si(t) = Si(0) exp((r + µi −
d

∑

j=1

σ2
ij/2)t+

d
∑

j=1

σijWj(t))

N(t)
∏

j=1

(1 + U
(j)
i ), 1 ≤ i ≤ d

(2.2)

where σ = (σij)1≤i,j≤d is a nonsingular matrix, Si(0) > 0 and without loss of
generality we assume that

µi = −λEU (1)
i , 1 ≤ i ≤ d.(2.3)

Consider an American option with the payoff process

Y (t) = F (S(t), t), 0 ≤ t ≤ T(2.4)

where F : Rd
+ × R+ → R+ is a function such that for some constant L ≥ 1 and for

any t ≥ s ≥ 0 and υ, υ̃ ∈ R
d,

(2.5) |F (υ, t)− F (υ̃, s)| ≤ L

d
∑

i=1

|υi − υ̃i|+ L(t− s)(1 +

d
∑

i=1

|υi|).

Let T be the set of stopping times with respect to the natural filtration generated by
S (which satisfies the usual conditions) with values not exceeding T . The equality
(2.3) guaranties that the probability measure P is a martingale measure. Thus the
term

(2.6) V = sup
τ∈T

E(exp(−rτ)Y (τ))

gives an arbitrage–free price for the American option.

For any n ∈ N define a sequence of i.i.d. random vectors {Un,i = (Un,i
1 , ..., Un,i

d )}∞
i=1

by

Un,i
j =

M(n)
∑

k=1

(
k

2
n−1/8 − 1)I{ k−1

2 n−1/8−1<U
(i)
j ≤k

2 n
−1/8−1}, 1 ≤ j ≤ d, i ∈ N(2.7)

where IQ = 1 if an event Q occurs and = 0 if not, and M(n) ∈ N satisfies

(2.8)

d
∑

j=1

E(U
(1)
j I{U(1)

j >M(n)
2 n−1/8−1}) <

n−1/8

2
.

Notice that

(2.9) E|U (i)
j − U

(n,i)
j | < n−1/8, i, n ∈ N, 1 ≤ j ≤ d.

Next we describe the discrete time markets which we use to approximate the Merton
model. Let A ∈Md+1(R) be an orthogonal matrix such that it last column equals to
( 1√

d+1
, ..., 1√

d+1
). Let Ωξ = {1, 2, ..., d+1}∞ be the space of infinite sequences ω =

(ω1, ω2, ...); ωi ∈ {1, 2, ..., d+1} with the product probability P ξ = { 1
d+1 , ...,

1
d+1}∞.

Define a sequence of i.i.d. random vectors ξ(1), ξ(2), ... by

ξ(i)(ω) =
√
d+ 1(Aωi1, Aωi2..., Aωid), i ∈ N.(2.10)

Observe that

Eξ(1) = 0 and Eξ
(1)
i ξ

(1)
j = 1 if i = j and = 0 otherwise.(2.11)
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The probability space (Ωξ, P
ξ) was introduced in [4]. For any n we extend (Ωξ, P

ξ)
to a probability space (Ωn,Gn, Pn) such that it contains a three independent se-
quences of i.i.d. random vectors {ξ(i)}∞i=1, {ρn,k}nk=1 and {un,k}nk=1. The second
sequence is a sequence of Bernoulli random variables such that Pn{ρn,1 = 1} =
1− exp(−λT/n) and the second sequence satisfies un,1 ∼ Un,1.

For any n ∈ N, 0 ≤ k ≤ n and 1 ≤ i ≤ d set Nn,k =
∑k

m=1 ρ
n,m and

(2.12)

S
(n)
i (t) = Si(0) exp(rkT/n)

k
∏

m=1

(1+

√

T

n

d
∑

j=1

σijξ
(m)
j )

∏Nn,k

j=1 (1 + un,ji )
(

1 + (1− exp(−λT/n))Enu
n,1
i

)k

where kT
n ≤ t < (k+1)T

n and En denotes the expectation with respect to Pn. Con-

sider a multinomial n–step market which is active in the moments 0, Tn ,
2T
n , ..., T

and consists of a savings account which given by (2.1) and of d risky stocks S(n) =

(S
(n)
1 , ..., S

(n)
d ) given by (2.12). Next, we introduce an American option with the

payoff process

(2.13) Y (n)(k) = F (S(n)(kT/n), kT/n), 0 ≤ k ≤ n.

Let Tn be the set of stopping times with respect to the filtration {σ(S(n)
0 , S

(n)
T
n

, ..., S
(n)
kT
n

)}nk=0

with values in {0, 1, ..., n}. Observe that for any n, Pn is a martingale measure for
the n–step market. Thus

(2.14) Vn = sup
τ∈Tn

En(exp(−τT/n)Y (n)(τ))

is an arbitrage–free price of the n–step market. The following theorem says that
the arbitrage–free prices of the n–step markets converge to the arbitrage–free price
of the Merton model and provides an estimates on the error terms.

Theorem 2.1. For any ǫ > 0 there exists a constant Cǫ such that for any n

(2.15) |V − Vn| < Cǫn
ǫ− 1

8 .

Remark 2.2. Theorem 2.1 can be extended to a case where we have a finite number
of Poisson clocks. Namely, consider a complete probability space (Ω,F , P ) together
with a standard d–dimensional continuous in time Brownian motion W , m inde-
pendent Poisson processes N (1), ..., N (m), which are independent of W , and for any
1 ≤ k ≤ m a sequence of i.i.d. random vectors {Uk,i}∞i=1 with values in (−1,∞)d.
We assume that the sequences are independent of each other and independent of W

and N (1), ..., N (m). We also assume E|Uk,1
j |2 < ∞, for j ≤ d and k ≤ m. The

risky assets are given by

Si(t) = Si(0) exp((r + µi −
d

∑

j=1

σ2
ij/2)t+

d
∑

j=1

σijWj(t))

m
∏

k=1

N(k)(t)
∏

j=1

(1 + Uk,j
i )(2.16)

where µi = −λ∑m
k=1 EU

k,1
i , i ≤ d. For an analogical multinomial models (to those

that we used for one Poisson process) we can prove a similar result to Theorem 2.1.
The proof for this case can be done in a similar way to the proof of Theorem 2.1
and by using the same ideas. For simplicity we provide the proof only for the case
with one Poisson process.
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Remark 2.3. By using the Cauchy-Schwarz inequality and the Chebyshev’s in-
equality it follows that we can set M(n) = [cn1/4] for some constant c ([x] is the
integer part of x). Thus in the n–step mutinomial model which is given by (2.12)
the number of growth rates is proportional to n1/4. If U (1) takes on a finite number
of values, then we can construct the multinomial models with a fixed number of
growth rates by letting U (n,i) = U (i) for any i, n. In this case the proof of Theorem
2.1 is simpler than for the general case and does not require Lemma 3.3.

3. Auxiliary lemmas

We start with a standard result, but since we could not find a direct reference
its proof is given here for readers’ convenience.

Lemma 3.1. Let n ∈ N and consider a probability space together with a filtration
{Gk}nk=0 and a positive d–dimensional adapted stochastic process {Q(k)}nk=0. For

any k let Y (k) = φk(Q
(0), ..., Q(k)) where φk : Rd × ...Rd → R+. Assume that

Emax0≤k≤n Y (k) <∞ and define

(3.1) A = esssupτ∈ME(Y (τ)|G0)

where M is the set of stopping times with respect to the above filtration with values

in {0, 1, ..., n}. Assume that the sequence {( Q
(k)
1

Q
(k−1)
1

, ...,
Q

(k)
d

Q
(k−1)
d

)}
n

k=1
is a sequence

of i.i.d. random vectors such that for any k, (
Q

(k)
1

Q
(k−1)
1

, ...,
Q

(k)
d

Q
(k−1)
d

) is independent of

Gk−1. Let p(·) be the probability density function of (
Q

(1)
1

Q
(0)
1

, ...,
Q

(1)
d

Q
(0)
d

). Then

(3.2) A = ψ0(Q
(0))

where ψ0 is given by the following dynamical programming relations

ψn = φn and for 0 ≤ k < n, ψk(x
(0), x(1), ..., x(k)) = max(φk(x

(0), x(1),(3.3)

..., x(k)),
∫

z∈Rd ψk+1(x
(0), x(1), ..., x(k), xk,z)p(z1, ..., zn)dz1...dzn)

where xk,z = (xk,z1 , ..., xk,zd ) ∈ R
d is given by xk,zi = x

(k)
i zi, i ≤ d.

Proof. It is well known (see [13]) that A = A(0) can be calculated by the following
dynamical programming relations

A(n) = Y (n) and for 0 ≤ k < n, A(k) = max(Y (k), E(A(k + 1)|Gk)).(3.4)

By using backward induction, (3.3) and (3.4) we obtain that for any 0 ≤ k ≤ n

(3.5) A(k) = ψk(Q
(0), Q(1), ..., Q(k))

and the result follows. �

Next, we derive several estimates that will be used in this Section. For any n ∈ N

and 1 ≤ i ≤ d denote,

SW
i (t) = Si(0) exp((r + µi −

∑d
j=1 σ

2
ij/2)t+

∑d
j=1 σijWj(t)),(3.6)

J
(i)
n = max0≤k≤n−1 supkT/n≤t≤(k+1)T/n |SW

i (t)− SW
i (kT/n)|,

DW =
∑d

k=1 sup0≤t≤T |SW
k (t)| and D =

∑d
k=1 sup0≤t≤T |Sk(t)|.
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By using the inequality | exp(x) − exp(y)| ≤ |x− y| exp(max(x, y)) we obtain that
for any 1 ≤ i ≤ d

J
(i)
n ≤ DW

(

|r + µi −
∑d

j=1 σ
2
ij/2|T/n+(3.7)

∑d
j=1 |σij |max0≤k≤n−1 supkT/n≤t≤(k+1)T/n |Wj(t)−Wj(kT/n)|

)

.

Fix 1 ≤ j ≤ d. From the scaling property of the Brownian motion it follows

E

(

max
0≤k≤n−1

sup
kT/n≤t≤(k+1)T/n

|Wj(t)−Wj(kT/n)|4
)

≤ nE( sup
0≤t≤T/n

|Wj(t)|4) ≤
c1
n

for some constant c1. This together with (3.7) and the Holder inequality gives

(3.8) E

d
∑

i=1

J (i)
n ≤ c2n

−1/4

for some constant c2. Let T 1,n ⊂ T be the set of stopping times with values in
{0, Tn , 2Tn , ..., T }. Set,
(3.9) V (1)

n = sup
τ∈T 1,n

E(exp(−rτ)F (S(τ), τ)).

Lemma 3.2. There exists a constant C1 such that for any n

(3.10) 0 ≤ V − V (1)
n ≤ C1n

−1/4.

Proof. The inequality 0 ≤ V − V
(1)
n is obvious. Thus it remains to prove that

V − V
(1)
n ≤ C1n

−1/4. Fix n ∈ N and choose ǫ > 0. There exist τ ∈ T such that

(3.11) V < ǫ+ E(exp(−rτ)F (S(τ), τ)).
Define the random variable σ = min{t ∈ {0, Tn , 2Tn , ..., T }| t ≥ τ}. Observe that

σ ∈ T 1,n and τ ≤ σ ≤ τ + T
n . Thus from (2.5) it follows

V − V
(1)
n < ǫ+ E(exp(−rτ)F (S(τ), τ)) − E(exp(−rσ)F (S(σ), σ))(3.12)

≤ ǫ+ E|F (S(τ), τ) − exp(−rT/n)F (S(σ), σ)|
≤ ǫ + E|F (S(τ), τ) − F (S(σ), σ)| + rT

n E(F (S(σ), σ)) ≤ ǫ+ LT
n (1 + ED)

+LE(
∑d

i=1 |Si(τ) − Si(σ)|) + rT
n (F (S(0), 0) + LD + LT (1 +D)).

Next, set the event Q = {N(σ) > N(τ)}. Notice that for any 1 ≤ i ≤ d

(3.13) |Si(τ) − Si(σ)| ≤ IQD + 2( sup
0≤t≤T

N(t)
∏

j=1

(1 + U
(j)
i ))J (i)

n .

¿From (3.8), (3.12)–(3.13) and the Cauchy-Schwarz inequality we obtain that there
exist constants c3, c4 such that

V − V
(1)
n < ǫ + c3n

−1/4 + c4
√

P (Q).(3.14)

¿From the strong Markov property of the Poisson process (with respect to the
natural filtration generated by S) and the inequality τ ≤ σ ≤ τ + T

n we obtain

(3.15) P (Q) ≤ P (N(T/n) > 0) = 1− exp(−λT/n) ≤ λT

n
.

The result follows by combining (3.14)–(3.15) and letting ǫ ↓ 0. �
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For any n define S1,n = (S1,n
1 , ..., S1,n

d ) by

S1,n
i (t) = Si(0) exp((r + µi −

d
∑

j=1

σ2
ij/2)t+

d
∑

j=1

σijWj(t))

N(t)
∏

j=1

(1 + Un,j
i ), 1 ≤ i ≤ d.

(3.16)

Let T 2,n be the set of stopping times with respect to the filtration {σ(S(u), S1,n(u)|u ≤
t)}Tt=0 with values in {0, Tn , 2Tn , ..., T }. Set

(3.17) V (2)
n = sup

τ∈T 2,n

E(exp(−rτ)F (S1,n(τ), τ)).

Lemma 3.3. There exists a constant C2 such that for any n

(3.18) |V (2)
n − V (1)

n | ≤ C2n
−1/8.

Proof. ¿From Lemma 3.1 it follows that V
(1)
n = supτ∈T 2,n E(exp(−rτ)F (S(τ), τ)).

This together with (2.5) gives

|V (2)
n − V

(n)
1 | ≤ LE(sup0≤t≤T

∑d
i=1 |S

1,n
i (t)− Si(t)|) ≤ L×(3.19)

E(DW (
∑d

i=1 sup0≤t≤T |
∏N(t)

j=1 (1 + U
(j)
i )−

∏N(t)
j=1 (1 + Un,j

i )|)) =

LE(DW )E(
∑d

i=1 sup0≤t≤T |∏N(t)
j=1 (1 + U

(j)
i )−∏N(t)

j=1 (1 + Un,j
i )|).

Next, we estimate the last term from (3.19). Fix 1 ≤ i ≤ d. For any n, j ∈ N

set An,j
i = Un,j

i − U
(j)
i . The sequences Un,j, U (j) are independent of the Poisson

process N . Thus

E(sup0≤t≤T |
∏N(t)

j=1 (1 + U
(j)
i )−

∏N(t)
j=1 (1 + Un,j

i )|) =(3.20)
∑∞

k=1 P (N(T ) = k)E(max1≤m≤k |
∏m

j=1(1 + U
(j)
i )−

∏m
j=1(1 + U

(j)
i +An,j

i )|) ≤ ∑∞
k=1 P (N(T ) = k)×

E

(

max1≤m≤k

∑m
j=1

∑

1≤q1<q2<...qj≤m

∏j
s=1 |A

n,qs
i | ×

∏

1≤s≤m,s/∈{q1,...,qj}(1 + U
(s)
i )

)

≤ ∑∞
k=1 P (N(T ) = k)×

E

(

∑m
j=1

∑

1≤q1<q2<...qj≤m

∏j
s=1 |A

n,qs
i |

∏

1≤s≤m,s/∈{q1,...,qj}(1 + U
(s)
i )

)

=

∑∞
k=1 P (N(T ) = k)

∑k
m=1

∑m
j=1

(

m
j

)

(E|An,1
i |)j(1 + EU

(1)
i )m−j =

from (2.9) and the inequality |xm − ym| ≤ m|x − y|(max(x, y))m−1 (for x, y ≥ 0,
and m ∈ N) we obtain

=
∑∞

k=1 P (N(T ) = k)
∑k

m=1((1 + EU
(1)
i + E|An,1

i |)m −(3.21)

(1 + EU
(1)
i )m) ≤ n−1/8

∑∞
k=1 P (N(T ) = k)

∑k
m=1m(2 + EU

(1)
i )m−1

= n−1/8
∑∞

m=1mP (N(T ) ≥ m)(2 + EU
(1)
i )m−1 ≤

n−1/8
∑∞

m=1m
(λT )m

m! (2 + EU
(1)
i )m−1 = λT exp(λT (2 + EU

(1)
i ))n−1/8.

By combining (3.19)–(3.21) we obtain (3.18). �
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For any n ∈ N, 0 ≤ k ≤ n and 1 ≤ i ≤ d set

g
(i)
n = max0≤m≤n |(1 + (1− exp(−λT/n))EUn,1

i

)−m − exp(µimT/n)|,(3.22)

Zn,k =
∑k

j=1 I{N(jT/n)−N((j−1)T/n)≥1} and

S2,n
i (t) = Si(0) exp((r −

∑d
j=1 σ

2
ij/2)kT/n+

∑d
j=1 σijWj(kT/n))×

∏Zn,k

j=1 (1+Un,j
i )

(

1+(1−exp(−λT/n))EUn,1
i

)k , for
kT
n ≤ t < (k+1)T

n .

Notice that Zn,k ∼ Nn,k (the last term was defined before (2.12)). ¿From (2.3)
and (2.9) it follows that there exists a constant c5 such that

g(i)n ≤ c5
n
, ∀1 ≤ i ≤ d.(3.23)

Denote S2,n = (S2,n
1 , ..., S2,n

d ). Let T 3,n be the set of stopping times with respect to

the filtration {σ(S(u), S1,n(u), S2,n(u)|u ≤ t)}Tt=0 with values in {0, Tn , 2Tn , ..., T }.
Define

(3.24) V (3)
n = sup

τ∈T 3,n

E(exp(−rτ)F (S2,n(τ), τ)).

Lemma 3.4. There exists a constant C3 such that for any n

(3.25) |V (3)
n − V (2)

n | ≤ C3n
−1/8.

Proof. Fix n ∈ N. Introduce the events Qk = {N(kT/n)−N((k − 1)T/n) > 1},
k ≤ n. Notice that for any 1 ≤ i ≤ d

max0≤k≤n |S2,n
i (kT/n)− S1,n

i (kT/n)| ≤ I{∪n
k=1Qk} sup0≤t≤T (S

1,n
i (t) +(3.26)

S2,n
i (t)) +G

(i)
n exp(|µiT |) sup0≤t≤T S

1,n
i (t).

¿From Lemma 3.1 it follows that V
(2)
n = supτ∈T 3,n E(exp(−rτ)F (S(τ), τ)). It is

easy to verify that the terms E(sup0≤t≤T (S
1,n
i (t) + S2,n

i (t))2) are uniformly (with
respect to n) bounded. Thus (3.26) and the Cauchy-Schwarz inequality gives that
there exist constants c6, c7 such that

|V (3)
n − V

(2)
n | ≤ LE

∑d
i=1 max0≤k≤n |S2,n

i (kT/n)− S1,n
i (kT/n)| ≤(3.27)

c6n
−1/8 + c7

√

P (∪n
k=1Qk) ≤ c6n

−1/8 + c7

√

λ2T 2

n

and the result follows. �

Next, we derive estimates on a discrete probability spaces. For any n and 0 ≤
k ≤ n define

S3,n
i (t) = Si(0) exp(krT/n+

∑k
m=1

∑d
j=1(

√

T/nσijξ
(m)
j − σ2

ijT/(2n)))(3.28)

×
∏Nn,k

j=1 (1+un,j
i )

(

1+(1−exp(−λT/n))Enu
n,1
i

)k , for kT/n ≤ t < (k + 1)T/n

and V
(4)
n = supτ∈Tn

En(exp(−τT/n)F (τ, S3,n(τ)), where S3,n = (S3,n
1 , ..., S3,n

d ).

Lemma 3.5. There exists a constant C4 such that for any n

(3.29) |V (4)
n − Vn| ≤ C4n

−1/2.
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Proof. For any n ∈ N, 0 ≤ m ≤ n and 1 ≤ i ≤ d set,

Bm,n
i = ln(1 +

∑d
j=1

√

T/nσijξ
(m)
j )−

∑d
j=1(

√

T
nσijξ

(m)
j − σ2

ijT/(2n)),(3.30)

Cm,n
i = T

2n (
∑d

j=1 σ
2
ij −

∑d
j=1

∑d
k=1 σijσikξ

(m)
j ξ

(m)
k ).

Observe that for any 1 ≤ j ≤ d, |ξ(1)j | ≤
√
d+ 1 a.s. Thus by using the Taylor

series of ln(1 + x) we obtain

(3.31) |Bm,n
i − Cm,n

i | ≤ c8n
−3/2

for some constant c8. ¿From (2.11) it follows that for any i, n the random variables
{Cm,n

i }nm=1 are i.i.d. with mean 0. This together with the Doob-Kolmogorov
inequality (see [9]) gives

En( max
1≤m≤n

|
m
∑

k=1

Ck,n
i |2) ≤ 4En(|

n
∑

k=1

Ck,n
i |2) ≤ 4nEn(|C1,n

i |2) ≤ c9
n

(3.32)

for some constant c9. It is easy to verify that the terms En(
∑d

i=1 sup0≤t≤T (S
3,n
i (t)+

S
(n)
i (t))2), n ∈ N are uniformly bounded. From (3.31)–(3.32) and the Cauchy-

Schwarz inequality we obtain that there exists a constant C4 such that

|V (4)
n − Vn| ≤ LEn(

∑d
i=1 sup0≤t≤T |S3,n

i (t)− S
(n)
i (t)|) ≤

LEn(
∑d

i=1 max1≤m≤n |
∑m

k=1 B
m,n
i | sup0≤t≤T (S

3,n
i (t) + S

(n)
i (t))) ≤

LEn(
∑d

i=1(c8n
−1/2 +max1≤m≤n |

∑m
k=1 C

m,n
i |) sup0≤t≤T (S

3,n
i (t) + S

(n)
i (t)))

≤ C4n
−1/2.

�

4. Proof of main results

The following result which we state without proof was established in [14] under
more general assumptions (see Theorem 2.1, Corollary 3.1 and Lemma 5.1 there).
This result is the main tool that we use in order to complete the proof of Theorem
2.1.

Theorem 4.1. Consider a probability space together with a sequence X(1), X(2), ...
of i.i.d. d–dimensional random vectors and a d–dimensional random vector Y .

Assume that E
∑d

i=1(|X
(1)
i |3 + |Yi|3) <∞, EX(1) = EY and

E(X
(1)
i X

(1)
j ) = E(YiYj) ∀i, j ∈ {1, ..., d}.(4.1)

For any z > 0 it is possible to extend our probability space to (Ω̃, F̃ , P̃ ) which
contain a sequence of i.i.d. random vectors Y (1), Y (2), ... such that Y (1) ∼ Y , and
for any n ∈ N

(4.2) P̃ ( max
1≤k≤n

d
∑

i=1

|
k
∑

m=1

X
(m)
i − Y

(m)
i | > z) ≤ Cn

z3

d
∑

i=1

Ẽ(|X(1)
i |3 + |Yi|3)

for some constant C which independent of X(1), X(2), ..., Y and z (Ẽ denotes the

expectation with respect to P̃ ). Furthermore, for any k > 1 the random vectors
X(1), ...
, X(k−1), Y (k), Y (k+1), ... are independent.
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¿From Lemmas 3.2–3.5 it follows that there exists a constant C5 such that for

any n ∈ N, |V −Vn| ≤ C5n
−1/8+ |V (2)

n −V (3)
n |. Thus in order to complete the proof

of Theorem 2.1 it remains to establish the following lemma.

Lemma 4.2. For any ǫ > 0 there exists a constant C̃ǫ such that for any n

(4.3) |V (2)
n − V (3)

n | < C̃ǫn
ǫ− 1

8 .

Proof. Fix n ∈ N and ǫ > 0. We start with proving the inequality

(4.4) V (2)
n − V (3)

n < C̃ǫn
ǫ− 1

8 .

¿From (2.11) and Theorem 4.1 it follows that we can construct on the same probabil-

ity space (Ω̃, F̃ , P̃ ) two sequence of i.i.d. random vectorsX(1), ..., X(n), Y (1), ..., Y (n)

such that X(1) ∼W (Tn ), Y
(1) ∼

√

T
n ξ

(1) and

(4.5) P̃ ( max
1≤k≤n

d
∑

i=1

|
k
∑

m=1

X
(m)
i − Y

(m)
i | > n−1/8) ≤ C6n

−1/8

for some constant C6. Furthermore, for any k > 1 the random vectorsX(1), ..., X(k−1), Y (k)

, ..., Y (n) are independent. We can extend the constructed probability space such
that it will contain also two independent sequences of i.i.d. random vectors F (1), ..., F (n)

and G(1), ..., G(n) which are independent of X(1), ..., X(n), Y (1), ..., Y (n) and satisfy
F (1) ∼ ρn,1, G(1) ∼ U (n,1) (ρn,1, Un,1 were defined in Section 2).

For any p ≤ n and i ≤ d set,

Z(p) =
∑p

j=1 F
(j), Di = max0≤k≤n

∏Z(k)

j=1 (1+G
(j)
i )

(

1+(1−exp(−λT/n))ẼG
(1)
i

)k ,(4.6)

DX
i = Si(0) exp(rT )max0≤k≤n exp(

∑k
m=1

∑d
j=1(σijX

(m)
j − σ2

ijT/(2n)))

and DY
i = Si(0) exp(rT )max0≤k≤n exp(

∑k
m=1

∑d
j=1(σijY

(m)
j − σ2

ijT/(2n))).

It is easy to verify that there exists a constant Ĉ and for any p ≥ 1 there exists a
constant Ĉp (the above constants does not depend on n) such that

d
∑

i=1

EDi < Ĉ and E((

d
∑

i=1

DX
i +DY

i )
p) < Ĉp.(4.7)

Define S̃(t) = (S̃1(t), ..., S̃d(t)) and Ŝ(t) = (Ŝ1(t), ..., Ŝd(t)) by

S̃i(t) = Si(0) exp(rkT/n+
∑k

m=1

∑d
j=1(σijX

(m)
j − σ2

ijT/(2n)))×(4.8)
∏Z(k)

j=1 (1+G
(j)
i )

(

1+(1−exp(−λT/n))ẼG
(1)
i

)k and Ŝi(t) = Si(0) exp(rkT/n+

∑k
m=1

∑d
j=1(σijY

(m)
j − σ2

ijT/(2n)))
∏Z(k)

j=1 (1+G
(j)
i )

(

1+(1−exp(−λT/n))ẼG
(1)
i

)k ,

where 1 ≤ i ≤ d, 0 ≤ k ≤ n and kT
n ≤ t < (k+1)T

n .

Next, let T̃ be the set of stopping times with respect to the filtration {σ(S̃i(u)|u ≤ t)}Tt=0

with values in {0, Tn , 2Tn , ..., T } and let T̂ be the set of stopping times with respect
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to the filtration {σ(S̃(u), Ŝ(u)|u ≤ t)}Tt=0 with values in {0, Tn , 2Tn , ..., T }. Set,

Ṽ = supτ∈T̃ Ẽ(exp(−rτ)F (S̃(τ), τ)), V̂ = supτ∈T̂ Ẽ(exp(−rτ)F (Ŝ(τ), τ))(4.9)

and Q = {max1≤k≤n

∑d
i=1 |

∑k
m=1X

(m
i − Y

(m)
i | > n−1/8}.

Observe that S̃ ∼ S2,n and Ŝ ∼ S3,n. ¿From Lemma 3.1 it follows that Ṽ = V
(2)
n

and V̂ = V
(3)
n , in the last equality we used the fact thatX(1), ..., X(k−1), Y (k), ..., Y (n)

are independent for any k > 1. Since T̃ ⊂ T̂ then from (4.5), (4.7)–(4.9), the in-
equality | exp(x)− exp(y)| ≤ |x− y|max(exp(x), exp(y)) and the Holder inequality
we obtain

V
(2)
n − V

(3)
n ≤ supτ∈T̂ Ẽ(exp(−rτ)F (S̃(τ), τ) −(4.10)

supτ∈T̂ Ẽ(exp(−rτ)F (Ŝ(τ), τ)) ≤ LẼ(sup0≤t≤T

∑d
i=1 |S̃i(t)− Ŝi(t)|)

≤ LẼ((n−1/8 max1≤i,j≤d |σij |+ IQ)(
∑d

i=1Di(D
X
i +DY

i )))

≤ LĈ((C6)
1/pn−1/8+ǫ(Ĉq)

1/q +max1≤i,j≤d |σij |Ĉ1n
−1/8)

where p = 1
1−8ǫ and q = 1

8ǫ . This completes the proof of the inequality (4.4).

The inequality V
(3)
n − V

(2)
n < C̃ǫn

ǫ− 1
8 can be proved in a similar way, just take

X(1) ∼
√

T
n ξ

(1) and Y (1) ∼W (Tn ). �

Remark 4.3. In several cases our approach can be extended also for path depen-
dent payoffs which satisfy Lipschitz type conditions. Let M [0, t] be the space of
Borel measurable functions υ = (υ1, ..., υd) : [0, t] → R

d with the uniform metric

d0t(υ, υ̃) = sup0≤s≤t

∑d
i=1 |υi(s)

−υ̃i(s)|. For each t > 0 let Ft be a nonnegative function on M [0, t] such that for
any t ≥ s ≥ 0 and υ, υ̃ ∈M [0, t],

|Fs(υ)− Fs(υ̃)| ≤ Ld0s(υ, υ̃) and |Ft(υ)− Fs(υ)|
≤ L(|t− s|(1 + supu∈[0,t]

∑d
i=1 |υi(u)|) + supu∈[s,t]

∑d
i=1 |υi(u)− υi(s)|).

Consider an American option with the payoff process Y (t) = Ft(S) where S =
S(ω) ∈ M [0,∞) is a random function taking the value S(ω, t) at t ∈ [0,∞).
When considering Ft(S

B) for t < ∞ we take the restriction of S to the interval
[0, t]. The term V = supτ∈T E(exp(−rτ)Y (τ)) gives an arbitrage–free price for our

model. For the multinomial models we consider the payoffs Y (n)(k) = F kT
n
(S(n))

and the arbitrage–free prices Vn = supτ∈Tn
En(exp(−τT/n)Y (n)(τ)). Lemmas 3.2,

3.5 and 4.2 can be extended to this setup in a way that does not ruin the esti-
mates of Theorem 2.1. The problem is with Lemmas 3.3–3.4. For path dependent
options the equality before (3.19) does not follows from Lemma 3.2 (although is

correct) and the the first inequality in (3.27) should be replaced by |V (3)
n − V

(2)
n | ≤

LE
∑d

i=1 sup0≤t≤T |S2,n
i (t) − S1,n

i (t)|. The way to fix it is to consider a piecewise

constant approximations of S, Ṡ(n)(t) = SkT/n for kT/n ≤ t < (k + 1)T/n,
0 ≤ k ≤ n. If we could provide an estimates of the term Emax0≤k≤n |F kT

n
(S) −

F kT
n
(Ṡ(n))| then both of the Lemmas 3.3–3.4 could be extended. Observe that,

E(max0≤k≤n |F kT
n
(S) − F kT

n
(Ṡ(n))|) ≤ LE(sup0≤t≤T

∑d
i=1 |Si(t) − Ṡ

(n)
i (t)|). For

the Black–Scholes model (no Poisson process) the last term was estimated in (3.8).
Thus for the Black–Scholes model the estimates from Theorem 2.1 remain valid for



12 Y.Dolinsly

path dependent options which satisfy Lipschitz type conditions. However, if we allow

jumps of compound Poisson type than in general the term E(sup0≤t≤T

∑d
i=1 |Si(t)−

Ṡ
(n)
i (t)|) should not tend to 0. Consider a specific type of path dependent options

which are given by Ft(S) = max(M, sup0≤t≤T max1≤i≤d Si(t)), where M > 0 is

some constant (Russian options). Recall the terms J
(i)
n that were defined in (3.6)

and the events Qk which were defined before (3.26). For Russian options we have
the following inequality

max0≤k≤n |F kT
n
(S)− F kT

n
(Ṡ(n))| ≤ LI{∪n

j=1Qj} sup0≤t≤T Ft(S) +

sup0≤t≤T

∏N(t)
j=1 (1 + U

(j)
i )

∑d
i=1 J

(i)
n .

By using estimates that were derived in Section 3 we obtain that E(max0≤k≤n |F kT
n
(S)−

F kT
n
(Ṡ(n))|) is of order n−1/4 and so the estimates from Theorem 2.1 are also valid

for Russian options in Merton’s model.
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