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Abstract. We study shortfall risk minimization for American options with
path dependent payoffs under proportional transaction costs in the Black–
Scholes (BS) model. We show that for this case the shortfall risk is a limit of
similar terms in an appropriate sequence of binomial models. We also prove
that in the continuous time BS model for a given initial capital there exists a
portfolio strategy which minimizes the shortfall risk. In the absence of transac-
tions costs (complete markets) similar limit theorems were obtained in Dolin-
sky and Kifer (2008, 2010) for game options. In the presence of transaction
costs the markets are no longer complete and additional machinery required.
Shortfall risk minimization for American options under transaction costs was
not studied before.

1. Introduction

This paper deals with shortfall risk minimization for American options under
proportional transaction costs. It is well known that in a complete market an
American contingent claim can be hedged perfectly with an initial capital which
is equal to the optimal stopping value of the discounted payoff under the unique
martingale measure. In the presence of transaction costs the market is no longer
complete and the initial capital required for perfect hedging (superhedging price)
of the options is often too high. In fact, several authors, see for example, Soner,
Shreve and Cvitanic (1995), Levental and Skorohod (1997) and Cvitanic, Pham and
Touzi (1999) showed that the superhedging price of European call options (also of
American call options) in the BS model is equal to the price of buying the stock at
the time the option is purchased. In Jakubenas, Levental, and Ryznar (2003) these
results were extended to path dependent options. For example, it was demonstrated
that for European and American options (in the BS model) with Russian type of
payoffs the superhedging price is infinite, i.e., perfect hedging is not available. Thus
with the presence of transaction costs it is reasonable to assume that the seller’s
(investor’s) initial capital is less than the superhedging price. In this case, the seller
is ready to accept a risk that his portfolio value at an exercise time may be less
than his obligation to pay and he will need additional funds to fullfil the contract.
This leads to the natural question of minimization of risk for a given amount of
initial capital. In order to make this question precise we need to define explicitly
the risk measure.
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We deal with a certain type of risk called the shortfall risk, which is defined for
American options as the maximal expectation with respect to the buyer exercise
times of the discounted shortfall (see Mulinacci 2010). In the presence of transac-
tion costs the problem of shortfall risk minimization was studied only for European
options, see Guasoni (2002A, 2002B), Komizono (2001, 2003) and Trivellato (2009).
The first two authors considered a general setup for which they proved that for a
given initial capital there exists a portfolio strategy which minimizes the shortfall
risk. In Trivellato (2009) shortfall risk minimization is studied for European options
in a binomial model and it is shown that for a given initial capital, the shortfall
risk and the corresponding optimal portfolio can be calculated by dynamical pro-
gramming algorithm.

In this paper we study shortfall risk minimization for a cash–settled American
options in the BS model. We consider path dependent payoffs with some regularity
conditions. We allow only self financing portfolios which satisfy the no–bankruptcy
condition i.e., a portfolios with nonnegative wealth process. This corresponds to
the situation when the portfolio is handled without borrowing of the capital. By
using convexity of the shortfall risk measure, we will show that for a given initial
capital there exists a portfolio strategy which minimizes the risk. From practical
view point, existence results are not sufficient, an investor with a fixed initial capital
want to compute the minimal possible shortfall risk and to find explicitly a portfolio
strategy which minimizes or ”almost” minimizes the shortfall risk. For binomial
models the above problems can be solved by dynamical programming algorithm.
Our approach is to use an appropriate sequence of binomial models in order to
approximate the shortfall risk and to construct ”almost” optimal portfolios in the
BS model. Namely, we will show that under proportional transaction costs the
shortfall risk in the BS model is a limit of similar terms with the same proportional
transaction costs in an appropriate sequence of binomial models. Furthermore we
will use the optimal portfolios in the binomial models in order to construct ”almost”
optimal portfolios for the BS model.

Similar results were obtained in Dolinsky and Kifer (2008, 2010) for game options
without the presence of transaction costs. The proof of the results there relied
heavily on the completeness of the markets, which is no longer the case with the
presence of transaction costs.

The main auxiliary result which is crucial for proving the limit theorems in our
setup is the stability of the shortfall as a function of the transaction costs parameters
λ, µ. This result may be also of some independent interest. In particular we will
see that as µ, λ ↓ 0, the shortfall risks converge to the shortfall risk of the complete
market. Note that for the superhedging prices this is not true in general. For
instance, the call option superhedging prices converge (as µ, λ ↓ 0) to the initial
stock price which is bigger than the call option price in the complete BS market.
The same occurs for American options with Russian type of payoffs. In this case
the limit of the superhedging prices (as µ, λ ↓ 0) is infinity.

The paper is organized as following. Main results of this paper are formulated
in the next section. In Section 3 we analyze the binomial models and provide a
dynamical programming algorithm for the shortfall risk and the corresponding opti-
mal portfolios. In Section 4 we complete the proof of the limit theorems (Theorems
2.2–2.3). In Section 5 we prove Theorem 2.1 which provide an existence result for
the optimal portfolio in the BS model.
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2. Preliminaries and main results

Consider a complete probability space (ΩW , PW ) together with a standard one–
dimensional continuous in time Brownian motion {W (t)}∞t=0, and the filtration
FW

t = σ{W (s)|s ≤ t}. We assume that the σ–algebras contain the null sets. A BS
financial market consists of a savings account B(t) with an interest rate r, assuming
without loss of generality that r = 0, i.e.

(2.1) B(t) ≡ B0 > 0

and of a risky asset SW given by the following equation

(2.2) SW (t) = S0 exp(σW (t) + (κ− σ2/2)t), S0 > 0

where σ > 0 is called volatility and κ ∈ R is another constant. Denote by P̃W

the unique martingale measure for the above model. Using standard arguments it
follows that the restriction of the probability measure P̃W to the σ–algebra FW

t

satisfies

(2.3) Z(t) :=
dP̃W

dPW
|FW

t = exp(−
κ

σ
W (t)−

1

2
(
κ

σ
)2t).

Let T < ∞ be the maturity date of our American option and let T W
[0,T ] be the

set of all stopping times with respect to the filtration FW which take values in
[0, T ]. Denote by M [0, T ] the space of all Borel measurable functions on [0, T ]
with the uniform topology (induced by the norm ||u|| = sup0≤t≤T |u(t)|). Let
F : [0, T ]×M [0, T ] → R+ be a continuous function (with respect to the product
topology) such that there exists a constant C > 0 which satisfies

sup
0≤t≤T

F (t, x) ≤ C sup
0≤t≤T

|x(t)|, ∀x ∈M [0, T ].(2.4)

Furthermore, we assume that for any t ∈ [0, T ] and x, y ∈M [0, T ], F (t, x) = F (t, y)
if x(s) = y(s) for any s ≤ t.

Next, consider a cash–settled American contingent claim with the payoff process
given by

(2.5) YW (t) = F (t, SW ), 0 ≤ t ≤ T.

From the assumptions above it follows that {YW (t)}
T

t=0 is a continuous adapted

stochastic process and EW sup0≤t≤T Y
W (t), ẼW sup0≤t≤T Y

W (t) <∞, where EW

and ẼW , denote the expectations with respect to the probability measures PW and
P̃W , respectively.

In our model purchase and sale, of the risky asset are subject to a proportional
transaction costs of rate λ and µ, respectively. We assume that λ > 0 and 0 < µ < 1
are constants. Thus a trading strategy with a (finite) horizon T and an initial
capital x is a pair π = (x, γ) where γ = {γ(t)}Tt=0 is an adapted process of bounded
variation with left continuous paths and γ(0) = 0. Set

(2.6) γ+(t) =
γ(t) +

∫ t

0
|dγ(s)|

2
and γ−(t) =

∫ t

0
|dγ(s)| − γ(t)

2
.

Clearly γ(t) = γ+(t) − γ−(t) is a decomposition of γ into a positive variation γ+

and a negative variation γ−. The random variables γ+(t) and γ−(t), denote the
cumulative number of stocks, purchased up to time t and sold up to time t, (not
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including the transfers made at time t) respectively. The portfolio value at time
t ∈ [0, T ] (after liqudation) of a trading strategy π is given by

V π
λ,µ(t) = x− (1 + λ)(

∫ t

0 S
W (u)dγ+(u) + γ(t)−SW (t))(2.7)

+(1− µ)(
∫ t

0
SW (u)dγ−(u) + γ(t)+SW (t))

where we denote y+ = max(y, 0), y− = max(−y, 0). Observe that V π
λ,µ(t) is the

portfolio value before the transfers made at time t. A self financing strategy π is
called admissible if the following no–bankruptcy condition holds

(2.8) V π
λ,µ(t) ≥ 0 ∀t ∈ [0, T ].

The set of all admissible self financing strategies with an initial capital x will de-
noted by AW (x, λ, µ). For an admissible self financing strategy π the shortfall risk
is given by

(2.9) R(π, λ, u) = sup
τ∈T W

[0,T ]

EW [(Y W (τ) − V π
λ,µ(τ))

+],

which is the maximal possible expectation of the shortfall which measured in cash.
The shortfall risk for an initial capital x is given by

(2.10) R(x, λ, µ) = inf
π∈AW (x,λ,µ)

R(π, λ, µ).

A portfolio strategy π ∈ AW (x, λ, µ) will be called ε-optimal if R(π, λ, µ) ≤
R(x, λ, µ) + ε. For ε = 0 the above portfolio is called an optimal portfolio.

The following theorem (which is proved in Section 5) provides an existence result
for the optimal portfolio.

Theorem 2.1. For any λ > 0, 0 < µ < 1 and x ∈ R+, there exists a portfolio
strategy π ∈ AW (x, λ, µ) such that

(2.11) R(π, λ, µ) = R(x, λ, µ).

Next, we introduce the binomial models. Similar binomial models were used to
approximate option prices and shortfall risks in the complete setup (see Kifer 2006,
Dolinsky and Kifer 2008, 2010) i.e., in the absence of transaction costs. For any
n consider the n–step binomial market which consists of a savings account B(n)(t)
given by

(2.12) B(n)(t) ≡ B0 > 0

and of risky stock Sξ,n given by by the formulas Sξ,n(t) = S0 for t ∈ [0, T/n) and

(2.13) Sξ,n(t) = S0 exp
(

σ(T/n)1/2
[nt/T ]
∑

k=1

ξk
)

if t ≥ T/n

where ξ1, ξ2, ... are i.i.d. random variables taking values 1 and −1 with probabilities

p(n) =
(

exp((σ − 2κ
σ )

√

T
n ) + 1

)−1
and 1 − p(n) =

(

exp((2κσ − σ)
√

T
n ) + 1

)−1
,

respectively. Let P ξ
n = {p(n), 1− p(n)}

∞
be the corresponding product probability

measure on the space of sequences Ωξ = {−1, 1}∞. For any k ≥ 0 let Fξ
k =

σ{ξ1, ..., ξk}, (F
ξ
0 = {∅,Ωξ}). Denote by T ξ

0,n the set of all stopping times with

respect to the filtration Fξ
k with values in {0, 1, ..., n}.
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The n–step binomial market is active at the times 0, Tn ,
2T
n , ..., T . As before we

assume that purchase (respectively, sale) of the risky asset is subject to a pro-
portional transaction cost of rate λ (respectively, µ). Thus in the n–step binomial
model a trading strategy with an initial capital x is a pair π = (x, {γ(k)}nk=1) where

for any k, γ(k) is a random variable Fξ
k−1 measurable which represents the number

of stocks that the investor has at the moment kT
n , before the transfers made in this

moment of time. The portfolio value (in cash) of a trading strategy π is given by

V π
λ,µ(k) = x− (1 + λ)(γ(k)−Sξ,n(kT/n) +(2.14)

∑k
i=1(γ(i)− γ(i− 1))+Sξ,n((i− 1)T/n)) + (1 − µ)(γ(k)+Sξ,n(kT/n) +

∑k
i=1(γ(i)− γ(i− 1))−Sξ,n((i − 1)T/n)), k = 0, 1, ..., n.

Note that V π
λ,µ(k) is the portfolio value at the time kT

n before the made transfers
in this time. A self financing strategy π is called admissible if the following no–
bankruptcy condition holds

(2.15) V π
λ,µ(k) ≥ 0 ∀k ≤ n.

The set of all admissible self financing strategies with an initial capital x will de-
noted by Aξ,n(x, λ, µ).

Consider an American contingent claim with the adapted payoff process

(2.16) Y ξ,n(k) = F
(kT

n
, Sξ,n

)

, 0 ≤ k ≤ n.

For π ∈ Aξ,n(x, λ, µ) the shortfall risk defined by

(2.17) Rn(π, λ, u) = max
τ∈T

ξ
0,n

Eξ
n[(Y

ξ,n(τ) − V π
λ,µ(τ))

+]

where Eξ
n is the expectation with respect to the probability measure P ξ

n . The
shortfall risk for an initial capital x is given by

(2.18) Rn(x, λ, µ) = inf
π∈Aξ,n(x,λ,µ)

Rn(π, λ, µ).

The following theorem is the main result of the paper and it says that the shortfall
risk of an American option in the BS market with proportional transaction costs
λ, µ can be approximated by a sequence of shortfall risks of an American options
with same proportional costs in the binomial models defined above. This result has
a practical value since for any n the shortfall risk Rn(x, λ, µ) can be calculated by
dynamical programming algorithm which is given in Section 3.

Theorem 2.2. For any λ > 0, 0 < µ < 1 and x ∈ R+,

(2.19) lim
n→∞

Rn(x, λ, µ) = R(x, λ, µ).

Next, we introduce a simple form of Skorohod embedding which allows to con-
sider the above binomial markets and the BS model on the same probability space.

Set W ∗(t) = lnSW (t)
σ , t ≥ 0 and for any n ∈ N define recursively θ

(n)
0 = 0,

θ
(n)
k+1 = inf {t > θ

(n)
k : |W ∗(t)−W ∗(θ

(n)
k )| =

√

T
n }. Observe (see Dolinsky and Kifer

2008) that for any k, W ∗(θ
(n)
k+1)−W ∗(θ

(n)
k ) is independent of FW

θ
(n)
k

and excepts the

values
√

T
n and −

√

T
n , with probabilities p(n) and 1 − p(n), respectively. For any
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n define the map Πn : L∞(Fξ
n, P

ξ
n) → L∞(FW

θ
(n)
n

, PW ) by Πn(U) = Ũ so that if

U = f

(

√

T
n ξ1, ...,

√

T
n ξn

)

for a function f on {
√

T
n ,−

√

T
n }

n then

Ũ = f(W ∗(θ
(n)
1 ),W ∗(θ

(n)
2 )−W ∗(θ

(n)
1 ), ...,W ∗(θ(n)n )−W ∗(θ

(n)
n−1)).

Let AW,n(x, λ, µ) be set of admissible self financing strategies which managed on

the set {0, θ
(n)
1 , ..., θ

(n)
n } such that after the moment θ

(n)
n the number of stocks in

the portfolio is 0. Namely, π = (x, {γ(t)}∞t=0) ∈ AW,n(x, λ, µ) if there are random
variables u1, ..., un such that

(2.20) γ(t) =
n−1
∑

i=0

I
θ
(n)
i <t≤θ

(n)
i+1

ui+1

where for any i ≥ 1, ui is FW

θ
(n)
i−1

measurable. We require that the corresponding

wealth process which is given by (2.7) will satisfy the no–bankruptcy condition
(2.8). The map Πn allows us to define a function ψn : Aξ,n(x, λ, µ) → AW,n(x, λ, µ)
which maps admissible self financing strategies in the n–step binomial model to the
set of admissible self financing strategies in the BS model. Let π = (x, {γ(k)}nk=1) ∈
Aξ,n(x, λ, µ). Define ψn(π) = (x, {γ̃(t)}∞t=0) where

(2.21) γ̃(t) =

n−1
∑

i=0

I
θ
(n)
i <t≤θ

(n)
i+1

Πn(γ(i+ 1))

where we set IA = 1 if an event A occurs and IA = 0 if not. Let us show
that π̃ := ψn(π) is an admissible portfolio. From (2.7), (2.14) and the equality

Πn(S
ξ,n(kT/n)) = SW (θ

(n)
k ), k ≤ n it follows that

(2.22) V π̃
λ,µ(θ

(n)
k ) = Πn(V

π
λ,µ(k)) ≥ 0, k = 0, 1, ..., n.

The portfolio strategy π̃ is managed only on the set {0, θ
(n)
1 , ..., θ

(n)
n }, and so it is

clear that the wealth process {V π̃
λ,µ(t)}

∞

t=0
is a supermartingale with respect to the

measure P̃W Furthermore for any t, V π̃
λ,µ(t) = V π̃

λ,µ(t ∧ θ
(n)
n ). This together with

(2.22) gives

(2.23) V π̃
λ,µ(t) ≥ ẼW (V π̃

λ,µ(θ
(n)
n )|FW

θ
(n)
n ∧t

) ≥ 0.

Thus ψn(π) satisfies the no–bankruptcy condition, and ψn(π) ∈ AW,n(x, λ, µ). If
we restrict the portfolio ψn(π) to the interval [0, T ] we obtain an element which
belongs to AW (x, λ, µ).

In Section 3 we prove that the optimal portfolios for the shortfall risk measure
in the above binomial models can be calculated by using a dynamical programming
algorithm. The following result shows how to use these portfolios together with the
maps ψn, n ∈ N in order to construct ”almost” optimal portfolios in the BS model.

Theorem 2.3. Let λ > 0, 0 < µ < 1 and x > 0. For any n ∈ N let πn =
πn(x, λ, µ) ∈ Aξ,n(x, λ, µ) be the optimal portfolio given by (3.18). Then

(2.24) lim
n→∞

R(ψn(πn), λ, µ) = R(x, λ, µ).
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3. Analysis of the binomial models

In this section we provide a dynamical programming algorithm for the shortfall
risks and the corresponding optimal portfolios in the binomial models. This dy-
namical programming algorithm will be essential for comparing the shortfall risks in
the binomial models with the shortfall risk in the BS model. Through this section
we will assume that the transaction costs λ, µ are fixed.

Let π = (x, {γ(k)}nk=1) ∈ Aξ,n(x, λ, µ) for some x ≥ 0 and n ∈ N. From (2.14)
it follows that

V π
λ,µ(k + 1) = G

(

V π
λ,µ(k), γ(k)S

ξ,n(kT/n), (γ(k + 1)− γ(k))×(3.1)

Sξ,n(kT/n), exp(σ
√

T
n ξk+1)

)

, k = 0, 1, ..., n− 1

where

G(u, v, w, ρ) = u− (1 − µ)v+ + (1 + λ)v− + (1 − µ)w− −(3.2)

(1 + λ)w+ + ρ((1− µ)(w + v)+ − (1 + λ)(w + v)−).

For any (u, v) ∈ R+ × R, 0 < a < 1 and b > 0 introduce the set Aa,b(u, v) =
{w|G(u, v, w, 1 + b), G(u, v, w, 1− a) ≥ 0}. From simple calculations we obtain

Aa,b(u, v) =
[

− v − u
(1+λ)(1+b)−(1−µ) ,

(u−av(1−µ))+

1+λ−(1−µ)(1−a) −
(u−av(1−µ))−

a(1−µ)

]

(3.3)

if v ≥ 0 and Aa,b(u, v) =
[

− (u+b(1+λ)v)+

(1+b)(1+λ)−(1−µ) +
(u+b(1+λ)v)−

b(1+λ) ,

−v + u
1+λ−(1−µ)(1−a)

]

if v < 0.

Set an = 1 − exp(−σ
√

T
n ) and bn = exp(σ

√

T
n ) − 1. From (3.1) and the indepen-

dency of ξk+1 and Fξ
k it follows that π = (x, {γ(k)}nk=1) ∈ Aξ,n(x, λ, µ) iff for any

k, γ(k) is Fξ
k−1 measurable and

(3.4) (γ(k + 1)− γ(k))Sξ,n(kT/n) ∈ Aan,bn(V
π
λ,µ(k), γ(k)S

ξ,n(kT/n)).

Next, we prove a technical lemma.

Lemma 3.1. Let 0 < a, p < 1, b > 0 and H1, H2 : R+ × R → R+ be a functions
which satisfy the following conditions. For i=1,2:
i. Hi is a continuous function.
ii. For any v ∈ R, Hi(·, v) is a non increasing function.
iii. Hi is a piecewise linear function which vanishing at infinity with respect to
the first variable. Namely, there exists a natural numbers N (i),M (i) ∈ N and a

convex polyhedrals K
(i)
1 , ...,K

(i)

N(i) ⊂ R+ × R with pairwise disjoint interiors and
⋃N(i)

j=1 K
(i)
j = [0,M (i)]× R, such that for any j ≤ N (i)

(3.5) Hi(u, v) = c
(i)
j u+ d

(i)
j v + e

(i)
j ∀(u, v) ∈ K

(i)
j

where c
(i)
1 , ..., c

(i)

N(i) , d
(i)
1 , ..., d

(i)

N(i) , e
(i)
1 , ..., e

(i)

N(i) ∈ R are constants.

Define the function H : R+ × R → R+ by

H(u, v) = infw∈Aa,b(u,v) pH1

(

G(u, v, w, 1 + b), (v + w)(1 + b)
)

+(3.6)

(1− p)H1

(

G(u, v, w, 1− a), (v + w)(1 − a)
)

.

Then H is satisfying the conditions i.–iii. above.
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Proof. Set, I(u, v, w) = pH1

(

G(u, v, w, 1+b), (v+w)(1+b)
)

+(1−p)H1

(

G(u, v, w, 1−

a), (v+w)(1− a)
)

. Observe that I(·, u, v) is a non increasing function for any v, w.
Clearly, for any 0 ≤ u1 < u2 and v ∈ R, Aa,b(u1, v) ⊆ Aa,b(u2, v). Thus,

H(u1, v) = infw∈Aa,b(u1,v) I(u1, v, w) ≥ infw∈Aa,b(u2,v) I(u1, v, w) ≥(3.7)

infw∈Aa,b(u2,v) I(u2, v, w) = H(u2, v)

and so, H satisfies condition ii. Next, we prove continuity. Let (u, v) ∈ R+×R and
{(un, vn)}

∞
n=1 ⊂ R+ × R such that (un, vn) → (u, v) and limn→∞H(un, vn) exists

(may be ±∞). For any n there exists (I is a continuous function) wn ∈ Aa,b(un, vn)
which satisfies I(un, vn, wn) = H(un, vn). The sequence {wn}∞n=1 is bounded and
so its has a subsequence {wnk

}∞k=1 which converge to w. From (3.3) it follows that
w ∈ Aa,b(u, v) and so

(3.8) H(u, v) ≤ I(u, v, w) = lim
n→∞

I(un, vn, wn) = lim
n→∞

H(un, vn).

Choose w̃ ∈ Aa,b(u, v) for which I(u, v, w̃) = H(u, v). From (3.3) it follows that
there exists a sequence w̃n ∈ Aa,b(un, vn), n ∈ N such that limn→∞ w̃n = w̃. Thus,

(3.9) H(u, v) = I(u, v, w̃) = lim
n→∞

I(un, vn, w̃n) ≥ lim
n→∞

H(un, vn).

From (3.8)–(3.9) we obtain that H is continuous. Finally, we prove that H satisfies
condition iii. For any (u, v) ∈ R+ × R introduce the set

B(u, v) =
{

w ∈ Aa,b(u, v)|
(

G(u, v, w, 1 + b), (v + w)(1 + b)
)

∈
⋃N(1)

j=1 ∂K
(1)
j

}
⋃

{

w ∈ Aa,b(u, v)|
(

G(u, v, w, 1 − b), (v + w)(1 − b)
)

∈
⋃N(2)

j=1 ∂K
(2)
j

}
⋃

∂Aa,b(u, v).

Fix u, v and let B(u, v) = {w1 < w2 < ... < wk}. From (3.5) it follows that for any
i < k, the function I(u, v, ·) is linear on the interval [wi, wi+1] and so

(3.10) H(u, v) = min
w∈B(u,v)

I(u, v, w).

Note that there exists a finite sequence of real numbers α1, ..., αN , β1, ..., βN , δ1, ..., δN
such that for any (u, v), B(u, v) ⊆ {αju+βjv+δj |j ≤ N}. This together with (3.10)
gives that there there exists a finite sequence of real numbers Φ1, ...,Φm,∆1, ...,∆m,
Θ1, ...,Θm such that for any (u, v) ∈ R+ × R

(3.11) H(u, v) = Φju+∆jv +Θj

for some j (which depends on (u, v)). From (3.3), −v ∈ Aa,b(u, v) and so
(3.12)
H(u, v) ≤ I(u, v,−v) = pH1(u, 0) + (1− p)H2(u, 0) ≤ max(H1(u, 0), H2(u, 0)).

From (3.11)–(3.12) and the fact that H is continuous we conclude that H satisfies
condition iii. and the proof is completed. �

Next, fix n and consider the n–step binomial model. For any π ∈ Aξ,n(x, λ, µ)
define a sequence of random variables {Uπ(k)}nk=0 by

Uπ(n) = (Y ξ,n(n)− V π
λ,µ(n))

+, and for k < n(3.13)

Uπ(k) = max
(

Eξ
n(U

π(k + 1)|Fξ
k), (Y

ξ,n(k)− V π
λ,µ(k))

+
)

.
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Applying standard results for optimal stopping (see Peskir and Shiryaev 2006) for
the process (Y ξ,n(k)− V π

λ,µ(k))
+, k = 0, 1, ..., n we obtain

(3.14) Uπ(0) = max
τ∈T

ξ
0,n

Eξ[(Y ξ,n(τ)− V π
λ,µ(τ))

+] = Rn(π, λ, µ).

For any 0 ≤ k ≤ n let φ
(n)
k : {−1, 1}k → R+ such that

(3.15) φ
(n)
k (ξ1, ..., ξk) = Y ξ,n(k).

Define a sequence of functions J
(n)
k : R+ × R × {−1, 1}k → R+, k = 0, 1, ..., n by

the following backward relations. For any z1, ..., zn ∈ {−1, 1} and (u, v) ∈ R+ × R

J
(n)
n (u, v, z1, ..., zn) = (φ

(n)
n (z1, ..., zn)− u)+ and(3.16)

J
(n)
k (u, v, z1, ..., zk) = max

(

(φ
(n)
n (z1, ..., zk)− u)+, infw∈Aan,bn (u,v)

p(n)J
(n)
k+1

(

G(u, v, w, 1 + bn), (1 + bn)(u+ w), z1, ..., zk, 1
)

+ (1− p(n))×

J
(n)
k+1

(

G(u, v, w, 1 − an), (1 − an)(u+ w), z1, ..., zk,−1
)

)

for k < n

where recall, p(n) was defined after (2.13). From Lemma 3.1 it follows (by backward
induction) that for any k ≤ n and z1, ..., zk ∈ {−1, 1} the function H(·, ·) :=

J
(n)
k (·, ·, z1, ..., zk) is satisfying conditions i.–iii which were introduced in Lemma

3.1. In particular it is continuous. This fact allows us to define the functions

h
(n)
k : R+ × R× {−1, 1}k → R, k < n by

h
(n)
k (u, v, z1, ..., zk) = argminw∈Aan,bn (u,v)(3.17)

p(n)J
(n)
k+1

(

G(u, v, w, 1 + bn), (1 + bn)(u+ w), z1, ..., zk, 1
)

+ (1− p(n))×

J
(n)
k+1

(

G(u, v, w, 1 − an), (1 − an)(u+ w), z1, ..., zk,−1
)

)

.

Let x > 0 be an initial capital. Define π = πn(x, λ, µ) = (x, {γ(k)}nk=1) by

V π
λ,µ(0) = x, and for 0 ≤ k < n, γ(k + 1) = γ(k) +(3.18)

1
Sξ,n(kT/n)h

(n)
k

(

V π
λ,µ(k), γ(k)S

ξ,n(kT/n), ξ1, ..., ξk
)

and V π
λ,µ(k + 1) =

G
(

V π
λ,µ(k), γ(k)S

ξ,n(kT/n), (γ(k + 1)− γ(k))Sξ,n(kT/n), exp(σ
√

T
n ξk+1)

)

.

Proposition 3.2. For any n ∈ N and x ≥ 0

(3.19) Rn(πn(x, λ, µ), λ, µ) = Rn(x, λ, µ) = J
(n)
0 (x, 0).

Proof. Fix n ∈ N and x ≥ 0. Set π = πn(x, λ, µ) = (x, γ) and let π̃ = (x, γ̃) ∈
Aξ,n(x, λ, µ) an arbitrary portfolio. First we prove by backward induction that for
any k ≤ n,

J
(n)
k (V π

λ,µ(k), γ(k)S
ξ,n(kT/n), ξ1, ..., ξk) = Uπ(k) and(3.20)

J
(n)
k (V π̃

λ,µ(k), γ̃(k)S
ξ,n(kT/n), ξ1, ..., ξk) ≤ U π̃(k).
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For k = n, we obtain from (3.13) and (3.15)–(3.16) that the relations (3.20) hold
with equality. Suppose that (3.20) holds true for k + 1 and prove them for k. Set,

Υ = γ(k)Sξ,n(kT/n), Υ̃ = γ̃(k)Sξ,n(kT/n),

Γ = h
(n)
k (V π

λ,µ(k),Υ, ξ1, ..., ξk) and Γ̃ = (γ̃(k + 1)− γ̃(k))Sξ,n(kT/n).

From (3.17)–(3.18) and the induction assumption it follows

Eξ
n(U

π(k + 1)|Fξ
k) = Eξ

n

(

J
(n)
k+1

(

G
(

V π
λ,µ(k),Υ,Γ, exp(σ

√

T/nξk+1)
)

,(3.21)

(Γ + Υ) exp(σ
√

T/nξk+1), ξ1, ..., ξk+1

)∣

∣

∣

∣

Fξ
k

)

= p(n)J
(n)
k+1

(

G
(

V π
λ,µ(k),Υ,

Γ, 1 + bn
)

, (Γ + Υ)(1 + bn), ξ1, ..., ξk, 1

)

+ (1− p(n))J
(n)
k+1

(

G
(

V π
λ,µ(k),Υ,

Γ, 1− an
)

, (Γ + Υ)(1− an), ξ1, ..., ξk,−1

)

= minw∈Aan,bn (V π
λ,µ

(k),Υ)

= p(n)J
(n)
k+1

(

G
(

V π
λ,µ(k),Υ, w, 1 + bn

)

, (w +Υ)(1 + bn), ξ1, ..., ξk, 1

)

+

(1− p(n))J
(n)
k+1

(

G
(

V π
λ,µ(k),Υ, w, 1 − an

)

, (w +Υ)(1− an), ξ1, ..., ξk,−1

)

.

From (3.4) it follows that Γ̃ ∈ Aan,bn(V
π̃
λ,µ(k), Υ̃), and so from the induction as-

sumption

Eξ
n(U

π̃(k + 1)|Fξ
k) ≥ Eξ

n

(

J
(n)
k+1

(

G
(

V π̃
λ,µ(k), Υ̃, Γ̃, exp(σ

√

T/nξk+1)
)

,(3.22)

(Γ̃ + Υ̃) exp(σ
√

T/nξk+1), ξ1, ..., ξk+1

)∣

∣

∣

∣

Fξ
k

)

= p(n)J
(n)
k+1

(

G
(

V π̃
λ,µ(k), Υ̃,

Γ̃, 1 + bn
)

, (Γ̃ + Υ̃)(1 + bn), ξ1, ..., ξk, 1

)

+ (1− p(n))J
(n)
k+1

(

G
(

V π̃
λ,µ(k), Υ̃,

Γ̃, 1− an
)

, (Γ̃ + Υ̃)(1 − an), ξ1, ..., ξk,−1

)

≥ minw∈Aan,bn (V π̃
λ,µ

(k),Υ̃)

= p(n)J
(n)
k+1

(

G
(

V π̃
λ,µ(k), Υ̃, w, 1 + bn

)

, (w + Υ̃)(1 + bn), ξ1, ..., ξk, 1

)

+

(1− p(n))J
(n)
k+1

(

G
(

V π̃
λ,µ(k), Υ̃, w, 1 − an

)

, (w + Υ̃)(1− an), ξ1, ..., ξk,−1

)

.

Combining (3.13), (3.15)–(3.16) and (3.21)-(3.22) we obtain that (3.20) holds true.
Next, by using (3.20) for k = 0 and (3.14) it follows that for any π̃ ∈ Aξ,n(x, λ, µ)

Rn(π, λ, µ) = Uπ(0) = J
(n)
0 (x, 0) ≤ U π̃(0) = Rn(π̃, λ, µ).

Thus Rn(x, λ, µ) = Rn(π, λ, µ) = J
(n)
0 (x, 0), as required. �

Corollary 3.3. From Lemma 3.1 and Proposition 3.2 we obtain that the func-

tion Rn(x, λ, µ) = J
(n)
0 (x, 0) is a continuous non increasing piecewise linear func-

tion vanishing at ∞. Namely, there exists a natural number N , c1, ..., cN ≤ 0,
d1, ..., dN ∈ R and 0 = α1 < α2 < ... < αN+1 < ∞ such that Rn(x, λ, µ) =
∑N

i=1 I[ai,ai+1)(cix+ di).
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4. Proof of the limit theorems

In this section we complete the proof of Theorems 2.2–2.3. We start with a
technical preparations.

For any n ∈ N set

(4.1) SW,n(t) = SW (θ
(n)
k ), kT/n ≤ t < (k + 1)T/n, k = 0, 1, ..., n.

Define

(4.2) YW,n(t) = F (t, SW,n), t ∈ [0, T ].

Note that for any 0 ≤ k ≤ n

Y W,n(kT/n) = φ
(n)
k

(

√

n
TW

∗(θ
(n)
1 ),

√

n
T (W

∗(θ
(n)
2 )−W ∗(θ

(n)
1 )), ...,(4.3)

√

n
T (W

∗(θ
(n)
k )−W ∗(θ

(n)
k−1))

)

.

From Kifer (2006)

limn→∞ EW sup0≤t≤T |SW,n(t)− SW (t)| = 0 and(4.4)

limn→∞EW max1≤k≤n |θ
(n)
k − kT

n | = 0.

Fix n. Following Kifer (2006) we introduce for each k = 1, 2, ... the finite σ-

algebra GW,n
k = σ{W ∗(θ

(n)
1 ), ...,W ∗(θ

(n)
k )} with GW,n

0 = {∅,ΩW} being the trivial

σ-algebra. Let SW,n
0,n and T W,n

0,n , be the sets of all stopping times with values in the

set {0, 1, ..., n} with respect to the filtrations {GW,n
k }nk=0 and {FW

θ
(n)
k

}nk=0, respec-

tively. Recall the set AW,n(x, λ, µ) which was introduced before equation (2.20).
Define

(4.5) RW,n(x, λ, µ) = inf
π∈AW (x,λ,µ)

sup
τ∈T

W,n
0,n

EW [(Y W,n(τT/n)− V π
λ,µ(θ

(n)
τ ))+].

From (2.7) it follows that for any π = (x, {γ(t)}∞t=0) ∈ AW,n(x, λ, µ),

(4.6) V π
λ,µ(θ

(n)
k+1) = G

(

V π
λ,µ(k), γ(θ

(n)
k )SW (θ

(n)
k ),Υ, exp(σ(W ∗(θ

(n)
k+1)−W

∗(θ
(n)
k )))

)

where Υ = (γ(θ
(n)
k+1)− γ(θ

(n)
k ))SW (θ

(n)
k ) and G was introduced in (3.2).

Combining similar arguments to those of Section 3 (replace {ξi}ni=1, {S
ξ,n( iTn )}ni=0,

and {Fξ
i }

n
i=0 by {

√

n
T (W

∗(θ
(n)
i ) −W ∗(θ

(n)
i−1))}

n
i=1, {S

W (θ
(n)
i )}ni=0 and {FW

θ
(n)
i

}ni=0,

respectively) with (4.3), (4.6) and the independency of W ∗(θ
(n)
k+1) −W ∗(θ

(n)
k ) and

FW

θ
(n)
k

, we obtain

(4.7) RW,n(x, λ, µ) = J
(n)
0 (x) = Rn(x, λ, µ) ∀x, λ, µ.

Next, fix an initial capital x and a proportional transaction costs λ, µ. For any n
let πn = πn(x, λ, µ) be the optimal portfolio which is given by (3.18). Consider the
portfolio π̃n := ψn(πn) ∈ AW (x, λ, µ). For these portfolios we have the following
lemma.

Lemma 4.1.

(4.8) lim sup
n→∞

R(π̃n, λ, µ)−Rn(x, λ, µ) ≤ 0.
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Proof. For any n let τn ∈ T W
[0,T ] such that

(4.9) R(π̃n, λ, µ) <
1

n
+ EW [(Y W (τn)− V π̃n

λ,µ(τn))
+].

Define νn = n ∧ min{k|θ
(n)
k ≥ τn}, n ∈ N. Observe that νn ∈ T W,n

0,n and θ
(n)
νn ≥

τn∧θ
(n)
n . The portfolio value process {V π̃n

λ,µ(t)}
∞
t=0 is a supermartingale with respect

to the measure P̃W . Thus for any n ∈ N

(4.10) V π̃n

λ,µ(τn) = V π̃n

λ,µ(τn ∧ θ(n)n ) ≥ ẼW (V π̃n

λ,µ(θ
(n)
νn )|FW

τn∧θ
(n)
n

).

From (2.3), (4.10) and the Jensen inequlity it follows

EW [(Y W (τn ∧ θ
(n)
n )− V π̃n

λ,µ(τn))
+] = ẼW

(

1

Z(τn∧θ
(n)
n )

(

Y W (τn ∧ θ
(n)
n )(4.11)

−V π̃n

λ,µ(τn)
)+

)

≤ ẼW

(

1

Z(τn∧θ
(n)
n )

(

YW (τn ∧ θ
(n)
n )− V π̃n

λ,µ(θ
(n)
νn )

)+
)

= EW

(

Z(θ(n)
νn

)

Z(τn∧θ
(n)
n )

(

Y W (τn ∧ θ
(n)
n )− V π̃n

λ,µ(θ
(n)
νn )

)+
)

.

From (4.9) and (4.11),

R(π̃n, λ, µ) <
1
n + EW |Y W (τn)− YW (τn ∧ θ

(n)
n )|+(4.12)

EW
(∣

∣

Z(θ(n)
νn

)

Z(τn∧θ
(n)
n )

− 1
∣

∣ sup0≤t≤T Y
W (t)

)

+ EW |Y W (τn ∧ θ
(n)
n )− YW,n(νnT/n)|

+EW [(Y W,n(νnT/n)− V π̃n

λ,µ(θ
(n)
νn ))+].

From the definition it follows

τn − τn ∧ θ
(n)
n ≤ |T − θ

(n)
n |, θ

(n)
νn − τn ∧ θ

(n)
n ≤ max0≤k<n θ

(n)
k+1 − θ

(n)
k ≤ T

n +

2max1≤k≤n |θ
(n)
k − kT

n | and |τn ∧ θ
(n)
n − νnT/n| ≤

T
n +max1≤k≤n |θ

(n)
k − kT

n |.

From (4.4) we get that the sequences {τn− τn∧ θ
(n)
n }∞n=1, {θ

(n)
νn − τn ∧ θ

(n)
n }∞n=1 and

{τn ∧ θ
(n)
n − νnT/n}

∞
n=1 converge to 0 in probability. From (4.4) SW,n → SW

(on the space M [0, T ]) in probability. Since F is continuous and the process

Z is continuous we obtain that the sequences {YW (τn) − YW (τn ∧ θ
(n)
n )}∞n=1,

{|
Z(θ(n)

νn
)

Z(τn∧θ
(n)
n )

−1
∣

∣ sup0≤t≤T Y
W (t)}∞n=1 and {YW (τn∧θ

(n)
n )−YW,n(νnT/n)}∞n=1 con-

verge to 0 in probability. From (2.4) it follows that the above sequences are uni-
formly integrable, and so they converge to 0 in L1(ΩW , PW ). Thus from (4.12)

(4.13) lim sup
n→∞

R(π̃n, λ, µ)−An ≤ 0

whereAn = EW [(Y W,n(νnT/n)−V
π̃n

λ,µ(θ
(n)
νn ))+]. Note that the process {(YW,n(kT/n)

−V π̃n

λ,µ(θ
(n)
k ))+}nk=0 is adapted to the filtration {GW,n

k }nk=0, thus from standard dy-

namical programming (see Peskir and Shiryaev 2006) it follows

An ≤ supζ∈T
W,n
0,n

EW [(Y W,n(ζT/n)− V π̃n

λ,µ(θ
(n)
ζ ))+] =(4.14)

supζ∈S
W,n
0,n

EW [(Y W,n(ζT/n)− V π̃n

λ,µ(θ
(n)
ζ ))+].
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Recall the map Πn which was introduced after Theorem 2.2. Notice that Πn :

T ξ
0,n → T S,n

0,n is a bijection and for any random variable U ∈ L∞(Fξ
n, P

ξ
n), E

WΠn(U) =

Eξ
nU . From (2.22), (3.15) and (4.3) we obtain

supζ∈T
S,n
0,n

EW [(Y W,n(ζT/n)− V π̃n

λ,µ(θ
(n)
ζ ))+] =(4.15)

supσ∈T
ξ
0,n
EW

(

Πn[(Y
ξ,n(σ)− V πn

λ,µ(σ))
+]
)

=

supσ∈T
ξ
0,n
Eξ

n[(Y
ξ,n(σ)− V πn

λ,µ(σ))
+] = Rn(πn, λ, µ) = Rn(x, λ, µ).

By combining (4.13)–(4.15) we complete the proof. �

Let λ > 0 and 0 < µ < 1. Set λn = (1 + λ) exp(−2σ
√

T
n ) − 1 and µn =

1− (1−µ) exp(2σ
√

T
n ) (we assume that n is sufficiently large such that λn > 0 and

0 < µn < 1).

Lemma 4.2. For any initial capital x,

(4.16) lim sup
n→∞

Rn(x, λn, µn) ≤ R(x, λ, µ).

Proof. Choose ǫ > 0. There exists π = (x, {γ(t)}Tt=0) ∈ AW (x, λ, µ) such that

(4.17) R(π, λ, µ) < ǫ+R(x, λ, µ).

For simplicity we extend the portfolio π to R+, by setting γ(t) = 0 for t > T , i.e.

the portfolio value remains constant after the maturity date T . Set un(k) = γ(θ
(n)
k ),

n ∈ N, 0 ≤ k ≤ n. For any n define the adapted (to the filtration {FW
t }∞t=0) process

{γn(t)}∞t=0 by

(4.18) γn(t) =
n−1
∑

k=0

I
θ
(n)
k

<t≤θ
(n)
k+1

un(k).

Consider the portfolio πn = (x, {γn(t)}∞t=0) in a BS model for which purchase
and sale, of the risky asset are subject to a proportional transaction costs of rate
λn and µn, respectively. Observe that for any i < n we have the inequalities

exp(2σ
√

T
n ) infθ(n)

i ≤t≤θ
(n)
i+1

SW (t) ≥ SW (θ
(n)
i+1) and exp(−2σ

√

T
n ) supθ(n)

i ≤t≤θ
(n)
i+1

SW (t)

≤ SW (θ
(n)
i+1). Thus for any i < n

(1 − µ)
∫ θ

(n)
i+1

θ
(n)
i

SW (t)dγ−(t)− (1 + λ)
∫ θ

(n)
i+1

θ
(n)
i

SW (t)dγ+(t) ≤(4.19)

(1− µn)S
W (θ

(n)
i+1)

∫ θ
(n)
i+1

θ
(n)
i

dγ−(t)− (1 + λn)S
W (θ

(n)
i+1)

∫ θ
(n)
i+1

θ
(n)
i

dγ+(t) ≤

SW (θ
(n)
i+1)

(

(1− µn)(un(i+ 1)− un(i))
− − (1 + λn)(un(i+ 1)− un(i))

+
)

≤

SW (θ
(n)
i+1)

(

(1− µn)(un(i)
+ − un(i + 1)+)− (1 + λn)(un(i)

− − un(i+ 1)−)
)

.
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Set un(−1) = 0. From (2.7) and (4.19) it follows that for any k ≤ n

V πn

λn,µn
(θ

(n)
k ) = x+ (1− µn)

(

un(k − 1)+SW (θ
(n)
k ) +(4.20)

∑k−2
i=0 (un(i+ 1)− un(i))

−SW (θ
(n)
i+1)

)

− (1 + λn)
(

un(k − 1)−SW (θ
(n)
k ) +

∑k−2
i=0 (un(i+ 1)− un(i))

+SW (θ
(n)
i+1)

)

≥ x+ (1− µ)
(

un(k)
+SW (θ

(n)
k ) +

∑k−1
i=0

∫ θ
(n)
i+1

θ
(n)
i

SW (t)dγ−(t)
)

− (1 + λ)
(

un(k)
−SW (θ

(n)
k ) +

+
∑k−1

i=0

∫ θ
(n)
i+1

θ
(n)
i

SW (t)dγ+(t)
)

= V π
λ,µ(θ

(n)
k ∧ T ) ≥ 0.

Thus πn ∈ AW,n(x, λn, µn). From (4.5) and (4.7) we obtain that there exists a

stopping time τn ∈ T W,n
0,n such that

(4.21) EW [(Y W,n(τnT/n)− V πn

λn,µn
(θ(n)τn ))+] ≥ Rn(x, λn, µn)− ǫ.

Clearly R(π, λ, µ) ≥ EW [(Y W (θ
(n)
τn ∧ T )− V π

λ,µ(θ
(n)
τn ∧ T ))+], and so from (4.20)

(4.22) R(π, λ, µ) ≥ EW [(Y W (θ(n)τn ∧ T )− V πn

λn,µn
(θ(n)τn ))+].

From (4.17), (4.21) and (4.22) it follows

(4.23) Rn(x, λn, µn) ≤ R(x, λ, µ) + 2ǫ+ EW |Y W,n(τnT/n)− Y W (θ(n)τn ∧ T )|.

By using the same arguments as in Lemma 3.1 we get limn→∞EW |Y W,n(τnT/n)−

YW (θ
(n)
τn ∧ T )| = 0 and we complete the proof. �

Observe that for any n ∈ N, λ′ > 0, 0 < µ′ < 1 and x ≥ 0, the functions
Rn(x, λ

′, ·), Rn(x, ·, µ′) are non decreasing. Thus from Lemma 4.2 we obtain that
for any λ > 0, 0 < µ < 1 and 0 < ǫ < 1− µ

(4.24) R(x, λ+ ǫ, µ+ ǫ) ≥ lim sup
n→∞

Rn(x, λ, µ).

Define the function R̄ : R+ × (0,∞)× (0,∞) → R+ by

(4.25) R̄(x, λ, µ) = lim
λ′↓λ

lim
µ′↓µ

R(x, λ′, µ′).

The limit above is exists since the functions Rn(x, λ
′, ·), Rn(x, ·, µ′) are non decreas-

ing. From (4.24)

(4.26) R̄(x, λ, µ) ≥ lim sup
n→∞

Rn(x, λ, µ).

Next, fix λ, µ and let πn = πn(x, λ, µ) be the optimal portfolio which is given by
(3.18). From Lemma 4.1 and (4.26) we obtain

R(x, λ, µ) ≤ lim infn→∞R(ψn(πn), λ, µ) ≤ lim infn→∞Rn(x, λ, µ) ≤(4.27)

R̄(x, λ, µ) and R(x, λ, µ) ≤ lim supn→∞R(ψn(πn), λ, µ) ≤

lim supn→∞Rn(x, λ, µ) ≤ R̄(x, λ, µ).

Thus in order to complete the proof of Theorems 2.2–2.3, it remains to establish
the following stability result.

Lemma 4.3. For any λ > 0, 0 < µ < 1 and x ∈ R+

(4.28) R̄(x, λ, µ) = R(x, λ, µ).
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Proof. The inequality R̄(x, λ, µ) ≥ R(x, λ, µ), is trivial. Thus it is sufficient to show
that R̄(x, λ, µ) ≤ R(x, λ, µ). Fix λ, µ, x and choose ǫ > 0. For x = 0 the statement
is trivial since R(0, ·, ·) ≡ supτ∈T W

[0,T ]
EWY W (τ). Assume that x > 0. There exists

π = (x, {γ(t)}Tt=0) ∈ AW (x, λ, µ) such that

(4.29) R(π, λ, µ) < R(x, λ, µ) + ǫ.

Set

(4.30) λ(n)q = λ+
(1− q)x

n
and µ(n)

q = µ+
(1 − q)x

n
, n ∈ N, 0 < q < 1.

We assume that n is sufficiently large such that µ
(n)
q < 1 for any 0 < q < 1.

Introduce the stopping times

(4.31) τn = T ∧ inf

{

t
∣

∣

∫ t

0

SW (u)|dγ|(u) + |γ(t)|SW (t) ≥ n

}

, n ∈ N.

The stochastic process
{ ∫ t

0
SW (u)|dγ|(u) + |γ(t)|SW (t)

}T

t=0
is left continuous, and

so for any t ≤ T ,

(4.32)

∫ t∧τn

0

SW (u)|dγ|(u) + |γ(t ∧ τn)|S
W (t ∧ τn) ≤ n.

Notice that

(4.33) lim
n→∞

τn = T a.s.

From (4.30) and (4.32) it follows that for any 0 ≤ t ≤ T

(µ
(n)
q − µ)

( ∫ t∧τn
0 SW (u)dγ−(u) + γ(t ∧ τn)

+SW (t ∧ τn)
)

+(4.34)

(λ
(n)
q − λ)

( ∫ t∧τn
0

SW (u)dγ+(u) + γ(t ∧ τn)−SW (t ∧ τn)
)

≤ (1− q)x.

For any n ∈ N and 0 < q < 1, {qγ(t)It≤τn}
T
t=0 is an adapted process of bounded vari-

ation with left continuous paths. Consider the portfolio π
(n)
q = (x, {qγ(t)It≤τn}

T
t=0).

From (2.7) and (4.34) we obtain

V
π(n)
q

λ
(n)
q ,µ

(n)
q

(t) = V
π(n)
q

λ
(n)
q ,µ

(n)
q

(t ∧ τn) = qx+ (1− q)x+(4.35)

q(1− µ
(n)
q )

( ∫ t∧τn
0

SW (u)dγ−(u) + γ(t ∧ τn)+SW (t ∧ τn)
)

−

q(1 + λ
(n)
q )

( ∫ t∧τn
0 SW (u)dγ+(u) + γ(t ∧ τn)−SW (t ∧ τn)

)

≥ qx+

q(1 − µ)
( ∫ t∧τn

0 SW (u)dγ−(u) + γ(t ∧ τn)
+SW (t ∧ τn)

)

− q(1 + λ) ×
( ∫ t∧τn

0
SW (u)dγ+(u) + γ(t ∧ τn)−SW (t ∧ τn)

)

= qV π
λ,µ(t ∧ τn) ≥ 0.

We conclude that π
(n)
q ∈ AW (x, λ

(n)
q , µ

(n)
q ). From (4.29) and (4.35)

R(x, λ
(n)
q , µ

(n)
q ) ≤ supτ∈T W

[0,T ]
EW [(Y W (τ) − qV π

λ,µ(τ ∧ τn))
+] ≤(4.36)

q supτ∈T W
[0,T ]

EW [(Y W (τ) − V π
λ,µ(τ ∧ τn))

+] +

(1− q)EW sup0≤t≤T Y
W (t) ≤ ǫ +R(x, λ, µ) +

EW sup0≤t≤T |Y W (t)− Y W (t ∧ τn)|+ (1 − q)EW sup0≤t≤T Y
W (t).
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For any n, R̄(x, λ, µ) = limq↑1 R(x, λ
(n)
q , µ

(n)
q ), and so from (4.36) it follows that for

any n, R̄(x, λ, µ) ≤ ǫ+R(x, λ, µ) + EW sup0≤t≤T |YW (t)− Y W (t ∧ τn)|. Thus

(4.37) R̄(x, λ, µ) ≤ ǫ+R(x, λ, µ) + lim inf
n→∞

EW sup
0≤t≤T

|YW (t)− Y W (t ∧ τn)|.

From (4.33) we obtain that limn→∞ sup0≤t≤T |Y W (t)− YW (t ∧ τn)| = 0 a.s. Thus

limn→∞EW sup0≤t≤T |Y W (t)−Y W (t∧τn)| = 0, this together with (4.37) completes
the proof. �

Remark 4.4. Consider the BS model in the absence of transaction costs (complete
market). In this case a self financing strategy π with an initial capital x is a
pair (x, {γ(t)}Tt=0) such that the process {γ(t)}Tt=0 is progressively measurable with
respect to the filtration FW

t , t ≥ 0 and satisfy

(4.38)

∫ T

0

(

γ(t)SW (t)
)2
dt <∞ a.s.

The portfolio value V π(t) for a strategy π = (x, {γ(t)}Tt=0) at time t ∈ [0, T ] is given
by

(4.39) V π(t) = x+

∫ t

0

γ(u)dSW (u).

A self financing strategy π is called admissible if V π(t) ≥ 0 for all t ∈ [0, T ] and
the set of such strategies with an initial capital x will be denoted by AW (x). The
shortfall risk is defined by

(4.40) R(π) = sup
τ∈T W

[0,T ]

EW [(Y W (τ)− V π(τ))+] and R(x) = inf
π∈AW (x)

R(π).

Let AW (x, 0, 0) ⊂ AW (x) be the set of all portfolios (x, {γ(t)}Tt=0) such that {γ(t)}Tt=0

is an adapted process of bounded variation with left continuous paths and γ(0) = 0.
Note that for any (x, {γ(t)}Tt=0) ∈ AW (x, 0, 0) the portfolio values which are given
by (2.7) with λ = µ = 0 and (4.39) are coincide. From Dolinsky and Kifer (2008)
(Theorem 2.2) it follows that for any initial capital x ∈ R+ and ǫ > 0 there exists
n ∈ N and a portfolio π = (x, {γ(t)}Tt=0) of the form

(4.41) γ(t) =

n−1
∑

i=0

I
θ
(n)
i <t≤θ

(n)
i+1

ui+1

where for any 1 ≤ i ≤ n, ui is a random variable FW

θ
(n)
i−1

measurable, such that

R(π) < R(x) + ǫ. Thus R(x) = infπ∈AW (x,0,0)R(π), and so by following the steps
of the proof of Lemma 4.3 we get that for any initial capital x ≥ 0

(4.42) R(x) = lim
λ↓0

lim
µ↓0

R(x, λ, µ).

Consider an American call option Y W (t) = (SW (t)−Ke−rt)+, t ≤ T with param-

eters K, r > 0. Clearly V ∗ = ẼWY W (T ) is the price of the above call option in
the complete BS model. From (4.42) it follows that limλ↓0 limµ↓0 R(V

∗, λ, µ) = 0.
In particular we obtain that in the presence of transaction costs, for an initial cap-
ital x = V ∗ and for sufficiently small λ, µ > 0 the buy and hold strategies are not
optimal (unlike for the superhedging case) for the shortfall risk measure.
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5. Proof of Theorem 2.1

In this section we assume that the parameters x, λ, µ are fixed. Let I ⊂ [0, T ]
be a dense set in [0, T ] and let T W

I ⊂ T W
[0,T ] be the set of all stopping times with a

finite number of values which belongs to I.

Lemma 5.1. For any π ∈ AW (x, λ, µ),

(5.1) R(π, λ, µ) = sup
τ∈T W

I

EW [(Y W (τ) − V π
λ,µ(τ))

+].

Proof. Clearly R(π, λ, µ) ≥ supτ∈T W
I
EW [(Y W (τ)−V π

λ,µ(τ))
+]. Thus it is sufficient

to show that R(π, λ, µ) ≤ supτ∈T W
I
EW [(Y W (τ)−V π

λ,µ(τ))
+]. Choose ǫ > 0. There

exists τ ∈ T W
[0,T ] such that

(5.2) R(π, λ, µ) < EW [(Y W (τ) − V π
λ,µ(τ))

+] + ǫ.

For any n there exists a finite set In ⊂ I for which
⋃

z∈In
(z− 1

n , z+
1
n ) ⊇ [0, T ]. Let

an be the maximal element of In. Define τn = min{t ∈ In|t ≥ τ}Iτn≤an
+anIτn>an

.
Clearly, τn ≤ an a.s. and for t ∈ In \{an} we have {τn ≤ t} = {τ ≤ t} ∈ FW

t . Thus
τn ∈ T W

I . Furthermore, |τn − τ | ≤ 2
n and so τn → τ a.s. From (2.7) it follows that

the stochastic process {V π
λ,µ(t)}

T
t=0 is left continuous with right hand limits and has

only negative jumps (in discontinuity points). Thus V π
λ,µ(τ) ≥ lim supn→∞ V π

λ,µ(τn)

a.s. By using (5.2) and Fatou’s lemma we obtain

R(π, λ, µ) < ǫ+ EW [lim infn→∞(YW (τn)− V π
λ,µ(τn))

+] ≤ ǫ+(5.3)

lim infn→∞EW [(Y W (τn)− V π
λ,µ(τn))

+] ≤ ǫ+ supτ∈T W
I
E[(Y W (τ) − V π

λ,µ(τ))
+]

and the result follows by letting ǫ ↓ 0. �

Next, let {πn = (x, γn)}∞n=1 ⊂ AW (x, λ, µ) be a sequence such that

(5.4) lim
n→∞

R(πn, λ, µ) = R(x, λ, µ).

From the integration by part formula we get that for any n ∈ N and t ∈ [0, T ]

γn(t)S
W (t) =

∫ t

0 S
W (u)dγn(u) +

∫ t

0 γn(u)dS
W (u). This together with (2.7)–(2.8)

yields

(5.5) min(λ, µ)

∫ t

0

SW (u)|dγn|(u) ≤ x+

∫ t

0

γn(u)dS
W (u), t ∈ [0, T ], n ∈ N.

From (5.5) it follows that any n, the local martingale (with respect to the prob-

ability measure P̃W ) {
∫ t

0 γn(u)dS
W (u)}Tt=0 is bounded from below, and so it is a

supermartingale. Thus from (5.5), ẼW
∫ T

0 SW (u)|dγn|(u) ≤
x

min(λ,µ) , n ∈ N. From

Markov’s inequality we get that the set conv
{ ∫ T

0
SW (u)|dγn|(u)

}∞

n=1
is bounded

in L0(P̃W ). This together with Lemma 3.1 in Guasoni (2002B) yields that the set

conv
{ ∫ T

0
|dγn|(u)

}∞

n=1
is also bounded in L0(P̃W ). From Lemma 3.4 in Guasoni

(2002B) there is a sequence ηn ∈ conv(γn, γn+1, ...) such that ηn converges a.s. in

dtdP̃W to a finite variation process. In fact, from the proof of this lemma, we get
a stronger result. We obtain that there exists a non decreasing, left continuous
adapted processes {α(t)}Tt=0 and {β(t)}Tt=0 with α(0) = β(0) = 0, such that

(5.6) lim
n→∞

η+n = α and lim
n→∞

η−n = β, a.s in dtdP̃W
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where
(5.7)

η+n (t) =
ηn(t) +

∫ t

0 |dηn|(s)

2
and η−n (t) =

∫ t

0 |dη|(s) − ηn(t)

2
, t ∈ [0, T ], n ∈ N.

In particular, there exists a countable dense set 0 ∈ I ⊂ [0, T ] such that
(5.8)
PW { lim

n→∞
η+n (t) = α(t), ∀t ∈ I} = 1 and PW { lim

n→∞
η−n (t) = β(t), ∀t ∈ I} = 1.

Define γ = α − β. Clearly, γ is an adapted process of bounded variation with
left continuous paths and γ(0) = 0. Finally, we prove that π := (x, γ) is an
optimal portfolio, i.e., π ∈ AW (x, λ, µ) and R(π, λ, µ) = R(x, λ, µ). Clearly for

any n ∈ N, the wealth process of the portfolio π̃n := (x, ηn) is satisfying V π̃n

λ,µ ∈

conv{V πn

λ,µ, V
πn+1

λ,µ , ...}, and so π̃n ∈ AW (x, λ, µ). The shortfall risk measureR(·, λ, µ)
is a a convex functional of the wealth process V ·

λ,µ. Thus,

(5.9) R(π̃n, λ, µ) ≤ sup
k≥n

R(πk, λ, µ).

From (5.4) and (5.9),

(5.10) lim
n→∞

R(π̃n, λ, µ) = R(x, λ, µ).

From (5.8) and Theorem 12.16 in Protter and Morrey (1991),

∫ t

0
SW (u)dα(u) = limn→∞ SW (u)dη+n (u) and(5.11)

∫ t

0
SW (u)dβ(u) = limn→∞ SW (u)dη−n (u), a.s. ∀t ∈ I.

Thus

∫ t

0 S
W (u)dγ(u) = limn→∞ SW (u)dηn(u) and

∫ t

0 S
W (u)|dγ|(u) ≤(5.12)

∫ t

0
SW (u)dα(u) +

∫ t

0
SW (u)dβ(u) = limn→∞

∫ t

0
SW (u)|dηn|(u), a.s. ∀t ∈ I.

This together with (2.6)–(2.7) gives

(5.13) V π
λ,µ(t) ≥ lim

n→∞
V π̃n

λ,µ(t) ≥ 0, ∀t ∈ I.

Thus π ∈ AW (x, λ, µ). By combining Fatou’s lemma together with Lemma 5.1,
(5.10) and (5.13) we obtain

R(π, λ, µ) = supτ∈T W
I
EW [(Y W (τ) − V π

λ,µ(τ))
+] ≤

supτ∈T W
I
EW [limn→∞(Y W (τ)− V π̃n

λ,µ(τ))
+] ≤

supτ∈T W
I

lim infn→∞ EW [(Y W (τ) − V π̃n

λ,µ(τ))
+] ≤

limn→∞R(π̃n, λ, µ) = R(x, λ, µ).

Thus R(π, λ, µ) = R(x, λ, µ) and the proof is completed. �
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