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Any Regulation of Risk Increases Risk 

Abstract: We show that any objective risk measurement algorithm mandated by 

central banks for regulated financial entities will result in more risk being taken 

on by those financial entities than would otherwise be the case. Furthermore, the 

risks taken on by the regulated financial entities are far more systemically 

concentrated than they would have been otherwise, making the entire financial 

system more fragile. This result leaves three directions for the future of financial 

regulation: continue regulating by enforcing risk measurement  algorithms at the 

cost of occasional severe crises, regulate more severely and subjectively by fully 

nationalizing all financial entities, or abolish all central banking regulations 

including deposit insurance to let risk be determined by the entities themselves 

and, ultimately, by their depositors through voluntary market transactions rather 

than by the taxpayers through enforced government participation. 

Keywords: regulation, crisis, risk management, value-at-risk, risk; Basel 

JEL Classifications: G18, G21, G28, G38 

 

1. Introduction 

When depositors become anxious about the safety of their deposits in a particular bank, 

they rush to get their money out because the remaining assets are first-come, first-served, and if 

there is not enough for everyone, latecomers get nothing. These bank runs force banks to 

liquidate whatever illiquid assets they had purchased with the deposits, often at a substantial loss. 

Instead of letting the free market dictate that banks must keep all the deposits in liquid assets, 

governments seek to avoid such runs altogether by offering deposit insurance: depositors are 

assured their money is safe no matter what. The existence of the deposit insurance makes people 

indifferent to the safety of their banks and so they don’t bother running to get their money out 

even if their bank is on the brink of insolvency. 

The trouble is that deposit insurance removes the responsibility from the depositors to 

determine a safe location for their assets. Any insured bank becomes just as good as any other. 

The Federal Reserve Board and the Statistics of Income Division of the Internal Revenue Service 



 

 3 

sponsor a triennial Survey of Consumer Finances to provide, among other things, detailed 

information about the respondents’ use of financial services. Bucks, Kennickell, Mach, and 

Moore (2009) report that for the four such surveys conducted in 1998, 2001, 2004, and 2007, the 

number one response consumers cited as the most important reason for choosing their primary 

financial institution was the location of the bank’s offices, with more than 40 percent of 

respondents indicating geographical convenience as their most important reason. The second and 

third most popular reasons were low fees and the ability to obtain many services at one place, at 

about 15 percent response each. Safety and the absence of risk were listed as next to last, at only 

2 percent on average. In short, with deposit insurance, consumers are indifferent as to the 

particular risk each bank runs. 

What does such consumer indifference to bank risk mean for the banks? What would you 

do if you could start a bank with deposits insured by the government? You might invest 

prudently and grow your business responsibly. Or you might buy lottery tickets: if you win, you 

keep virtually all of the profits, and if you lose, you have no personal liability anyway. And as 

we saw from the Survey of Consumer Finances, you are likely to be able to attract depositors 

simply by offering convenient locations and low fees because customers don’t care what kind of 

risk you take: even if you lose, they will get their money back from the government. 

Hendrickson and Nichols (2001) compared Canadian and American bank data in a historical 

study to conclude that deposit insurance does indeed increase risk taking. Calem and Rob (1999) 

show that even a deposit insurance surcharge does not deter banks near insolvency from 

increasing risk. 

But governments can’t just blindly guarantee the deposits of any financial institution. 

They can’t allow reckless risk taking. So what can they do? They must institute restrictions on 
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banks in order for them to qualify for the deposit insurance and its ancillary benefits such as 

overnight lending and borrowing of excess funds and other clearing operations. 

Chief among the restrictions that governments and central banks place on individual 

banks is the amount of risk capital that banks must allocate to support a position. For example, if 

you as a bank want to buy $100 worth of IBM stock, how much risk capital do you need to 

reserve such that you are able to withstand extreme losses without being forced to liquidate 

under duress? 

The most commonly used approach in evaluating the reserve requirement is Value-at-

Risk (VaR), which at heart is merely a multiple of the standard deviation of the portfolio value. 

Governments allow a bank to hold a portfolio so long as the bank sets aside risk capital equal to 

some constant c times the historical standard deviation of that particular portfolio. The original 

“Basel I” agreement of 1988 called for risk capital of three times the 10-day 99% VaR. The 10-

day standard deviation is about √10 = 3.16 times the daily standard deviation. The 99% VaR is 

about 2.33 standard deviations, from the inverse cumulative distribution function of the standard 

normal. So the original Basel agreement in effect called for a market risk reserve requirement for 

a portfolio of c = 3.16 * 2.33 * 3 = 22 times the portfolio’s historical daily standard deviation. 

For portfolios that historically moved about one percent per day on average, the risk requirement 

would have been about twenty-two percent. 

The most recent change (“Basel II”) to these market risk requirements in the wake of the 

global financial crisis has been to increase the requirement by a further multiple of daily standard 

deviation calculated during a particularly stressful subperiod of that portfolio’s history.  

In any event, the regulation has always been some function over past prices and returns. 

The form of the function may change but unless the regulator personally inspects and approves 
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each possible trade or portfolio, thus effectively nationalizing all financial services and bringing 

them under purely political control, the only way to regulate is to provide a list of clear and 

objective rules. 

The problem is that any such rules to reduce risk will result in more risk. The crux of this 

paper consists of the following argument. Any objective risk regulation rules discriminate among 

investment opportunities in the sense that some investments become more attractive than others 

based on the formal regulatory algorithm. Any such discrimination leads to a distortion of 

investment opportunities because banks will tend to switch into the more favored investments, 

and, finally, any such distortion leads to increased individual and systemic risk. 

Kaplanski and Levy (2007) culminate a long line of literature that assumes expected 

utility maximizing banks in a mean-variance framework to examine the effect of VaR regulation. 

They find that there is an optimal VaR-based regulation, although current Basel levels exceed 

that optimal amount. Yet we will show that any regulation will result in more risk. Why the 

discrepancy? Kaplanski and Levy (2007) assume that regulated banks continue to act in a mean-

variance world; in other words, regulations result in a change in allocations but no change in the 

allocation algorithm. Here, however, we argue that there is a substantial behavioral change 

between no regulation and some regulation that results in banks changing the way they determine 

their portfolio.  

The differences in our conclusions can be illustrated in our main example on VaR-based 

regulation. They assume that the true future variance is known and examine the changes in the 

mean-variance frontier induced by regulations. Here we argue that banks will change their 

portfolio based on the random value of the estimate of variance, that the banks will be 

systematically biased towards those securities whose variance erroneously and randomly appears 
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low, that the future variance of those securities should theoretically be higher, and that, as 

predicted, the future variance is indeed higher in empirical tests.  

2. Theory and Calculation 

For the simplest case, imagine there are m identical securities, each of which has returns 

that are independently normally distributed with zero mean and true standard deviation σ, and we 

have a history of n periods for each of them. Think of m as being a few thousand securities and 

of n as being about sixty monthly returns, or five years of data. 

What is the distribution of the sample standard deviations si of each of the securities? 

Simply by chance, about half of the securities will have sample standard deviations above σ, and 

half below. More specifically, the sample standard deviations follow a χ
2
 distribution, under 

which the probability of a sample standard deviation being below σ is greater than one-half and 

decreases to its limiting value of one-half as the number of observations increases. For m = 1000 

and n = 60, we should expect about ten securities to exhibit a sample standard deviation less than 

80 percent of its true standard deviation σ, regardless of the particular value of σ. Let us prove a 

specific theorem. 

2.1. Theorem: The Conditional Expected Value of the Sample Standard Deviation 

Suppose that 𝑦𝑖 , 𝑖 = 1,2, … , 𝑛, are independent and identically distributed 𝒩 𝜇, 𝜎2  

normal returns and the sample standard variances 𝑠𝑛
2 are defined as usual by: 

𝑠𝑛
2 =  

1

𝑛 − 1
   𝑦𝑖 − 𝑦 2

𝑛

𝑖=1

   

where: 

𝑦 =  
1

𝑛
 𝑦𝑖  

𝑛

𝑖=1
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Then we can calculate the conditional expected value of the sample standard deviation as 

a percentage of the true standard deviation for any level 𝛼 between 0 and 1 as follows: 

 
𝐸 𝑠𝑛    𝑠𝑛≤𝑠𝑛 ,𝛼 )

𝜎
 = 𝐾𝑛

𝑃 𝜒𝑛  
2 ≤ 𝜒𝑛−1,𝛼 

2  

𝛼
     (1) 

where: 

𝑠𝑛,𝛼  is the number such that 𝑃 𝑠𝑛 ≤ 𝑠𝑛,𝛼 = 𝛼,      (2) 

𝜒𝑛−1,𝛼 
2  is the number such that 𝑃(𝜒𝑛−1 

2 ≤ 𝜒𝑛−1,𝛼 
2 ) = 𝛼 ,     (3) 

𝜒𝑛 
2  is the chi-square random variable with 𝑛 degrees of freedom, 

𝐾𝑛 =
Γ 

𝑛

2
 

Γ 
𝑛−1

2
  

𝑛−1

2
 

1
2

 , and        (4) 

Γ(𝑥) is the gamma function. 

Similar results hold for higher tails by substituting "≥" everywhere  for "≤". 

Furthermore, a constant 𝐾𝑛  converges quickly to 1: 

lim
𝑛→∞

 𝐾𝑛 = 1           (5) 

2.2. Proof of Theorem 2.1 

Let’s find the p.d.f. of 𝑠𝑛 . First, because the ratio of the sample variance to the true 

variance is distributed as 𝜒2, 

(𝑛 − 1)
𝑠𝑛

2

𝜎2
~𝜒𝑛−1

2  

its c.d.f. is: 

 𝐹𝑠𝑛  𝑥 = 𝑃(𝑠𝑛 ≤ 𝑥) = 𝑃(𝑠𝑛
2 ≤ 𝑥2) = 𝑃 𝜒𝑛−1

2 ≤ 𝑛−1

𝜎2 𝑥
2 = 𝐹𝜒𝑛−1

2  𝑛−1

𝜎2 𝑥
2  (6) 

where 𝐹𝜒𝑛−1
2  𝑥  is the c.d.f. of 𝜒𝑛−1

2 . 

Therefore the p.d.f. of 𝑠𝑛  is: 
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𝑓𝑠𝑛  𝑥 =
𝑑

𝑑𝑥
𝐹𝑠𝑛  𝑥 =

2 𝑛 − 1 𝑥

𝜎2
𝑓𝜒𝑛−1

2  
𝑛 − 1

𝜎2
𝑥2  

where 𝑓𝜒𝑛−1
2  𝑥  is the p.d.f. of 𝜒𝑛−1

2 : 

𝑓𝜒𝑛−1
2  𝑥 =

1

2
𝑛−1

2
 Γ  

𝑛−1

2
 
𝑥
𝑛−1

2
−1𝑒−𝑥/2 , 𝑥 ≥ 0 

We can rewrite 𝑓𝑠𝑛  𝑥  as: 

 𝑓𝑠𝑛  𝑥 = 2  
𝑛−1

2
 

𝑛−1

2 1

Γ 
𝑛−1

2
 𝜎𝑛−1

𝑥𝑛−2𝑒
−

(𝑛−1)𝑥2

2𝜎2     (7) 

Now, let’s find the expected value of the sample standard deviation, conditional on it 

being in a low percentile. 

𝐸 𝑠𝑛    𝑠𝑛 ≤ 𝑠𝑛,𝛼) =
1

𝛼
 2 

𝑛 − 1

2
 

𝑛−1

2 1

Γ  
𝑛−1

2
 𝜎𝑛−1

𝑥𝑛−1𝑒
−

(𝑛−1)𝑥2

2𝜎2 𝑑𝑥
𝑠𝑛 ,𝛼

0

 

Using the substitution  𝑛 − 1 𝑥2 = 𝑛𝑦2, we get: 

𝐸 𝑠𝑛    𝑠𝑛 ≤ 𝑠𝑛,𝛼) = 𝐾𝑛
𝜎

𝛼
 2  

𝑛

2
 

𝑛

2 1

Γ  
𝑛

2
 𝜎𝑛

𝑦𝑛−1𝑒
−𝑛𝑦2

2𝜎2𝑑𝑦
 
𝑛−1

𝑛
𝑠𝑛 ,𝛼

0

 

From equation (7) we see that the last expression has the p.d.f. of 𝑠𝑛+1 under the integral sign. So 

we can rewrite it as 

 𝐸 𝑠𝑛 |𝑠𝑛 ≤ 𝑠𝑛,𝛼 = 𝐾𝑛
𝜎

𝛼
𝑃  𝑠𝑛+1 ≤  

𝑛−1

𝑛
𝑠𝑛,𝛼      (8) 

To calculate the probability on the right hand side, we use equation (1) to write: 

𝛼 = 𝑃 𝑠𝑛 ≤ 𝑠𝑛,𝛼 = 𝑃 𝑠𝑛
2 ≤ 𝑠𝑛,𝛼

2  = 𝑃  
𝜎2

𝑛 − 1
𝜒𝑛−1

2 ≤ 𝑠𝑛,𝛼
2  = 𝑃  𝜒𝑛−1

2 ≤
𝑛 − 1

𝜎2
𝑠𝑛,𝛼

2   

thus showing that: 

𝑛 − 1

𝜎2
𝑠𝑛,𝛼

2 = 𝜒𝑛−1,𝛼
2  
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Therefore we can rewrite equation (8) as: 

𝐸 𝑠𝑛 |𝑠𝑛 ≤ 𝑠𝑛,𝛼 = 𝐾𝑛
𝜎

𝛼
𝑃  𝑠𝑛+1

2 ≤
𝑛 − 1

𝑛
𝑠𝑛,𝛼

2  = 𝐾𝑛
𝜎

𝛼
𝑃  

𝜎2

𝑛
𝜒𝑛

2 ≤
𝑛 − 1

𝑛
𝑠𝑛,𝛼

2  

= 𝐾𝑛
𝜎

𝛼
𝑃  𝜒𝑛

2 ≤
𝑛 − 1

𝜎2
𝑠𝑛,𝛼

2  = 𝐾𝑛
𝜎

𝛼
𝑃 𝜒𝑛

2 ≤ 𝜒𝑛−1,𝛼
2   

thus proving the theorem in equation (1). 

To prove that 𝐾𝑛 → 1, we note that according to Stirling’s formula: 

lim
𝑧→∞

Γ 𝑧 

 2𝜋𝑧𝑧𝑒−𝑧𝑧−
1

2

= 1 

To take advantage of this formula as follows, we rewrite equation (4): 

𝐾𝑛 =
Γ  

𝑛

2
 

Γ  
𝑛−1

2
  

𝑛−1

2
 

1

2

= 𝐴 ⋅ 𝐵 ⋅ 𝐶 

where 

𝐴 =
Γ  

𝑛

2
 

 2𝜋  
n

2
 

n

2
e−

n

2  
𝑛

2
 

1

2

𝐵 =
 2𝜋  

n−1

2
 

n−1

2
e−

n−1

2  
𝑛−1

2
 

1

2

Γ  
𝑛−1

2
 

𝐶 =
𝑒−

𝑛

2  
𝑛

2
 

1

2

𝑒−
𝑛−1

2  
𝑛−1

2
 

1

2

⋅  
𝑛

𝑛 − 1
 

𝑛

2
 

and by Stirling’s formula 𝐴 → 1, 𝐵 → 1, and  

𝐶 = 𝑒−
1

2  
𝑛

𝑛 − 1
 

1

2
⋅  

𝑛

𝑛 − 1
 

𝑛−1

2
⋅  

𝑛

𝑛 − 1
 

1

2
→ 1 

because it is well known that: 

lim
𝑛→∞

 
𝑛 + 1

𝑛
 
𝑛

= 𝑒 

Therefore 𝐾𝑛 → 1 and this completes the proof. Indeed, the convergence is quick, as even 

for 𝑛 = 60, 𝐾𝑛 = 0.996. 
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2.3. Response of the Banks 

Suppose that the government-mandated risk capital requirement for each security is some 

constant c times that security’s sample standard deviation. What would be the natural response of 

the banks? 

Much like the lottery ticket bank illustrated above, banks would tend towards buying 

portfolios that are riskier than they appear. A particular security that had a sample standard 

deviation of eighty percent of the true standard deviation would let banks spend twenty percent 

less risk capital that they ought to while maintaining a full exposure to the true risk. And there 

would on average be approximately ten such securities at any given point in time. 

And that is the basic idea. Purely by random chance, a few securities will appear to have 

much lower risk than they truly do. Banks will gravitate towards establishing positions in these 

securities because they are able to use less risk capital on them than on arbitrary average 

positions, and banks do not face significant market discipline for establishing too much risk 

because the government guarantees deposits. Therefore, instead of different banks simply 

holding different well-capitalized risky positions, all banks will tend to hold combinations of 

those few and rare securities that falsely appear to have decreased risk. If banks and their 

customers had to bear this risk, they would avoid holding securities with such low risk reserves; 

they do it only because it is not their risk or their customers’, the algorithm set by the regulator 

allows it, and they are able to earn higher returns on capital through this use of excess leverage. 

While other regulations may aim to preclude each individual bank from concentrating its 

holdings into a few securities, there is no regulation short of nationalization that could preclude 

all banks from investing in the same few assets. So the effect of an algorithmic approach to 

determining risk capital is that all banks will tend to establish the maximum position they 
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possibly can into the very few securities that randomly exhibited lower risk, and thus lower 

required risk capital, than they should have. 

Thus, when any one of these particular securities later experience a typical downwards 

movement, it will appear to be a significantly aberrant move from the perspective of the required 

risk capital and the observed (low) historical sample standard deviation, requiring the banks to 

liquidate those and other positions quickly to raise enough cash to replenish their reserves. And 

so a relatively modest move in a few key securities could suddenly result in the collapse of the 

entire financial system. 

2.4. Empirical Evidence 

Is there any empirical evidence for this effect? We use the CRSP database of all stocks 

listed on the NYSE, AMEX, and Nasdaq (after 1972) and, for each date from January 1932 

through December 2003, calculate the standard deviation of the sixty monthly returns for the five 

years prior, and the standard deviation of the sixty monthly returns for the five year after that 

date. For securities whose history ends less than five years after the date, we use the standard 

deviation of however many monthly returns are available. For each stock we calculate the ratio 

of the new standard deviation to the old standard deviation. Then on each date we sort the stocks 

based on past standard deviations and plot for different quantile groups the associated ratio of the 

new standard deviation to the old standard deviation.   

Exhibit 1 plots the time series of ratios of new standard deviations to old standard 

deviations for five such quantile groups: for the lowest 1 percent of past standard deviations, for 

the range from 1 percent to 10 percent, for the range from 10 percent to 90 percent, for the range 

from 90 percent to 99 percent, and for the range from 99 percent to 100 percent. Note that each 

group always lies above the next ones. The overall averages for the five groups are, respectively, 
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1.85, 1.17, 1.00, 0.81, and 0.56. In other words, stocks with the lowest one percent of past five-

year standard deviations on average experience an 85 percent higher standard deviation in the 

subsequent five years. Thus, empirically as well as theoretically, stocks that look too good to be 

true usually are. 

3. Results and Discussion 

One possible response by regulators to this observation is to require the use of more data, 

either by looking further back in time or by requiring the use of more frequent observations. 

The two problems with looking further back are with existence and consistency. Many 

securities simply don’t have that much history so the longer regulators require the historical 

lookback to be, the greater the penalty for younger securities. Furthermore, the character of a 

particular security, especially a stock, may have changed substantially from the kind of company 

it was many years ago, either because of a change in business focus, or because of a change in 

the risk factor loadings and characteristics of the stock due to growth in market capitalization or 

revenues or a change in value. 

So the alternative remains to require more frequent observations over the same time 

period, for example requiring the use of daily returns rather than monthly returns. Over five 

years, that means that n, the number of periods, increases from 60 to 252 * 5 = 1,260, assuming 

252 business days per year on average. 

As Exhibit 2 demonstrates, continuing our assumption of m = 1000 independent 

securities but increasing the number of periods n does indeed decrease the expected value of the 

sample standard deviation in the bottom one percent. Appendix A derives a convenient formula 

for calculating such an expectation. For n = 1260, the conditional expected value of the 0.1 
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percent tail is 0.93 times the true standard deviation, meaning even the biggest deviations in 

sample standard deviation are on average within seven percentage points of the true risk. 

Does this mean that increasing the number of observation periods solves all of the 

problems of a concentration of risk by banks into a handful of seemingly less risky securities? 

For two reasons, no. First, even a small difference between the required regulatory risk 

capital and the true risk of the position may entice banks to prefer such securities over other 

securities. But secondly, the above analysis misses an important aspect of real-world returns: 

they are not normal. 

One obvious deviation from normality in security returns is fat tails. The normal 

distribution has an index of kurtosis, the standardized fourth central moment, of exactly three. 

But observed kurtosis often exceeds ten times that amount. For example, the kurtosis of the daily 

S&P 500 index returns since 1950 is 25.8. 

We can simulate fat-tailed returns with the following simple approximation algorithm: 

draw from a standard normal distribution but replace all draws within some small constant ε of 

zero with a large constant jump h of the same sign as the original draw. For example, if ε = 0.01 

and h = 10, then a random draw of -0.005 would be replaced by -10. 

Simulating 1,000,000 such random numbers gives a distribution with a near-zero mean 

(0.002 compared with 0.000 for the standard normal), a very slightly elevated standard deviation 

(1.34 compared to 1.00 for the standard normal), but a very high kurtosis (25.6 compared to 3 for 

the standard normal). In other words, if we standardize the results by dividing by its 1.34 

standard deviation, we are able to use this algorithm to simulate fat-tailed returns. 

Using this distribution, we calculate 1,000 different sample standard deviations for 1,260 

observation periods, the equivalent of five years of daily returns. Exhibit 3 shows the histogram 
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of standardized simulated standard deviations. Note that a few securities are near the 0.80 ratio 

again, meaning that adding kurtosis to the distribution to better match empirical returns offsets 

the additional accuracy resulting from using more observation periods. 

Thus, for reasonable values of the number of securities m and the number of observation 

periods n, there will still emerge a handful of stocks that appear less risky than they actually are, 

and which will attract banks to hold them for the same reasons outlined above. 

Could the new requirements of Basel II to add an additional stress term alleviate this 

problem? We can answer this question through simulation as well. Simulate 1,260 returns for 

each of 1,000 securities using the high kurtosis algorithm described above. For each sequence of 

returns, compute both the overall five-year standard deviation and the highest rolling yearly 

standard deviation, and report the sum. Basel II effectively requires a multiple of this sum as risk 

capital. Exhibit 4 displays the histogram of these standardized values as well. Again, there 

emerge several securities purely by randomness that appear to have much lower overall risk than 

the average security. So the addition by Basel II of “stress” risk does not alleviate the problem.  

4. Conclusion 

The risk capital that banks allocate to their positions must be set by a regulator if deposits 

are insured. If, as a first option, the regulator determines the appropriate risk capital on a case-

by-case basis, then banks are effectively nationalized and run by the regulator. This has often not 

seemed like a palatable choice, and so regulators have attempted, as a second option, to craft 

seemingly objective risk measurement rules that banks are required to follow.  

The most common kind of risk measurement rules have been variations of measures of 

standard deviation, and it turns out that all such rules, for any reasonable history lengths, 
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encourage banks to invest in a few securities that are riskier than they appear, thus increasing 

systemic risk. 

The results are even more general, though. Even if regulators required a risk capital 

reserve of 100 percent of market value for every security, the risk reserve still would not match 

the true risk of each security, because the price of a security is not necessarily its risk, and so 

banks would still tend to invest in the same few riskier assets. 

Thus, we can conclude that the effect of any objective rules for regulation will result both 

in more risk being taken by each individual bank, and by the risks taken by different banks to be 

more correlated with each other, resulting in a far more fragile financial system than would be 

the case otherwise.  

The only third option is to not regulate at all, and to not insure deposits. This would leave 

each bank, and its customers and depositors, with the ultimate responsibility of determining the 

appropriate risk capital. This option deserves greater consideration in light of the results of this 

paper. In the meantime, portfolio managers, risk managers, policymakers, regulators, and 

taxpayers ought to be aware of this previously unknown source of risk. 
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Figure 1: Time Series of Volatility Ratios  

The ratios of future five-year monthly standard deviation to past five-year monthly standard 

deviation, arranged into five quantile groups by past standard deviations, is plotted on a log 

scale. Stocks with recent low standard deviation tended to have higher standard deviations going 

forward, and vice versa. 

 

 

  



 

 18 

Figure 2: Expected Tail Sample Standard Deviations 

The formula for deriving these conditional expected values of the ratio of the sample standard 

deviation to the true standard deviation is derived in Appendix A and plotted here for a number 

of periods ranging from 30 to 1200 and for tail probabilities of 1 percent (top line) and 0.1 

percent (bottom line). For example, for 60 time periods, the expected values of the standard 

deviation are 0.76 and 0.71 times the true standard deviation for the two probabilities 

respectively. 
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Figure 3: Simulated Standard Deviations or Basel I Risk 

There exist several securities in the left part of the histogram near the ratio of 0.8, meaning that 

there will still exist by pure chance some small number of securities that appear to have less risk 

than they truly do. 
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Figure 4: Simulated Basel II Risk 

There exist several securities in the left part of the histogram near the ratio of 0.8, meaning that 

even with the addition of the maximum of a rolling standard deviation to the usual standard 

deviation of returns, there will still exist by pure chance some small number of securities that 

appear to have less risk than they truly do. 

 

 

 


