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Dividend problem with Parisian delay for a

spectrally negative Lévy risk process
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Abstract. In this paper we consider dividend problem for an insurance
company whose risk evolves as a spectrally negative Lévy process (in the
absence of dividend payments) when Parisian delay is applied. The ob-
jective function is given by the cumulative discounted dividends received
until the moment of ruin when so-called barrier strategy is applied. Ad-
ditionally we will consider two possibilities of delay. In the first scenario
ruin happens when the surplus process stays below zero longer than fixed
amount of time ζ > 0. In the second case there is a time lag d between
decision of paying dividends and implementation.
Keywords: Lévy process, ruin probability, asymptotics, Parisian ruin,
risk process.
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1 Introduction

In risk theory we usually consider classical Cramér-Lundberg risk process:

Xt = x+ pt− St =

Nt∑

i=1

Ui, (1)

where x > 0 denotes an initial reserve. We assume that Ui, (i = 1, 2, ...) are
i.i.d distributed claims with the distribution function F . The arrival process is
a homogeneous Poisson process Nt with intensity λ. The premium income is
modeled by a constant premium density p and the net profit condition is then
λχ/p < 1, where E(U1) = χ < ∞. Lately there has been considered more
general setting of a spectrally negative Lévy process. That is, X = {Xt}t≥0 is a
process with stationary and independent increments with only negative jumps.
We will assume that process starts from X0 = x and later we will use conven-
tion P(·|X0 = x) = Px(·) and P0 = P. Such process takes into account not
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only large claims compensated by a steady income at rate p > 0, but also small
perturbations coming from the Gaussian component and possibly additionally
(when ΠX(−∞, 0) = ∞ for the jump measure ΠX of X) compensated countable
infinite number of small claims arriving over each finite time horizon. Working
under this class of models, it became apparent that, despite of the diversity of
possible probabilistic behaviors it allows, typically all results may be elegantly
expressed in a unifying manner via the c-harmonic scale function W (c)(x) de-
fined via its Laplace transform. This paper further illustrates this aspect, by
unveiling the way the scale functions intervenes in a quite complicated control
problem.

The classic research of the scandinavian school had focused on determining
the ”ruin probability” of the process (1) ever becoming negative, under the
assumption that X has positive profits. Since however in this case the surplus
has the unrealistic property that it converges to infinity with probability one,
De Finetti [16] introduced the dividend barrier model, in which all surpluses
above a given level are transferred (subject to a discount rate) to a beneficiary,
and raised the question of optimizing this barrier. Formally, we consider the
risk process controlled by the dividend policy π given by

Uπt = Xt − Lπt , (2)

where X0 = x > 0 is an initial reserves and Lπt is an increasing adapted pro-
cess representing the cumulative dividends paid out by the company up till
time t. The optimization objective function is given by the average cumulative
discounted dividends received until the moment of ruin:

vπ(x) = Ex

∫ σπ

0

e−qtdLπt , (3)

where σπ is a ruin probability that we specify later depending on the considered
scenario and q is a discounting rate.

The objective of beneficiaries of an insurance company is to maximize vπ(x)
over all admissible strategies π:

v∗(x) = sup
π∈Π

vπ(x), (4)

where Π is a set of all admissible strategies.
An intricate ”bands strategy” solution was discovered by Gerber [17], [18],

as well as the fact that for exponential claims, this reduces to a simple barrier
strategy: ”pay all you can above a fixed constant barrier a”.

There has been a great deal of work on De Finetti’s objective, usually con-
cerning barrier strategies. Gerber and Shiu [19] and Jeanblanc and Shiryaev [23]
consider the optimal dividend problem in a Brownian setting. Irbäck [22] and
Zhou [31] study the constant barrier under the Cramér-Lundberg model (1).
Hallin [21] formulated time dependent integro-differential equations describing
the payoff associated to a 2n bands policy. The optimality of the ”bands strat-
egy” was recently established by Albrecher and Thonhauser [2] in the presence
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of fixed interest rates as well. For related work considering both excess-of-loss
reinsurance and dividend distribution policies (e.g. in a diffusion setting), see
Asmussen et al. [4], and for work including also a utility function, see Grandits
et al. [20].

Dassios and Wu [13] for classical risk process (1) consider a Parisian type
delay between a decision to pay a dividend and its implementation. The decision
to pay is taken when the surplus reaches the fixed barrier a but it is implemented
only when the surplus stays above barrier longer than fixed d > 0. The dividend
is paid at the end of this period. This strategy we will denote by πa. In this paper
we generalize this result into the general spectrally negative Lévy risk process.
In this case the ruin time equals: σπ = σa = inf{t ≥ 0 : Uπa

t < 0}. Since the
ruin time is classical one we know that optimal strategy is a band strategy and
we know also the necessary condition when an optimal strategy is the barrier
strategy. We still believe that this new Parisian strategy (although not optimal
within all strategies) could be very useful for the insurance companies giving
possibility of natural delay between decision and it implementation.

In this paper we also consider Parisian delay at the ruin. We denote this
strategy by πa. That is ruin occurs if process Uπ stays below zero for longer
period than a fixed ζ > 0. Formally, we define last moment before time t that
process Uπt was above zero:

ςUt = sup{s < t : 1(Uπ
s ≥0)1(Uπ

t <0) = 1}. (5)

Parisian time of ruin is given by

σπ = σζ = inf{t > 0 : t− ςUt ≥ ζ}. (6)

We first analyze the strategy πa according to which the dividends are paid
according to classical barrier dividend strategy transferring all surpluses above
a given level a to dividends. We also prove the verification theorem for this type
of ruin. In particular we find sufficient condition for the barrier strategy to be
optimal.

In fact combination of both scenarios is also available. The name for this
delay comes from Parisian option that prices are activated or canceled depending
on the type of option if the underlying asset stays above or below the barrier
long enough in a row (see [13] and [3]).

We believe that giving possibility of Parisian delay could describe better
many situations of insurance company giving possibility of checking if indeed
company’s reserves increase and we can pay dividends (in the first scenario)
or giving possibility for the insurance company to get solvency (in the second
scenario).

The paper is organized as follows. In Section 2 we introduce basic notions
and notations. In Section 3 we find the discounted cumulative dividends pay-
ments until Parisian ruin time. In Section 4 we prove the verification theorem
and find necessary conditions for the barrier strategy to be optimal. In Section
5 we analyze the case when there is a time lag between decision to pay dividends
and its implementation.
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2 Preliminaries

We first review some fluctuation theory of spectrally negative Lévy processes
and refer the reader for more background to Kyprianou [25], Sato [30] and
Bertoin [8] and references therein.

In this paper we consider a spectrally negative Lévy process X = {Xt}t≥0,
that is a Lévy process with the Lévy measure ν satisfying ν(0,∞) = 0 (for sim-
plicity we exclude the case of a compound Poisson process with negative jumps).
Since jumps of a spectrally negative Lévy processX are all non-positive, moment
generating function E[eθXt ] exists for all θ ≥ 0 and is given by E[eθXt ] = etψ(θ)

for some function ψ(θ) that is well defined at least on the positive half-axes where
it is strictly convex with the property that limθ→∞ ψ(θ) = +∞. Moreover, ψ
is strictly increasing on [Φ(0),∞), where Φ(0) is the largest root of ψ(θ) = 0.
We shall denote the right-inverse function of ψ by Φ : [0,∞) → [Φ(0),∞). We

will consider also the dual process X̂t = −Xt which is a spectrally positive Lévy
process with the jump measure ν̂ (0, y) = ν (−y, 0). Characteristics of X̂ will be
indicated by using a hat over the existing notation for characteristics of X .

For any θ for which ψ(θ) = logE[exp θX1] is finite we denote by P
θ an

exponential tilting of measure P with Radon-Nikodym derivative with respect
to P given by

dPθ

dP

∣∣∣∣
Ft

= exp (θXt − ψ(θ)t) , (7)

where Ft is a right-continuous filtration natural filtration of X . Under the
measure P

θ the process X is still a spectrally negative Lévy process with char-
acteristic function ψθ given by

ψθ(s) = ψ(s+ θ)− ψ(θ). (8)

Throughout the paper we assume that the following (regularity) condition
is satisfied:

σ > 0 or

∫ 0

−1

xν(dx) = ∞ or ν(dx) << dx, (9)

where σ a Gaussian coefficient of X .

2.1 Scale functions

For p ≥ 0, there exists a function W (p) : [0,∞) → [0,∞), called the p-scale
function, that is continuous and increasing with Laplace transform

∫ ∞

0

e−θxW (c)(y)dy = (ψ(θ) − c)−1, θ > Φ(c). (10)

The domain ofW (c) is extended to the entire real axis by settingW (c)(y) = 0 for
y < 0. We denoteW (0)(x) =W (x). For later use we mention some properties of
the function W (c) that have been obtained in literature. On (0,∞) the function

4



y 7→ W (c)(y) is right- and left-differentiable and under the condition (9), it holds
that y 7→ W (c)(y) is continuously differentiable for y > 0. Moreover, if σ > 0
it holds that W (c) ∈ C∞(0,∞) with W (c)′(0+) = 2/σ2; if X has unbounded
variation with σ = 0, it holds that W (c)′(0+) = ∞ (see [32, Lemma 4]).

The function W (c) plays a key role in the solution of the two-sided exit
problem as shown by the following classical identity. Letting τ+a , τ

−
a be the

entrance times of X into (a,∞) and (−∞,−a) respectively,

τ+a = inf{t ≥ 0 : Xt ≥ a}, τ−a = inf{t ≥ 0 : Xt < −a}

it holds for y ∈ [0, a] that

Ey

[
e−ατ

+
a , τ−0 > τ+a

]
=W (α)(y)/W (α)(a). (11)

Closely related to W (c) is function Z(c) given by

Z(c)(y) = 1 + qW
(c)

(y), (12)

where W
(c)

(y) =
∫ y
0 W

(c)(z)dz is the anti-derivative of W (c). Moreover, the
scale functions appear also in so-called two-sided downward exit problem:

Ex

[
e−ατ

−
0 , τ−0 < τ+a

]
= Z(α)(x) − Z(α)(a)

W (α)(x)

W (α)(a)
. (13)

and in one-sided downward exit problem that for any β with ψ(β) < ∞, α ≥
ψ(β) ∨ 0 and x ≥ 0 gives:

Ex

[
e
−ατ−

0 +βX
τ
−
0 , τ−0 <∞

]
= eβx

(
Z

(u)
β (x)−

u

Φ(u)
W

(u)
β (x)

)
, (14)

where W
(u)
β and Z

(u)
β are scale functions with respect to the measure P β , u =

α − ψ(β) and u/Φ(u) is understood in the limiting sense if u = 0. In fact for
each x ∈ R, W (c)(x) is analytically extendable, as a function in c, to the whole
complex plane; and hence the same is true of Z(c)(x). In which case arguing
again by analytic extension one may weaken the requirement that α ≥ ψ(β)∨ 0
to simply α ≥ 0.

The ‘tilted’ scale functions can be linked to non-tilted scale functions via the
relation eβxW

(α−ψ(β))
β (x) = W (α)(x) from [6, Remark 4]. This relation implies

that eβx[W
(c)′
β (x) + βW

(c)
v (x)] =W (α)′(x) and

Z
(u)
β (x) = 1 + u

∫ x

0

e−βzW (α)(z)dz.

It is also well-known the solution of one-sided exit problem:

Ex

[
e−qτ

+
a , τ+a <∞

]
= e−Φ(q)(a−x). (15)
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2.2 Reflection at the supremum

Write X for the running supremum of X , that is,

Xt = sup
0≤s≤t

(Xs ∨ 0),

where we use notations y ∨ 0 = max{y, 0}. By Y = X −X we denote the Lévy
process X reflected at its past supremum X. It was shown in [6] and [32] that
the Laplace transform of entrance time

τa = inf{t ≥ 0 : Yt > a}

of the reflected process Y into (a,∞) can be expressed in terms of the functions
Z(q) and W (q) as follows:

Ex[e
−ατa , τa <∞] = Z(α)(a− x)− qW (α)(a− x)

W (α)(a)

W (α)′(a)
, (16)

where x ∈ [0, a] and α ≥ 0. In fact, more general result holds true. We read off
from [6, Theorem 1] that for u = α− ψ(β) ≥ 0, x ∈ [0, a] it holds that

Ex[e
−ατa−β(Yτa−a), τa <∞] = eβx

[
Z

(u)
β (x)− CβW

(u)
β (x)

]
, (17)

where Cβ = [uW
(u)
β (a) + βZ

(u)
β (a)]/[W

(u)′
β (a) + βW

(u)
β (a)].

The following result proved in [7, Propostion 1] concerns the value function
associated to the dividend barrier policy πa treated only up to regular (not
Parisian ruin) time σa = inf{t ≥ 0 : Uπ

a

t < 0}.

Proposition 1 Let a > 0. For x ∈ [0, a] it holds that

Ex

[∫ τa

0

e−qtdXt

]
=
W (q)(x)

W (q)′(a)
. (18)

2.3 Parisian ruin

One of most important characteristics in risk theory is a ruin probability defined
by P(τ−0 < ∞) for τ−0 = inf{t > 0 : Xt < 0}. Czarna and Palmowski [9]
extended this notion to so-called Parisian ruin probability, that occurs if the
process X stays below zero for period longer than a fixed ζ > 0 (see also
[10, 11] for the result concerning classical riks process). Formally, we define
the excursion below zero:

ςXt = sup{s < t : 1(Xs≥0)1(Xt<0) = 1}.

Parisian time of ruin is given by

τζ = inf{t > 0 : t− ςXt ≥ ζ}

and Parisian ruin probability we define as:

P(τζ <∞|X0 = x) = Px(τ
ζ <∞).

The following result summarize [9, Theorems 1 and 2].
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Theorem 1 Parisian ruin probability equals:

Px(τ
ζ = ∞) = Px(τ

−
0 = ∞)P(τζ <∞) (19)

+
(
1− P(τζ <∞)

)(
1−

∫ ∞

0

P(τ+z > ζ)Px(τ
−
0 <∞,−Xτ−

0
∈ dz)

)

and
Px(τ

−
0 = ∞) = ψ′(0+)W (x), (20)

∫ ∞

0

e−θs ds

∫ ∞

0

P(τ+z > s)Px(τ
−
0 <∞,−Xτ−

0
∈ dz) (21)

=
1− ψ′(0+)W (x)

θ
−

1

θ
eΦ(θ)x

(
Z

(−θ)
Φ(θ) (x) +

θ

Φ(−θ)
W

(−θ)
Φ(θ) (x)

)
. (22)

Moreover,

(i) If X is a process of bounded variation, then

P(τζ <∞) =

∫∞

0
P(τ+z > ζ)P(τ−0 <∞,−Xτ−

0
∈ dz)

1− ρ+
∫∞

0
P(τ+z > ζ)P(τ−0 <∞,−Xτ−

0
∈ dz)

,

where
∫ ∞

0

e−θs ds

∫ ∞

0

P(τ+z > s)P(τ−0 <∞,−Xτ−
0
∈ dz)

=
1

θp

∫ ∞

0

(
1− e−Φ(θ)z

)
ν̂(z,∞)dz. (23)

(ii) If X is a process of unbounded variation, then

P(τζ <∞) = lim
b→∞

q(b, ζ)− q(b,∞)

q(b, ζ)
, (24)

where ∫ ∞

0

∫ ∞

0

q(s, t) dt ds =
m(ω)Φ (ω) (β − ω)

βω2(Φ(β) − Φ (ω))
(25)

and we assume that there exists function n(ǫ) such that the limit

m(ω) = lim
ǫ↓0

P (−Xeω ≤ ǫ)

n(ǫ)
(26)

is well-defined and finite.
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3 Parisian delay at ruin

In section we will consider Parisian ruin time (6) and dividends paid according
to barrier strategy that correspond to reducing the risk process U to the level
a if x > a, by paying out the amount (x − a)+, and subsequently paying out
the minimal amount of dividends to keep the risk process below the level a. It
is well known (see [7]) that for 0 < x ≤ a the corresponding controlled risk
process, say Uπ

a

under Px is equal in law to the process a−Y = {a−Yt : t ≥ 0}
under Px where

Yt = (a ∨Xt)−Xt

and Xt = sups≤tXs is running supremum of risk process X . Moreover,

va(x) = vπ
a

(x) = Ex

(∫ τζ

0

e−qtdLt

)
,

where Lt = a ∨Xt − a.
Note that for x ≤ a,

va(x) = Ex

[
e−qτ

+
a , τ+a < τζ

]
va(a) (27)

and
va(x) = x− a+ va(a) for x > a. (28)

Assume that X → ∞ a.s. Then by Markov property and fact that X jumps
only downwards we derive:

Px(τ
ζ = ∞) = Px(τ

+
a < τζ)Pa(τ

ζ = ∞). (29)

Hence

Px(τ
+
a < τζ) =

Px(τ
ζ = ∞)

Pa(τζ = ∞)
.

Using change of measure (7) with θ = Φ(q), Optional Stopping Theorem and fact
that on P

Φ(q) process X tends to infinity a.s. (since ψ′
Φ(q)(0+) = ψ′(Φ(q)+) >

0), we have

Ex

[
e−qτ

+
a , τ+a < τζ

]
=
V (q)(x)

V (q)(a)
, (30)

where
V (q)(x) = eΦ(q)x

P
Φ(q)
x (τζ = ∞). (31)

The probability P
Φ(q)
x (τζ = ∞) = 1 − P

Φ(q)
x (τζ < ∞) hence also function V (q)

could be found using Theorem 1.
It also follows from Theorem 1 that under the condition (9) function V (q)(y)

(similarly like W (c)(y)) is continuously differentiable for y ∈ R.
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Moreover, for n ∈ N, by (28),

va(a) ≥ Ea

[
e
−qτ+

a+1/n , τ+a+1/n < τζ
](

va(a+
1

n
)

)

= Ea

[
e
−qτ+

a+1/n , τ+a+1/n < τζ
](

va(a) +
1

n

)

and

va(a) ≤ Ea

[
e
−qτ+

a+1/n , τ+a+1/n < τζ
](

va(a) +
1

n

)

+
1

nq

(
1− Ea

[
e−qτ

+
a+1/n , τ+a+1/n < τζ

])
.

Last increment in above equation is o(1/n) since by strictly positive drift X is
regular for (0,∞). Hence,

va(a) =
V (q)(a)

V (q)
(
a+ 1

n

)
(
va(a) +

1

n

)
+ o

(
1

n

)

and then

va(a) =
V (q)(a)

V (q)′(a)
.

Thus from (27), (28) and (30) it follows that va is continuously differentiable
for all x ∈ R and

va(x) = vπa(x) =





V (q)(x)
V (q)′(a)

, x ≤ a,

x− a+ V (q)(a)
V (q)′(a)

, x > a.

(32)

In particular,
v′a(a) = 1. (33)

Hence we get the following theorem.

Theorem 2 The value function corresponding to the barrier strategy πa is given
by (32). The optimal barrier a∗ is given by:

a∗ = inf{a > 0 : V (q)′(a) ≤ V (q)′(x) for all x}. (34)

In particular, if V (q) ∈ C2(R), then

V (q)′′(a∗) = 0. (35)

Remark 1 Note that V (q) ∈ C2(R) if W (q) ∈ C2(R). This is the case if e.g. the
Gaussian component is present.
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4 Verification Theorem

To prove the optimality of a particular strategy π across all admissible strategies
Π for the dividend problem (4), where the ruin time σπ is given by the Parisian
ruin (6), we are led, by standard Markovian arguments, to consider the following
variational inequalities:

Γf(x)− qf(x) ≤ 0, if x ∈ R, (36)

f ′(x) ≥ 1, if x ∈ R, (37)

for functions f : R → R in the domain of the extended generator Γ of the
extended generator of the process X which acts on C2(0,∞) functions f as

Γf(x) =
σ2

2
f ′′(x) + p0f

′(x) +

∫ 0

−∞

[
f(x+ y)− f(x) + f ′(x)y1{|y|<1}

]
ν(dy),

(38)
where ν is the Lévy measure of X and σ2 denotes the Gaussian coefficient and

p0 = c +
∫ 0

−1
yν(dy) if the jump-part has bounded variation; see Sato [30, Ch.

6, Thm. 31.5]. In particular, if E[|X |] < ∞ and X has unbounded variation
[bounded variation], a function f that is C2 [C1] on [0,∞) and that is ultimately
linear lies in the domain of the extended generator.

Theorem 3 Let C ∈ (0,∞] and suppose f is continuous and piecewise C1 on
(−∞, C) if X has bounded variation and that f is C1 and piecewise C2 on
(−∞, C) if X has unbounded variation. Suppose that f satisfies (36) and (37).
Then f ≥ supπ∈Π≤C

vπ, where Π≤C is a set of all bounded strategies by C. In
particular, if C = ∞, then f ≥ v∗.

Proof We will follow classical arguments. Let π ∈ Π≤C be any admissible
policy and denote by L = Lπ and U = Uπ the corresponding cumulative div-
idend process and risk process, respectively. By Sato [30, Ch. 6, Thm. 31.5]
function g(t, x, z) = e−qtf(x)1{z≤ζ} is in a domain of extended generator of the
three-dimensional Markov process (t, Uπt , t − ςUt ), with ςUt defined (5) and for
simplicity notation we will assume that ςUt = t if Uπt ≥ 0. Note that finite
number of discontinuities in f and hence also single discontinuity in 1{z≤ζ} are
allowed here. Hence we are also allowed to apply Itô’s lemma (e.g. [29, Thm.
32]) if X is of unbounded variation and the change of variable formula (e.g. [29,
Thm. 31]) if X is of bounded variation:

e−qtf(Ut)1{t−ςUt ≤ζ} − f(U0) = Jf (t)−

∫ t

0

e−qsf ′(Us−)dL
c
s

+

∫ t

0

e−qs(Γf − qf)(Us−)ds+Mt, (39)

where Mt is a local martingale with M0 = 0, Lc is the pathwise continuous
parts of L and for a function g the process Jg is given by

Jg(t) =
∑

s≤t

e−qs [g(As +Bs)− g(As)]1{Bs 6=0}, (40)

10



where As = Us− + ∆Xs and Bs = −∆Ls denotes the jump of −L at time s.
Let Tn be a localizing sequence of M . Applying Optional Stopping Theorem to
the stopping times T ′

k = Tk ∧ σ
π and using Fatou’s Theorem we derive:

f(x) ≥ Exe
−qT ′

nf(UT ′
n
)1{t−ςU

T ′
n
≤ζ} − Jf (T

′
n) + Ex

∫ T ′
n

0

e−qsf ′(Us−)dL
c
s

−Ex

∫ T ′
n

0

e−qs(Γf − qf)(Us−)ds.

Invoking the variational inequalities f ′(x) ≥ 1 (hence f(As + Bs) − f(As) ≤
−∆Ls if As > 0) and Γf(x)− qf(x) ≤ 0 we have:

f(x) ≥ Exe
−qT ′

nf(UT ′
n
)1{t−ςU

T ′
n
≤ζ} + Ex

∫ T ′
n

0

e−qsdLs

≥ Ex

[
e−qσ

π

w(Uσπ );σπ ≤ T ′
n

]
+ Ex

[∫ σπ

0

e−qsdLs;σ
π ≤ T ′

n

]
.

Letting n → ∞ in conjunction with the monotone convergence theorem and
using fact that 1{t−ςU

σπ≤ζ} = 0 complete the proof. �

Using verification theorem we find necessary conditions under which the
optimal strategy takes the form of a barrier strategy.

Theorem 4 Assume that σ > 0 or that X has bounded variation or, otherwise,
suppose that va∗ ∈ C2(0,∞). If q > 0, then a∗ <∞ and the following hold true:

(i) πa
∗

is the optimal strategy in the set Π≤a∗ of all bounded strategies by a∗

and va∗ = supπ∈Π≤a∗
vπ.

(ii) If (Γva∗ − qva∗)(x) ≤ 0 for x > a∗, the value function and optimal
strategy of (4) is given by v∗ = va∗ , where the ruin time σπ is given by the
Parisian moment of ruin (6).

The proof of Theorem 4 is based on the verification theorem 3 and the
following lemma.

Lemma 1 (i) We have a∗ <∞.
(ii) It holds that (Γva∗ − qva∗)(x) = 0 for x ≤ a∗.
(iii) For x ≤ a∗

v′a∗(x) ≥ 1.

Proof Point (i) follows from the fact that V (q)′(y) is continuous and in-
creasing. Indeed, note that by [24] we have V (q)(y) = eΦ(q)y

Py(τ
ζ = ∞) ≥

eΦ(q)y
Py(τ

−
0 = ∞) = 1

ψ′(0+)W
(q)(y) and W (q)′(y) tends to ∞ as y → ∞. The

proof of (ii) follows from (27) and the martingale property of

e−qtEXt

[
e−qτ

+
a∗ , τ+a∗ < τζ

]
= E

[
Ex

[
e−qτ

+
a∗ , τ+a∗ < τζ

]
|Ft

]
,
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where x ≤ a∗. Point (iii) is a consequence of (33) and definition of a∗. �

Moreover, we can give other necessary condition for the barrier strategy to
be optimal.

Corollary 1 Suppose that

V (q)′(a) ≤ V (q)′(b), for all a∗ ≤ a ≤ b.

Then the barrier strategy at a∗ is an optimal strategy.

Proof The proof is the same as the proof of [26, Theorem 2]. �

Corollary 2 Suppose that, for x > 0, ν̂′(x) is monotone decreasing, then πa∗

is an optimal strategy of (4).

Proof The proof is similar like the proof of [26, Theorem 3] using Theorem
1 and (31) together with known identity

P
Φ(q)
x (τ−0 <∞) = κ̂Φ(q)(0, 0)ÛΦ(q)(x,∞), (41)

where ÛΦ(q) is a renewal function of the descending ladder height process Ĥt

under PΦ(q) and κ̂Φ(q)(α, β) is a Laplace exponent of bivariate descending ladder

height process (L̂−1
t , Ĥt) under P

Φ(q) with κ̂Φ(q)(0, 0) = ψ′(Φ(q)) > 0. In the
proof one also has to use the following equality:

P
Φ(q)
x (τ−0 <∞,−Xτ−

0
∈ dz)

= κ̂Φ(q)(0, 0)

∫ x

0

ÛΦ(q)(x− dy)

∫ ∞

0

e−Φ(q)(z+v)ν̂(dz + v + y) dv,

which follows from [25, (7.15), p. 195]. �

5 Parisian delay at the moment of dividend pay-

ments

In this section we analyze the case when we pay dividends only when surplus
process stay above barrier a longer than a time lag d > 0. The dividends
are paid at the end of that period and they are paid until regular ruin time
σπa = inf{Uπa

t < 0}. Then by (11) for x ∈ [0, a],

v(x) = Ex

[
e−qτ

+
a , τ+a < τ−0

]
v(a) =

W (q)(x)

W (q)(a)
v(a); (42)

and for x ≥ a

v(x) = Ex−a

[
(Xd + v(a))e−qτ

−
0 , τ−0 > d

]

+v(a)

∫

[0,a)

Ea−y

[
e−qτ

+
a , τ+a < τ−0

]
Ex−a

[
e−qτ

−
0 ,−Xτ−

0
∈ dy, τ−0 ≤ d

]
,

(43)

12



where Ex

[
e−qτ

+
a , τ+a < τ−0

]
is given in (11).

Double Laplace transform of Ez

[
e−qτ

−
0 ,−Xτ−

0
∈ dy, τ−0 ≤ s

]
for z ≥ 0 by

(14) equals

∫ ∞

0

∫

[0,∞)

e−αse−βzEz

[
e−qτ

−
0 ,−Xτ−

0
∈ dy, τ−0 ≤ s

]
dsdy

=
1

α
Ez

[
e
−(α+q)τ−

0 +βX
τ
−
0 , τ−0 <∞

]

=
1

α
eβz
(
Z

(uq)
β (z)−

uq
Φ(uq)

W
(uq)
β (z)

)
:= H(β, z), (44)

where uq = α+ q − ψ(β). Moreover,

∫ ∞

0

∫

[0,∞)

e−αsEz

[
Xse

−qτ−
0 , τ−0 > s

]
ds =

1

α

{
zEz

[
e−qτ

−
0

]
− Ez

[
Xτ−

0
e−(α+q)τ−

0

]}

=
1

α
z

(
Z(q)(z)−

q

Φ(q)
W (q)(z)

)
−

∂

∂z
H(β, z)|β=0. (45)

Further, the value v(a) is determined by (43) if X has no Gaussian compo-
nent (σ = 0) or by the smooth paste condition:

v′(a−) = v′(a+) (46)

otherwise.

Lemma 5.1 If σ > 0 then (46) holds.

Proof For n ∈ N,

v(a) = v(a− 1/n)Ea

[
e
−qτ−

a−1/n , τ−a−1/n < τ+a+1/n

]

+v(a+ 1/n)Ea

[
e−qτ

+
a+1/n , τ+a+1/n < τ−a−1/n

]
+ o

(
1

n

)
, (47)

where the last term is bounded above by 1
nP(τ

+
1/n > d). Moreover, by (11),

Ea

[
e
−qτ+

a+1/n , τ+a+1/n < τ−a−1/n

]
=
W (q)(1/n)

W (q)(2/n)

and by (13),

Ea

[
e
−qτ−

a−1/n , τ−a−1/n < τ+a+1/n

]
= Z(q)(1/n)− Z(q)(2/n)

W (q)(1/n)

W (q)(2/n)
.

13



Multiplying both sides of (47) by two, subtracting v(a − 1/n) + v(a), dividing
by 1/n gives:

v(a)− v(a− 1/n)

1/n
=

v(a+ 1/n)− v(a)

1/n
(48)

+(v(a+ 1/n)− v(a− 1/n))

[
2W (q)(1/n)

W (q)(2/n)
− 1

]
(49)

+v(a− 1/n)2q

∫ 1/n

0 W (q)(y) dy − W (q)(1/n)
W (q)(2/n)

∫ 2/n

0 W (q)(y) dy

1/n

(50)

where we use (12). Now, since W (q)(0) = 0, we have:

lim
n→∞

W (q)(1/n)

W (q)(2/n)
=

W (q)′(0)

2W (q)′(0)
=

1

2
.

Hence increment (50) converges to v(a)2q(W (q)(0)− 1
4W

(q)(0)) = 0 as n→ ∞.
Moreover,

lim
n→∞

[
2W (q)(1/n)

W (q)(2/n)
− 1

]
= lim

n→∞
−
1

2

2/n

W (q)(2/n)

W (q)(2/n)− 2W (q)(1/n)

1/n2

= −
1

2

1

W (q)′(0)
W (q)′′(0) <∞

and limn→∞(v(a+1/n)−v(a−1/n)) = 0 by the continuity of the value function.
Hence increment (49) laos tends to 0 as n → ∞. Taking limit as n → ∞ in
(48)-(50) completes the proof of (46). �

All results of this section could be summarized in the following theorem.

Theorem 5 The value function v(x) corresponding to the strategy πa is given
in (42) - (46).
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Processes with Applications, Springer.

[26] Loeffen, R. (2008) On optimality of the barrier strategy in de Finetti’s
dividend problem for spectrally negative Lévy processes, Annals of Applied
Probability 18(5), 1669–1680.

[27] Loeffen, R. (2008) An optimal dividends problem with a terminal value
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