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Abstract

We performed a comprehensive analysis on the price bourf@®06ftranche options, and illustrated
that the CDO tranche option prices can be effectively bodrmethe joint distribution of default time
(JDDT) from a default time copula. Systemic and idiosyncratitdesbeyond théDDT only contribute
a limited amount of pricing uncertainty. The price boundsrahche option derived from a default time
copula are often very narrow, especially for the senior pfttie capital structure where there is the most
market interests for tranche options. The tranche optiamts from a default time copula can often be
computed semi-analytically without Monte Carlo simulatitherefore it is feasible and practical to price
and risk manage senior CDO tranche options using the prigedsofrom a default time copula only.

CDO tranche option pricing is important in a number of pi@altsituations such as counterparty, gap
or liquidation risk; the methodology described in this papan be very useful in the above described
situations.

1 Introduction

The credit derivative market has experienced tremenddatility since the beginning of the sub-prime and
credit crisis. The standard credit index swaps and indexkas have become very important instruments for
market participants to hedge or take positions on the dvenedlit quality and credit correlation. The index
swaption market has become more active recently because aficreasing need to manage the volatility
of market-wide credit movements. On the other hand, thexitidache option market never gained any
traction despite the large realized volatility in the indeanches. The reasons are three fold: first, the index
tranches are less liquid than the index swaps, secondlytdimelard index tranches can be viewed as an
option on the index portfolio loss and it already provideslages, therefore there is no need for investors
to trade index tranche options in order to get leveraged sxgo thirdly, there is no standard model that
can price and hedge index tranche options. It remains a yelenging modelling problem to properly
price CDO tranche options and the market participants gdigdack the confidence in pricing and hedging
the index tranche options. Despite the lack of interestadertranche options directly, it is very important
to study the valuation of tranche options since they ndiugise from a number of common practical
situations, for example in conterparty risk, gap risk ouidgtion risk.

Under current market conditions, it is almost impossibl@tice tranche options precisely because of
the lack of relevant market observables. (Mashal & NaldiS)Guggested a method to compute the range
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bounds of tranche options from a default time copula. Thedatribution of that paper is a scheme to
compute the range bounds without the nested Monte Carldadiom, which leads to easy calculations of
the price bounds implied by a default time copula via a regulante Carlo simulation.

A default time copula, by definition, only models the joinstdibution of default timeJDDT), and it
does not model any other factors. On the other hand, a batdynamic spread model attempts to model
the joint distribution of default time and all the systemiwdaidiosyncratic factors that affect the spread
dynamics. Dynamic factor model is the most common approadbuild a bottom-up dynamic spread
model, where the spread dynamics are driven by a few systiattiors that affects all the names and an
idiosyncratic factor for each individual name. The idiosatic factors are easy to model because they are
independent from other factors by definition, thereforernttzen task of building a dynamic factor model is
to construct the joint distribution of default time and gysttic factorsIDDT SF) which fully specifies the
systemic dynamics.

The dynamic factor model is more difficult to build and caditerthan a default time copula since it needs
to model more factors beyond the default time. The methagopwescribed by (Mashal & Naldi 2005) can
be very useful in practice if the resulting option price bdsiirom the default time copula are narrow; as
it allow us to price and risk manage tranche options withaydlementing a full dynamic factor model.
(Mashal & Naldi 2005) have shown that the price bounds ofdnanoptions from a standard Gaussian
Copula model are very narrow; however it is unclear if theg@tounds would remain narrow in a more
realistic situation where the default time copula has to &ldated to the index tranche market across
multiple maturities.

Recently, we suggested a very flexible dynamic correlatiodeting framework in (Li 2009). A key
finding of that paper is that the portfolio loss distributiamd CDO tranche prices only depends on the joint
distribution of default indicatorsJPDI); the modelling framework is more flexible than previoustbwi-up
models in the literature as it allows td®DT andJDDT S to change independently from td®DI. With
(Li 2009), once we calibrated tDDI to index tranche prices, we can easily construct differefault time
copula or dynamic factor models without changing the catiéx index tranche prices. In this study, we used
the (Li 2009) model to construct different default time clgsufrom the same index tranche calibration, and
we systematically study the price bounds of tranche optimuer these default time copulas.

The paper is organized as follows: In secfidon 2 we first rexdeme practical situations that involve the
pricing of tranche options; then we review the general @tion of the price bounds for tranche options in
sectior{B; then we study the pricing bounds for Europear $tgthche options in sectidh 4; then we discuss
tranche options with random triggers in secfion 5.

Even though we focus on tranche options in this paper, thaadetogy and conclusions are generally
applicable to other types of multi-name credit options,hsas options on NtD basket, and options on
multiple tranches or CD&.

2 Practical Examplesof Tranche Options

Tranche options naturally arise from a number of practidgalaions. We first define some terminology
before reviewing these situations. Suppose there existstabpility spaceQ, #;,[P) equipped with a risk-
neutral probability measur®. Consider a CDO tranche with a fixed set of payment dateand a stream
of cashflow{c;} on the payment grid. The MTM of the tranche at titrie \; = BiE[Y - %\ft], whereB;

is value of a money market accountiahat started with amount 1 at time 0. We further assumeBhahd



¢ are uncorrelated, therefore:

V= Zd(t,ti)E[Cilft]

ti>

whered(t,tj) = is the risk free discount factor betwetandt;.

Bt
E[B, [7]

2.1 Counterparty Risk

This is the classic case considered in (Mashal & Naldi 2085ppose a bank traded a tranche with a risky
counterparty, if the counterparty default at tilméhen the bank usually need to pay the full MTM)(to the
bankruptcy pool if the trade is to the counterparty’s fa¥r< 0), and the bank only recover a portion of the
MTM if the trade’s MTM is to the bank’s favonf > 0). DefineR as the recovery rate of the counterparty,
then the bank could suffer a loss if the counterparty defanld the amount of the lose (i — R) max;, 0],
which is a typical call option payoff. The counterparty effeely holds a call option to default and walk
away from the remaining trade. The price of this call optiothie counterparty is therefore:

CP= E[d(0,t)1_maX(1— R\, 0]]

The fair MTM price of the trade to the bank therefore has todjasied down td/y — CP if we price in the
counterparty default risk. In reality, the bank also holdation to default, which can be priced similarly.

22 Gap Risk

Suppose a bank entered a tranche trade with a client, andi¢hé posted collateral in the amount Gf
according to certain margin policies. Normally the colfateagreement allows the bank to make a margin
call for additional collateral if the market moves agairst tlient and the initial margin is inadequate to
cover the potential loss of the trade. Suppdsis the MTM to the bank, and a margin call is made at time

if the client does not post additional collateral within atae time periodd, which is typically a few days

to two weeks after the margin call, the bank can seize thateodl and unwind the trade. A rationale client
would choose not to post any additional collateral in thenea¢Cy < V; 5, therefore the client effectively
holds a call option whose payoff is mak, s — Co,0). Denotet as the stopping time of the margin call, then
the price of the call option to the client is:

GAP = E[d(0,t + )1, maxV .5 — Co, 0)]

The fair price of the instrument to the bank with this gap istherefore/p — GAP.

2.3 Levered Super Senior Tranche

Levered super senior (LSS) trade is a very popular trade étieat to take on leveraged risk on the senior
part of the capital structure. In a typical LSS trade, thertlisell protection on a super senior tranthé&

a bank and the client only post collateral in the amour@pfThe ratio between the notional amount of the
V; andCy is the leverage factor. The LSS trade is different from theasion in the gap risk in that the bank
can only call for additional collateral if a pre-defined géy event occurs. The trigger event can be portfolio
loss reaching certain level, or tranche spreads reachimgrcéevel. Before the trigger event, the bank can'’t
call additional collateral beyondy even if the market moves against the client and the MTN;db the
bank becomes greater than the collateral v&lgleAfter the trigger event, the bank usually is free to call
additional collateral based on the MTM of the super senamaheV;.
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Since a rational client would not post any additional cellat if Cy < 4, the bank only gets the smaller
of Cy andV; when trigger event occurs, therefore the value of the LSftta the bank is:

LSS=E[Y d(0,t)1<Ci +d(0,t) L min(\,Co)]
= E[S d(0,;)1 (G +d(0,1)Lr (i — max(Vt —Co, 0)]

= E[S d(0,;)L (G +d(0,1) Lr—tM] — E[d(0,t) Lr— max(k —Co,0)]

wherec; is the coupon payment for the super senior tranche, here wle tha assumption that the trigger
event always occurs before the super senior tranche saffigreeal losses, which is almost always the case
in practice since the trigger is put in to protect the banlstitis designed to trigger far before the realized
loss hits the tranche attachment. If the trigger is basedhepaortfolio loss, the first term can be computed
from a default time copula. The second term is the value oflleoption for the client to walk away from
the trade when the trigger event occurs.

The LSS trade is often mistakenly modeled as a gap risk tr@deparing the LSS trade with the gap
risk, it is obvious that the LSS protection worths much lesshe bank than in the case of the gap risk.
Readers are referred to (Gregory 2008) for a very detaileclidsion of the LSS.

2.4 Liquidation Risk

Suppose aclient entered a funded credit-linked-note (Gtad referencing a tranche with a bank. At trade
inception, the client deposits the face amount of the CLN$®#, this principal may be invested in a risky
asset; for additional yield. The SPV then enters a unfunded swagraonwith the bank to get exposure to
the underlying tranche. We denote the MTM of the unfundedosiwdhe bank a¥%;. The coupon payments
from both theA, andV;, netting of any fees to the bank, will be paid to the clienteither the underlying
tranche gets impaired, or if the risky collatefaldefaults, both th&; andA; are liquidated; the client then
receives the liquidation value of(—\;) if it is positive. Since the client never put additional negrinto
the SPV besides the initial principal, the bank will suffeloas in the event of the net liquidation value
A; — V4 is negative. Define to be the stopping time of the liquidation event, then thentleffectively holds

a liquidation option whose payoff is méx — A;,0) whose value to the client is:

LIQ = E[d(0,t) 1 max\Vk — A, 0)]

The fair value of the swap to the bank is therefgge- LIQ. The liquidation risk is similar to an exchange
option between two assetsandA;.

There are several variations of the liquidation risk: infdamous (or infamous) mini-bond structukeé,
is a first-to-default basket ar is a synthetic CDO tranche. In a typical credit-linked-ndteeV; can be
a single name CDS or synthetic CDO tranche, Ants very safe money market instruments. In a funding
trade, tha/ can be a CDO tranche or a single name CDS, and¢ligthe term bond or funding of the bank.

2.5 CallableTranche

Suppose a bank bought tranche protection from a client, lentade’s MTM to the bank . If the client
is given the option to buy back the tranche protection atgd{iazinder certain trigger event, then the client
hold an option of ma§; — K,0) when the trigger event occurs. Denatas the stopping time of the trigger



event, the client’s option to call the tranche can be valied a
CAL = E[d(0,t)1—t maxt — K, 0)]

The fair value of the swap to the bank is therefdgse- CAL.

3 Derivation of Price Bounds

All of examples in sectiof]2 reduces to the same problem afimglthe following call option where the
exercise time is random:
C=E[d(0,t)1,— max(\; — K,0)] 1)

with K as the strike price of the cal; may involve multiple tranches or assets as in the case dtiagjon
risk. This call option is very difficult to price because itpg@ds on the MTM/ at a future time. Normally
this types of problem requires nested Monte Carlo simuldtiecaus#® itself is an expectation of all future
cashflows. It also requires a full dynamic model capable okgating spread levels at a future time on a
simulated path, such a model is nearly impossible to caélyaven the lack of liquidity in the tranche option
market. (Mashal & Naldi 2005) offered an elegant solutioodmpute the range bounds of the option value
C just from the filtration generated by default events andvenprates only (denoted &%). Note that the
full market filtration #; also include other systemic and idiosyncratic factors bdymy, thereforen; C #.

We also have to assume that the trigger evdatadapted ta;, which excludes the spread triggers.

In this section, we review the derivation of the range bourfdd]). The upperbound of 1) is the same
method as described in (Mashal & Naldi 2005), the lowerbooi) given here is an improvement over
the method in (Mashal & Naldi 2005), which first appeared indR 2006). The key in the derivation is
the Jensen’s inequality which stateg(E[x]) < E[g(x)] if g(x) is a convex function. In particular, since
max(x— K, 0) is a convex function ok: maxE[x] — K,0) < E[maxx— K,0)].

Recall that; = E[3 - d(t,t)ci| #;] whereg; are the cashflows of the tradg.is assumed to be adapted
to »y,, which is usually the case in practice, i.e., the cashflowswfi-name credit derivatives normally are
only functions of realized default and recovery scenaridge upper bound of can be derived as:

C = E[d(0.t) L max(Vi — K., 0)]

=E[d(0,t)L— max(IE[tide(t,ti)cim] —K,0)] : expandv;

< E[d(O,t)lT:tE[max(t;d(t,ti)ci —K,0)|#]] : Jensen’s inequality 2
=E[E[d(0,t)1—¢ max(t;d(t,ti)ci —K,0)|#]] : 11— is adapted tor;

=E[d(0,t) 1~ max(t;d(t,ti )& — K, 0)] : iterative expectation

It is very straight-forward to compute the upper bound froMante Carlo simulation of default times and
recovery rates since there is no nested simulations. Sappds a sub filtration of7; that includes the



trigger event. The lower bound Gfcan be derived as:

C =E[d(0,t)1;— max(V; — K,0)]

=E[E[d(0,t)1—¢ max(\/t —K,0)[91]]  iterative expectation
=E[d(0,t) L _{E[max — K,0)|91]] : 1, is adapted t@;

> E[d(0,t)1—s maxE[M — K|91],0)] : Jensen’s inequality (3)

=E[d(0,t)1,— maxE[V|91] — K,0)] : K'is constant

=E[d(0,t) 1~ max(IE[IE[tzkd(t,ti)ci |7t]|9t] — K, 0)] : expandv;

j >
=E[d(0,t)1—; ma&E[tZd(t,ti)ci |71] — K, 0)]  iterative expectation
i >

The termE[y; . d(0,t)ci|21] is the expected total value of future cashflow conditionedheninformation
in 9;. The choice ofy; determines the quality of the lower bound, the more inforomain 91 the higher the
lower bound is. In the limiting case of = #;, the lower bound converges to the true value of the option.

There is a very intuitive explanation of the upper and lowauras of the option values. The MTM of
the underlying tranche/) is based on the information in the market filtration In (@), the upper bound
of option payoffl;_s max(¥;-;d(0,t)c;,0)] corresponds to the option’s value to an all-powerful deityow
can perfectly foresee the future default events and regae¢es. Therefore, at the time of the trigger event
T =t, the deity will exercise the option based on the foresedaiblee cashflowy . d(0,t;)c; instead oM.

For example, the deity may exercise the option and buy pioteon a CDO tranche even if the MTM of
the tranche is less than the strike price because he fordsddhle future loss of the tranche will eventually
exceed the future value of the strike price. Therefore, ity dan extract more value from the option than
its fair market value by exercising the option based on utoformation that is not part gf;. Therefore,
the upper bound corresponds to the option value with theeigbwer of perfect foresight.

The lower bound of the option payotf_; maxE[y .. d(0,t)ci[9t],0) corresponds to an imprisoned
investor who were only given the information in the sub-iiton 9; C 7. Therefore, he does not observe
the fair MTM value\;, and he can only exercise the option baseddn|91], which is an estimation (or
best guess) of the MTM based on the available informagionThis clearly results in suboptimal exercise
of the option. Therefore, the lower bound corresponds tofti®n value with incomplete information.

Even with a full dynamic model, one could obtain the lowertof the option instead of the true value
if the numerical methods of the option pricing is built on dueed filtration, which is often the case with the
lattice methods. For example, in the pioneering work by (f@waky, Rennie & Tavares 2006), the tranche
options are priced by building a lattice on a reduced filbrativith low dimensionality, which results in a
lower bound of the option in the strict sense even though titieoas were trying to obtain the true value of
the option.

In the most generic form, the upper bound and lower bound eacomputed from the Monte Carlo
simulation of a default time copula. We don't need to modesionulate any future spreads in order to
compute the price bounds if we chooseC »;. The upper bound can be computed directly from the
simulated default time and recoveries of all the underlyingdits, and the lower bound requires a least
square Monte Carlo simulation as in (Longstaff & Schwart@D(hat regresses the value of the future cash
flows to the state variables in. Semi-analytical solution to the option bounds can be abtaif the trigger
event is deterministic in time (ie, vanilla European optidmose holder can exercise at a deterministic future
time), or if the trigger event is the default event of a singledit, such as the case in the counterparty risk.
We'll analyze these special cases in the following sections

The bounds derived from the default time copula offers giresights on the tranche option pricing. If
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the bounds are very narrow, the option values are mainlymaied by theJDDT; if the bounds are wide,
then the option values are primarily determined by othetesyie or idiosyncratic factors beyond the default
time. In this paper, we'll try to understand what is the mainet of the tranche option prices.

The price bounds for put option can be obtained via the plipesity. The methodology to obtain the
lower and upper bound of an option payoff is very generapjtli@s to any multi-name credit options, such
as CDO tranche option, NTD basket option or the multiple tagsigons as discussed in liquidation risk.

4 European Tranche Options

In this section, we consider the vanilla European tranchieagwhich can be exercised at a pre-determined
time. The tranche options with random trigger event will iEcdssed in the next section.

For simplicity, we consider the tranche loss option instefattie more general case of tranche option. An
European tranche loss option is a hypothetical instruntettdgives the buyer the right (not an obligation)
to pay a fixed amour at the exercise timein order to receive a payoff equal to the total realized Idss o
a tranche at tim@. Regular tranche option reduces to the tranche loss ogttbe tranche has no running
coupon and if we assume the protection payments are all ntadatarity instead of the time of default.
The price bounds of tranche loss option with deterministieettrigger can be computed without Monte
Carlo simulation. Since the main driver of a tranche’s vakids expected tranche loss at maturity, the
conclusions drew from the analysis on the tranche loss opgtipplies to the more general cases of tranche
option with running coupons and immediate protection eetént. Furthermore, the regular tranche option
can be approximated using tranche loss option, please seendp{A for a more detailed discussion of the
approximation.

Then the PV of the tranche loss option can be written as:

C = d(0,t)E[max(d(t, T)E[L (A,D)| %] — K,0)]

— d(0,T)E[max(E[Lt (A D)|] - ﬁ,on (4)

We useA andD to denote the tranche’s attachment and detachment levetee Isubsequent analysis,
we drop all the deterministic discount factors to simplife texposition, with the understanding that the
valuation bounds and strikes need to be adjusted with thetermdinistic discount factors iml(4). The
Lt(A,D) in () is the expected tranche loss (ETL) dndis the portfolio loss at tranche maturity.

Lt(A,D) = min(maxLt —A,0),D—A)

A simple expression for the upperbound can be derived ffdm (2

C < E[max(Lt(A,D) — K,0)]

[
= E[maxmin(maxLt —A,0),D —A) — K,0)))]
= E[min(maxLt — (A+K),0),D — (A+K))] (5)
=E[LT(A+K,D)]

Therefore, the upper bound of the tranche loss option isthestETL of anA+ K to D tranche. This
relationship does not hold if the tranche has a non-zeroimgntoupon or if the protection payment is not
made at the end of tranche maturity. However, since the itngfatinning coupon and the discounting of



Table 1: CDX-1G9 Expected Tranche Loss

Tranches 3Y 5Y Y 10v
0-3% 54.12% 80.19% 86.76% 91.12¢%
3-7% 17.03% 42.64% 55.16% 66.18¢%

7-10% 5.36% 20.09% 33.98% 48.189
10-15% 1.35% 8.17% 15.82% 23.349
15-30% 0.76% 2.29% 4.81% 7.959
30-60% 0.49% 1.62% 3.40% 5.319

60-100% | 0.02% 0.42% 0.95% 1.549

T OO o8 o o o

protection payments is limited in the tranche pricing, we stll use the PV of A+ K to D tranche as an
approximation to the upper bound of a regular tranche opfitnis is a very handy relationship in practice.
A more accurate upper bound for the regular tranche optionbeaobtained using the approximation in
AppendixA.

The upper bound of the tranche loss option only depends oteth@nal loss distribution, therefore, it
is not model dependent as long as all the models are calibratihe same loss distribution. For example,
we can compute the upper bound of a tranche option even framsedorrelation model.

The lower bound of the tranche loss option can be written as:
C = E[maxE[Lr(A,D)[2] — K, 0)] (6)

where 9t is a sub-filtration of the market filtratiosr;. The lower bound is generally model dependent
through the conditional expectatidilLt(A,D)|9;] but we can derive a naive model-independent lower
bound by Jensen’s inequality:

C = Elmax(E[Lt (A, D)| %] —K,0)]
> max(E[E[Lt (A, D)| 7] — K],0) )
— maxE[Lt (A, D)] —K,0)

The lower bound in[{7) corresponds to an exercising strategl/the option holder always exercises the
option if the expected tranche loss based on informatian=a0 is more than the strike prid€, aka, if
the option is “in-the-money” d@t= 0. (Gregory 2008) pointed out that a digital tranche is theengound
(“super-hedge”) of a loss-trigger LSS trade. The digitahtthe is equivalent to the naive lower bound (7)

in the context of the LSS.

To get more precise lower bound, we have to choose the stdiifitt 9; with more information. We
used the CDX-1G9 index tranches and market data on Jul 2089, fbr this study. We calibrated the model
described in (Li 2009) to the market data, and Table 1 shote@xpected tranche loss from the calibrated
model. Note that all the ETLs are normalized to their trantbionals, so are the option values in the rest

of this documelﬁ}.

We first consider 1G9 tranche loss options that expires atr8at(rity: Dec. 20, 2010) for the expected
loss of a 5Y (maturity: Dec. 20, 2012) tranche, we define tib@imoney (ATM) strike to be the expected
tranche losKA™ = E[Lt (A, D)]. In this study, we also computed the price bounds for inftioeey(ITM)
and out-of-the-money (OTM) tranche loss options. In thivfeing examples, the ITM strike is half of ETL,
and the OTM strike is twice of the ETIK'™ = E[Lt (A, D)] andK°™ = 2E[Lt (A, D)]. Table[2 showed
the upper bounds computed from the calibrated bottom-upehamtording tol(5).

Iwe still refer the CDX-IG9 tranches using their originalilsts even though the actual calculations were using thestetju
strikes which take into account the three defaulted nam#iportfolio.
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Table 2: Upper Bounds of 3Y-5Y Tranche Loss Option

CDX-1G9 Upper Bounds
Tranches IT™ ATM OT™M
0-3% 43.33% 12.73%  0.009
3-7% 30.71% 20.57%  4.449
7-10% | 17.35% 14.79% 10.219
10-15% 7.63% 7.11%  6.14%
15-30% 224%  219%  2.10%
30-60% 161% 1.59%  1.56%
60-100% | 0.42%  0.41%  0.41%

We now focus on the lower bounds which depends on the choitecfub-filtratiorp;.

4.1 Lower Boundsfrom Top-down Models

The minimum sub-filtration that can price tranche loss aptionsistently is the filtration generated by the
portfolio loss process, we denote it as Note thatz; does not contain any single name information and
typical top-down models are built on th filtration.

The £; does impose a more precise lower bounds of the tranche Itiss dpan (7). To illustrate this,
we take a discrete sample of the initial loss distributiam &uilt two different Markov chains on the loss
distribution: co-monotonic Markov chain and maximum epyrédarkov chain. The details of how to build
these Markov chains can be found in (Epple, Morgan & Schl@@gl7). Once we have a Markov chain
on the loss transition, we can then compute the lower bour@)iby conditioning on the portfolio loss
L;. Since the conditioning is only on a scaler variable, thediolaound can be easily computed from the
Markov Chain without using Monte Carlo simulation. The lovicounds from the two different Markov
chains are shown in the taljlé 3: the co-monotonic Markovrchmplies a much higher lower bound than
the maximum entropy Markov chain. The OTM option on the 0-3%@ity tranche has a value of 0 since
the OTM strike is more than the tranche notional. The 60-18@¥che’s lower bounds with co-monotonic
Markov chain are slightly higher than the upper bounds ind@pwhich is caused by the inaccuracies of
the discrete sampling of the loss distribution.

An interesting question is: what is the lower bound if we okihow the loss distributions but not the
Markov chain of loss transition? This bound is of speciatiast because it is not model dependent, and
it is the lowest lower bound among all admissible Markov nkdy the loss distribution. We denote this
lowest lower bound as LLBY{). Finding the LLB(;) among all possible Markov chains can be formulated
as a nonlinear optimization problem (see the Appehdix B)clwban be solved using a standard non-linear
optimizer. The column “LLB” in tabl€13 is the lowest lower budiobtained from the nonlinear optimization.
Note that the optimizations to find the LLBs for differentriches are run separately, therefore the tranche
loss options from different tranches can't be at their LLB(simultaneously. For example, if the tranche
loss option for the 0-3% tranche is priced at its LLB), then the 3-7% tranche loss option price has to be
greater than its LLB{;) since the Markov chain that produces the LLB(for 0-3% tranche is generally
not the same Markov chain that produces the LLBOf 3-7%. Though still crude, the LLB{) from loss
distribution is much more precise than the naive lower bomn@), which are zeros for all the ATM or
OTM options.

In table[3, the LLBE) are greater than O for all tranches even in the case of OThMrmgpt This is a
unique feature of the CDO tranche option. In other assesetashe OTM option values can be very close to



Table 3: Lower Bounds of 3Y-5Y Option from; (Top-down)

CDX-1G9 ITM Lower Bounds ATM Lower Bounds OTM Lower Bounds
Tranches| Co-mo Max-E LLB | Co-mo Max-E LLB | Co-mo Max-E LLB
0-3% 43.09% 39.97% 39.97% 12.50% 791% 6.40% 0.00% 0.00% 0.00%
3-7% 30.32% 22.34% 21.40% 19.75% 11.74% 7.55% 4.18% 1.82% 1.54%
7-10% 17.01% 11.05% 9.82% 14.39% 7.53% 3.67% 9.35% 3.99% 2.28%
10-15% 7.63% 4.88% 42094 7.13% 3.64% 1.07% 6.28% 2.38% 0.94%
15-30% 2.19% 1.48% 1.129%9 2.11% 1.24% 0.68% 2.02% 1.00% 0.66%
30-60% 1.60% 1.11% 0.81% 1.57% 0.97% 0.41% 1.52% 0.83% 0.40%
60-100% | 0.48% 0.35% 0.28% 0.48% 0.30% 0.07% 0.47% 0.26% 0.03%

0 if the volatility of the underlying asset becomes very lévawever, even the OTM tranche option always
have certain minimum value regardless of the tranche spm@atility. The reason is that the dynamics of
the portfolio loss process has to be consistent with th@lindss distribution at timé = 0, which imposes

a minimum level of portfolio loss volatility. For examplég volatility of portfolio loss process cannot be O
since a deterministic portfolio loss process clearly \tedathe initial loss distribution at= 0.

The value of a tranche option depends on the full loss digidh hence it is important to model tranche
options on the same underlying portfolio across capitacstire as inter-dependent instruments. The simple
approach of modeling tranche options as separate degvattruments on individual tranches, as suggested
by (Hull & White 2007), is not adequate. (Hull & White 2007Yanpted to model tranche options using
a similar approach to the Libor market model in the interasts world, which could produce inconsistent
prices with the underlying tranche prices. For exampleretli® no restriction on the volatility parameter
of the forward tranche spread in the (Hull & White 2007) agmto and we could produce arbitrage-able
tranche option prices out of the range bound froim (2) &hd y3hwosing the volatility parameter.

4.2 Lower Bound from the (Li 2009) M odel

More precise lower bound can be obtained if then (3) also includes single name information. To study
the effects of single name information, we used the modeadridesd in (Li 2009). The (Li 2009) model is
a one-factor bottom-up dynamic model where the systemioifas modeled by an increasing proce§s
Under the (Li 2009) model, the marginal distributionXfdetermines thdDDI; the Markov chain ork;
determines thdDDT, therefore each different Markov chain #hdefines a different default time copula.
The marginal distribution o%; can be calibrated to index tranche prices, afterwards, wecoastruct
different default time copulas by constructing differenafidov chain to the marginal distribution .
These different default time copula produces differédDT but identicalJDDI and tranche prices by
construction.

Assumes; is a a filtration generated by the common factor procgsand the single name default and
recovery. Of course; C #; since #; includes other systemic and idiosyncratic factors bey¥ndin the
numerical implementation, the lower bound frggare computed by only conditioning on the value of the
common factorX; but not the losd., which allow us to compute the lower bound with a semi-amzayt
method pioneered by (Andersen, Sidenius & Basu 2003). iggdhe realized loss; results in slightly
worse (or lower) lower bounds because we are not using thmfaimation available ins;, but it is a good
trade off since it allows us to use the semi-analytical pganethod for much faster calculation of the lower
bound. Since th&; and the los4; are highly correlated under the one-factor model, the dlegien of the
lower bound quality is expected to be small by excluding #adized losses in the conditioning.
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Table 4: Lower Bounds of 3Y-5Y Option frogy

CDX-1G9 ITM Lower Bounds ATM Lower Bounds OTM Lower Bounds
Tranches | Co-mo Max-E LLB | Co-mo Max-E LLB | Co-mo Max-E LLB
0-3% 41.07% 40.93% 40.05% 10.47% 9.53% 8.46% 0.00% 0.00% 0.00%
3-7% 29.15% 26.63% 22.07% 19.13% 15.45% 11.96% 3.19% 2.57% 2.47%
7-10% 16.26% 14.48% 13.12% 13.20% 11.74% 11.20% 8.12% 7.85% 7.58%
10-15% 7.32% 7.26% 6.429% 6.70% 6.64% 5.799% 5.54% 5.47% 4.85%
15-30% 2.19% 2.14% 1.23% 2.12% 2.04% 1.16% 1.99% 1.90% 1.09%
30-60% 1.60% 1.53% 0.829% 1.57% 1.47% 0.65% 1.52% 1.37% 0.73%
60-100% | 0.41% 0.39% 0.20% 0.41% 0.38% 0.129%9 0.41% 0.35% 0.14%

In this example, we built a co-monotonic Markov chain and ximam entropy Markov chain o,
and the resulting lower bounds frosp and these two default time copula are show in table 4. We camn al
find the lowest lower bound of all possible Markov chains{pthat preserves th#éDDI and tranche prices.
We denote the lowest lower bound based on the sub-filtrati@s LLB(S;) (shown in the column “LLB”
of table[4). The LLB§;) is much higher than the LLB{) because it is constrained by the additional single
name information and the conditional independent coiglagtructure in the (Li 2009) model.

Comparing tablg]3 arid 4, it is interesting to note that theeldwounds fronr; can vary at a much wider
range than the lower bound from. This can be explained by the fact that not all the loss ttiems are
admissible under a factor model with conditional indepe&cgde For example, the co-monotonic Markov
chain built on the loss process have many deterministicsitians, such as: if the tranche loss is 2% at 3Y,
then the loss will be 4% at 5Y with probability 1. The existeraf such fully deterministic transition is a
property of the co-monotonic Markov chain. Though admissilmder a contagion model, the deterministic
loss transition is incompatible with a conditional indegent factor model where tHer conditioned on;
can never be fully deterministic except for the degenereése. Therefore, adding single name information
and a conditional independent correlation structure &urtlestricts the set of admissible loss transitions,
thus imposing a narrower range on the lower bounds.

(Lando & Nielsen 2009) have shown that the conditional imhefent assumption cannot be rejected
from either the individual case studies or the statistieats of the historical default events. None of the
historical default events so far are caused by contagiohdrstrict sense that one company’s default event
directly caused another company to default. Contagion teaeo have some undesirable properties as
shown in (Hitier & Huber 2009) that make it difficult to use iraptice. Therefore, conditional independent
factor model remains the most practical and efficient apgrda include single nhame information. In
practice, we have to adopt the lower bounds from the comditimdependent model since it is the only
feasible approach to price and manage both the vanilla CBfizlies and exotic instruments like tranche
options.

4.3 Systemicvs. Idiosyncratic Dynamics

Furthermore, we can quantify how much uncertainty of théooptalue is due to systemic dynamics vs.
idiosyncratic dynamics under the (Li 2009) model. Supposehawve a filtrationu; which includes; and
X1, i.e., this filtration correspond to a less powerful deitgr{paring to the all-powerful deity that gives
the upper bound) who can only foresee the future value of timenwon factor, but not the idiosyncratic
default events. The remaining uncertainty between therdeeand from«; and the upper bound has to
be caused by idiosyncratic dynamics. Therefore, the ogiimmds from; gives a way to gauge the
pricing uncertainty purely due to the idiosyncratic dynesniTabld b showed the lower bounds calculated
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Table 5: Lower Bounds of 3Y-5Y Option frorm; (Perfect Foresight)

CDX-1G9 Lower Bounds
Tranches IT™ ATM OTM
0-3% 41.14% 10.73% 0.009
3-7% 29.47% 19.15% 3.289
7-10% 16.37% 13.38% 8.189
10-15% 7.36% 6.70% 5.69%
15-30% 2.20% 2.13% 2.04%
30-60% 1.60% 1.59% 1.56%
60-100% | 0.42% 0.41% 0.41%

from ;. By comparing to the upper bounds in Table 2, it is obvious$ dpdion pricing uncertainty due
to idiosyncratic dynamics is very limited. The idiosynaratlynamics only contributes a small amount
of uncertainty to junior tranche options, and it has almastantributions to the senior tranche options.
Therefore, we can safely ignore the idiosyncratic spreadhohycs if we are mainly dealing with the senior
tranche options.

4.4 Long-dated Options

The upper and lower bounds of a 5Y to 10Y tranche loss optiekso computed in Tab]é 6. In general, the
price bounds of the 5Y-10Y options exhibit very similar ig&s as the 3Y-5Y options. The 5Y-10Y option
showed a wider range between upper and lower bound than & 3¥tion, which is not surprising since
the long-dated option is expected to have more pricing daiceies.

45 Choiceof Markov Chains

In Table[5, the lower bounds from; is only slightly higher than the lower bound from co-monaton
Markov chain because the co-monotonic Markov chain is véogecto having perfect foresight as the
common factors at the two maturities are mapped sequgnibiatheir distribution quantiles. If the common
factor is specified as a continuous distribution, the co-oamc Markov chain will produce the exact same
lower bound as those fromi;. Therefore, it is arguable that the co-monotonic Markovirtignot realistic
due to the collapsed uncertainty of future common factaridigion.

As noted by many previous authors, eg (Andersen 2006) aratK8R005), the classic Gaussian Copula
implies very unrealistic spread dynamics. This price boandlysis of tranche options offers yet another
interesting view on the Gaussian Copula: the classic Gans3opula model is a degenerated co-monotonic
Markov chain across time where the common factor distrilmgtiremains unchanged (Gaussian). Therefore,
the classic Gaussian copula suffers from the same problemnighing common factor uncertainties as the
co-monotonic Markov chain. Co-monotonic Markov chaingjuding Gaussian Copula, will overvalue the
tranche options because of the perfect foresight of thedutarket factor realizations.

In comparison, the maximum entropy Markov chain is a muckebehoice since it has the advantage
of keeping the least amount of information in the system, theduncertainty of the future common factor
is the largest among all possible Markov chains (becausafoemation entropy is maximized). Ideally
we should calibrate the Markov chain using market infororgthowever it is impossible to do so under the
current market condition because there is no relevant diable market observables on the transition of
future loss process. Given the lack of market informatioaangue that the maximum entropy Markov chain

12



Table 6: Price Bounds of 5Y-10Y Tranche Loss Option

In-the-Money Option

CDX-1G9 Lower Bounds Upper
Tranches | LLB(£t) Max-Ezi LLB(st) Max-E st Ut Bound
0-3% 45.46% 45.58% 45.37% 45.56% 45.400646.97%
3-7% 33.19% 35.75% 35.76% 39.64% 41.280042.12%
7-10% 23.23% 26.75%  25.15% 30.90% 33.13P634.66%
10-15% 11.94% 14.25% 11.81% 16.47%  18.07p419.29%
15-30% 3.91% 5.08% 3.96% 6.58% 7.22% 7.42%
30-60% 2.61% 3.49% 2.62% 4.60% 5.14% 5.14%
60-100% 0.88% 1.16% 0.76% 1.37% 1.50% 1.50%
At-the-Money Option
CDX-1G9 Lower Bounds Upper
Tranches | LLB(£t) Max-Ez; LLB(st) Max-Es; ¢ | Bounds
0-3% 5.61% 5.76% 4.96% 5.62% 5.62% 7.09%
3-7% 12.91% 14.92% 15.80% 17.98%  19.99p420.53%
7-10% 8.16% 13.70% 11.82% 16.85%  18.49%622.23%
10-15% 5.60% 8.87% 9.27% 12.06% 14.33%15.69%
15-30% 1.98% 3.94% 3.49% 5.96% 6.75% 6.93%
30-60% 1.52% 2.91% 1.51% 4.27% 4.97% 4.98%
60-100% 0.46% 1.01% 0.56% 1.27% 1.47% 1.47%
Out-of-the-Money Option
CDX-IG9 Lower Bounds Upper
Tranches | LLB(£t) Max-Ec; LLB(st) Max-E st uy | Bound
0-3% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3-7% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7-10% 0.53% 0.53% 0.52% 0.50% 0.80% 1.36%
10-15% 3.23% 4.57% 5.57% 6.47% 8.15% 9.65%
15-30% 1.69% 2.98% 2.90% 5.00% 5.92% 6.08%
30-60% 1.43% 2.33% 1.41% 3.70% 4.65% 4.66%
60-100% 0.44% 0.86% 0.54% 1.15% 1.41% 1.41%
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Table 7: 3Y-5Y ATM Options with Single Default Event Trigger

Trigger Default Prob = 5%

CDX-I1G9 Independent | Less Correlated| More Correlated
Tranches LB UB LB uUB LB UB
0-3% 0.48% 0.64%| 0.69% 0.73%| 0.86% 0.87%
3-7% 0.77% 1.03%| 1.57% 1.69%| 2.14% 2.22%
7-10% | 0.59% 0.74%| 1.69% 1.75%| 2.41% 2.46%
10-15% | 0.33% 0.36%| 1.37% 1.37%| 1.89% 1.90%
15-30% | 0.10% 0.11%| 0.89% 0.90%| 1.09% 1.11%
30-60% | 0.07% 0.08%| 0.80% 0.81%| 0.94% 0.96%
60-100% | 0.02% 0.02%| 0.22% 0.22%| 0.25% 0.26%

Trigger Default Prob = 30%

CDX-1G9 Independent | Less Correlated| More Correlated

Tranches LB uB LB uB LB uB
0-3% 2.86% 3.82%| 3.92% 4.15%| 4.72%  4.88%
3-7% 4.63% 6.17%| 8.19% 9.02%| 10.47% 11.17%
7-10% | 3.52% 4.44%| 7.79% 8.22%| 9.95% 10.40%
10-15% | 1.99% 2.13%| 5.00% 5.02%| 6.09%  6.11%
15-30% | 0.61% 0.66%| 1.82% 1.88%| 2.00%  2.07%
30-60% | 0.44% 0.48%| 1.36% 1.44%| 1.45%  1.56%
60-100% | 0.11% 0.12%| 0.36% 0.38%| 0.38%  0.40%

is the most natural choice since it corresponds to the stai@mlevant information. Tablé 3td 6 have shown
that the lower bounds become more precise with larger suhtiiins, and the price bounds imposedshy
and the maximum entropy Markov chains are still quite tigispecially for the senior tranches. Therefore,
the dynamics of other systemic and idiosyncratic factoggobé s; only have limited contribution to the
pricing uncertainty of tranche options.

5 Tranche Optionswith Random Triggers

As discussed in sectidd 2, the trigger event itself for adn@noption can be a random event. In general,
the tranche options with random triggers require Monte &airnulation to compute its upper and lower
bounds. However, if the trigger event is the default of alsimgedit, we can still treat it semi-analytically
without Monte Carlo simulation by taking advantage of thaditional independence.

5.1 Single Default Event Trigger

We take the 3Y to 5Y CDX-IG9 ATM tranche loss option as an exi@nand consider an option that can
be exercised at 3Y only if a trigger credit has defaulted keRY. We further assume that the trigger credit
does not appear in the portfolio of the CDO trafftHBecause of the single credit trigger, the price bounds
of this option cannot be obtained using a pure top-down model

2f the name does appear in the tranche portfolio, we can aweplicate the original option by an equivalent tranche los
option without the trigger credit in the portfolio by adjungj the tranche attachment, detachment and the strike fitee option
because the trigger credit has to be in the default state Wigeoption has non-zero payoff.

14



We consider the price bound with a Maximum Entropy Markovichander the (Li 2009) model. Be-
cause of the conditional independence, whether the triggere default before 3Y does not change the
distribution or the transition Markov Chain of the commontéa process; neither does it change the condi-
tional default probabilities of any other names in the midf Therefore, we can obtain the price bounds of
this option by simply weighting the option payoff i (2) aff) by the 3Y conditional default probability of
the trigger credit:

CY = E[1;y max Zd(o,ti)ci —K,0)]

ti>
= E[E[1;t max Z d(0,t)ci — K,0)|X]]  Iterative expectation
ti>t
= E[E[1;<t|X]|E[max Zd(o, ti)c — K, 0)%]] : Conditional Independence
ti>
= E[Q(K,t)E[thZd(O,ti)ci —K,0)|X]] (8)

WhereX; is the value of the common factor at tirheq(X;,t) is the conditional default probability of the
trigger credit. Similarly, we can get the following expriessfor the lower bound:

ct :E[Q(K,t)E[mME[Zd(O,ti)CiI%] — K, 0)[%]] (9)
>

Both of the bounds if {8) andl(9) are easy to compute semisicely.

As shown in Tablé]7, we computed the price bounds with tweedsfit default probabilities for the
trigger credit, 5% and 30%. We also computed the price bowitdsdifferent correlations between the
trigger credit default and the common market factor. As etguh the option is more valuable if the trigger
credit is more risky. Tablel 7 also showed that the option islmuaore valuable if the trigger credit is more
correlated to the common market factor. In the context ohtemparty risk, this results in the so called
“wrong-way"” risk of buying tranche protection from a riskgunterparty, i.e., the tranche protection worth
much less if the counterparty is more likely to default whes portfolio suffers more losses.

The price bounds in Tabld 7 are much narrower than the corlgab@unds from Maximum Entropy
Markov chain in tablé]2 arld 4. The price bounds are very naesem when the trigger name has significant
default probability; therefore there is clearly no needuddothe full dynamic spread models for the single
default event trigger. Counterparty risk of tranches tfoeeecan be very effectively priced and managed
using this methodology.

In this example, we assume the option is exercised at 3Y ifritpger name defaults before 3Y, we refer
to it as the “exercise-at-maturity” option. In a more reidisetting, the option holder has to exercise the
option immediately if the trigger credit default, which eferred as “exercise-at-trigger”. The “exercise-at-
trigger” option can be modeled as a series “exercise-atHityt options, with one option expires at every
default observation date and is only exercisable if theggigcredit defaults between the previous default
observation date and the current default observation @Giten that he “exercise-at-maturity” option expires
at a fixed maturity date and the “exercise-at-trigger” api®a series of options that expires at each default
observation date from time 0 to the maturity, the “exeris#rigger” option’s value is always less than
the “exercise-at-maturity” option with the same maturigchuse an option is less valuable with shorter
expiration.
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Table 8: Max Entropy Lower Bounds Conditioned XmandL;

CDX-1G9 3Y-5Y Lower Bounds 5Y-10Y Lower Bounds
Tranches IT™ ATM OTM IT™ ATM OTM
0-3% 41.39% 10.31% 0.00% 46.14% 6.25% 0.00%
3-7% 26.74% 15.68% 2.72% 40.03% 18.14% 0.009
7-10% 14.45% 11.86% 8.08% 30.94% 17.27% 0.679
10-15% 7.23% 6.62% 5.54% 16.64% 12.38% 6.939
15-30% 2.12% 2.02% 1.88%4 6.55% 5.95% 4.97%
30-60% 1.50% 1.45% 1.34% 4.54% 4.22% 3.66%
60-100% | 0.39% 0.38% 0.35%4 1.35% 1.26% 1.14%

5.2 Generic Random Triggers

For more general triggers that involve multiple names, sigchortfolio loss triggers or the 1st default event
in a credit basket, we have to use Monte Carlo simulation fzfudetime and recovery to compute the price

bounds. The semi-analytical solutions for these comg@at&tiggers often gets too tedious comparing to the
straight-forward Monte Carlo simulation.

The lower bound of the option depends on the té&ivi|9;] in (3). In sectior 4, we restricted ourselves
to only condition on the common facte, which is the most convenient for semi-analytical solusion
However, in Monte Carlo simulation, we can easily add adddi variables in the filtration; to the con-
ditioning so that we can get better (or higher) lower bouidse realized portfolio losk; is the next most
useful factor to be included in the conditioning after thenoaon factorX;. Given the conditional indepen-
dence, there is limited benefits to include individual nandegault indicators in the conditioning aftég
andL;. If we only useX;,L; as the two conditioning variables, tfi#\;|X;,L;] can be directly computed
from the simulation by constructing a two dimensional ghdttsamples th&; andL; discretely. If there
are more variables in the conditioning, we have to use theesepn technique in the typical least square
Monte Carlo methodology in (Longstaff & Schwartz 2001).

Table[8 shows the lower bound of the tranche loss option vathrdinistic time trigger implied by the
maximum entropy Markov chain conditioned on bothandL;. The results are obtained from a Monte
Carlo simulation where half of the simulated path is usedstal#ish theE[\;|X;, L;] by constructing a two-
dimensional grid of X, L;), and the other half of the simulated path is used to compeateadtual lower
bounds from theE|\;|X;,L;]. Comparing with Tablél4 and Taklé 6, the lower bound for jutianches
improved slightly by adding the realized loksin the conditioning. The lower bounds of senior tranches
showed almost no improvements.

We also considered a more realistic example of callabletm@mvhere a client sold protection to a bank
on a senior 5Y IG9 tranche, and the client has the right to tagk lthe protection at the initial expected
tranche loss if the 1G9 portfolio loss is greater than a preednined threshold at the 3Y. In this example,
the trigger event and the option payoff are highly correlate both of them are functions of the IG9 portfolio
loss, therefore, we cannot compute its price bounds by gimmuiltiplying the tranche option payoffs in
Table[4 by the probability of the trigger event. Instead weeh@ use the full Monte Carlo simulation to
compute the price bounds, which are shown in Table 9. The pacinds of the options to call tranche with
portfolio loss triggers are also very tight.

The price bounds of other types of options, such as gap righiqmidation risk, can also be computed
from Monte Carlo simulation of default times and recoverierasing similar methods as in the callable
tranche.
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Table 9: Price Bounds of 3Y-5Y Option to Call Tranche

CDX-1G9 a=4% a=8% a=12%
Tranches LB uB LB uB LB uB
15-30% | 2.02% 2.22%| 1.85% 1.95%| 1.08% 1.13%
30-60% | 1.45% 1.62%| 1.36% 1.47%| 0.95% 1.00%
60-100% | 0.38% 0.42%| 0.36% 0.38%| 0.26% 0.27%

6 Conclusion

In this study, we have shown that the tranche option pricasheseffectively bounded from a default time
copula. We argue that the default time copula from the maxireatropy Markov chain is the most natural
choice when we don’t have relevant market observablesdaoctre options; we also argue that it is possible
for a dealer to make market and dynamically hedge the seminclie options solely based on their price
bounds.

For the European tranche options and the tranche optioimssivigle name default triggers, both the
upper bound and lower bound can be computed from semi-&&lytethods without Monte Carlo simu-
lation. The Greeks of the price bounds can be computed buméarg the market inputs and re-valuing.
When the pricing bounds of an option is narrow, a dealer cgat the true value the option as an average
of the lower and upper bound, and dynamically hedge an Earogranche option book by averaging the
Greeks for the lower bound and upper bound. A senior tranptierobook could be managed without much
additional effort than the effort required to risk-managgmcal index or bespoke tranche book.

The fact that the upper and lower bounds can be hedged usitig isistruments makes it possible to
profit from the market mis-pricing of the tranche optionstHa event that the market tranche option prices
are out of the pricing bounds, the dealer can take the cameipg option position and a hedge position
for the bound that the option value violates. For example, Huropean tranche call option orAao D
tranche with strikeK is priced higher in the market than its upper bound, then éedean sell the call
option and hedge it by buying protection oma- K to D tranche. This will results in a positive profit
without any future risk, i.e., an arbitrage opportunity.vitwer, in reality, théd+ K to D tranche may not be
liquid itself, therefore, the tranche option may have to edde dynamically using other liquid instruments.
The dynamic hedging of the lower or upper bound of the trarmgitens is no more complicated than the
common practice of dynamically hedging the off-the-runeitranches or bespoke tranches.

Contrary to a common stereotype, the tranche options paigegrimarily determined by th#DDT and
default time copula. Other systemic and idiosyncraticdexcbeyond the default time copula contribute a rel-
atively small portion of the pricing uncertainty. Using tdpwn models to price tranche options could result
in mis-pricing given the top-down models ignores a large amof static single name market information
which is important in determining the tranche option prices

The methodology to obtain price bounds of tranche optioseriteed in this paper could also play an
important role in the management of counterparty risk, gelpand liquidation risk. As shown in section
[5.2, the price bounds are often very narrow for tranche aptigith random trigger event, therefore, these
practical problems can also be effectively addressed ukmgrice bounds.
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Appendix

A Approximate the Tranche PV Option

Consider a generic tranche with non-zero coupon, and whageqgtion payment is settled at the time of
default. The MTM of such a tranche can be written as:

V; = PROT; — sPVO0
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wherePROT is the protection PV and tH&/01 is the PV of a 1bps coupon payment, atislthe contractual
coupon. Since the main risk factor of a tranche is its terioss, we can view th®ROT; andPV0l; as
functions of the expected terminal tranche IRss E[Lt (A, D)|#]. Therefore, we can expand tRROT (1;)
andPVO01(l;) around the current tranche expected Igss E[Lt (A, D)|ol:

0
IPROTIR)

PVOL(l;) ~ PVO1(IQ) + 7apv§|t1(|9) (I —19)

PROT (1) ~ PROT (I?) +

Therefore, we have:

OPROT(I9) _aPVOL(I?)

Vi ~ PROT (I9) — sPv01(19) + ( R )(Ie—19)

=a+bl;

Wherea, b are constants which are obvious from the above equations &ffectively approximates the
MTM of a regular tranche by a linear function kf The first order derivatives can be obtained from the
default time copula and the price of an option on tranche PY strikeK can be approximated by a tranche
loss option:
C =E[d(0,t)1— max; — K,0)]
~ E[d(0,t)1,—; maxa-+ bl; — K, 0)]
K—
— E[d(0,t) Le_tbmax(l; — T"",O)]

Therefore, the tranche loss option bounds discussed ipapisr can be applied to produce the bounds for the
tranche PV option. In practice, the tranche PV is mainlyeluiby its terminal loss, thus the approximation
should be adequate in most situations.

B Finding the L owest L ower Bound

We want to find the lowest lower bound among all possible Madtwins from two loss (or common factor)
distributions; this problem can be formulated as an noalirmgtimization with linear constraints. Here we
use the LLB for the loss distribution to describe the optatizn setup, the LLB of the common factor
process can be solved using the exact same method.

Suppose the portfolio loss distribution at two time horizbr: T are sampled by a discrete loss dkid
the corresponding loss probability are givengpft) andp;(T), which has to satisfy the usual constraints of
being valid loss distributions.

A discrete Markov chain is parameterized by its transitiovbpbility g;j = P{l;|l; }, obviouslyq;; is zero
if i > j. The transition probability has to satisfy the followingnstraints from the initial loss distribution:

> dij = pi(t)
> aj = pi(T) (10)
J

The lower bound from the Markov chadp; is a nonlinear objective function that we have to minimize by
adjusting theg;j. Therefore, this is a nonlinear optimization problem witiear constraints given in_(1L0).
The dimension of; ; is aboutN?/2 whereN is the number of discrete samples on the loss distribution. F
aN less than 40, this problem can be solved in a few minutes iimgell's TOLMIN algorithm.
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