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Abstract

We performed a comprehensive analysis on the price bounds ofCDO tranche options, and illustrated
that the CDO tranche option prices can be effectively bounded by the joint distribution of default time
(JDDT ) from a default time copula. Systemic and idiosyncratic factors beyond theJDDT only contribute
a limited amount of pricing uncertainty. The price bounds oftranche option derived from a default time
copula are often very narrow, especially for the senior partof the capital structure where there is the most
market interests for tranche options. The tranche option bounds from a default time copula can often be
computed semi-analytically without Monte Carlo simulation, therefore it is feasible and practical to price
and risk manage senior CDO tranche options using the price bounds from a default time copula only.

CDO tranche option pricing is important in a number of practical situations such as counterparty, gap
or liquidation risk; the methodology described in this paper can be very useful in the above described
situations.

1 Introduction

The credit derivative market has experienced tremendous volatility since the beginning of the sub-prime and
credit crisis. The standard credit index swaps and index tranches have become very important instruments for
market participants to hedge or take positions on the overall credit quality and credit correlation. The index
swaption market has become more active recently because of the increasing need to manage the volatility
of market-wide credit movements. On the other hand, the index tranche option market never gained any
traction despite the large realized volatility in the indextranches. The reasons are three fold: first, the index
tranches are less liquid than the index swaps, secondly the standard index tranches can be viewed as an
option on the index portfolio loss and it already provides leverages, therefore there is no need for investors
to trade index tranche options in order to get leveraged exposure; thirdly, there is no standard model that
can price and hedge index tranche options. It remains a very challenging modelling problem to properly
price CDO tranche options and the market participants generally lack the confidence in pricing and hedging
the index tranche options. Despite the lack of interest to trade tranche options directly, it is very important
to study the valuation of tranche options since they naturally arise from a number of common practical
situations, for example in conterparty risk, gap risk or liquidation risk.

Under current market conditions, it is almost impossible toprice tranche options precisely because of
the lack of relevant market observables. (Mashal & Naldi 2005) suggested a method to compute the range
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bounds of tranche options from a default time copula. The keycontribution of that paper is a scheme to
compute the range bounds without the nested Monte Carlo simulation, which leads to easy calculations of
the price bounds implied by a default time copula via a regular Monte Carlo simulation.

A default time copula, by definition, only models the joint distribution of default time (JDDT ), and it
does not model any other factors. On the other hand, a bottom-up dynamic spread model attempts to model
the joint distribution of default time and all the systemic and idiosyncratic factors that affect the spread
dynamics. Dynamic factor model is the most common approach to build a bottom-up dynamic spread
model, where the spread dynamics are driven by a few systemicfactors that affects all the names and an
idiosyncratic factor for each individual name. The idiosyncratic factors are easy to model because they are
independent from other factors by definition, therefore themain task of building a dynamic factor model is
to construct the joint distribution of default time and systematic factors (JDDTSF) which fully specifies the
systemic dynamics.

The dynamic factor model is more difficult to build and calibrate than a default time copula since it needs
to model more factors beyond the default time. The methodology prescribed by (Mashal & Naldi 2005) can
be very useful in practice if the resulting option price bounds from the default time copula are narrow; as
it allow us to price and risk manage tranche options without implementing a full dynamic factor model.
(Mashal & Naldi 2005) have shown that the price bounds of tranche options from a standard Gaussian
Copula model are very narrow; however it is unclear if the price bounds would remain narrow in a more
realistic situation where the default time copula has to be calibrated to the index tranche market across
multiple maturities.

Recently, we suggested a very flexible dynamic correlation modelling framework in (Li 2009). A key
finding of that paper is that the portfolio loss distributionand CDO tranche prices only depends on the joint
distribution of default indicators (JDDI); the modelling framework is more flexible than previous bottom-up
models in the literature as it allows theJDDT andJDDTSF to change independently from theJDDI. With
(Li 2009), once we calibrated theJDDI to index tranche prices, we can easily construct different default time
copula or dynamic factor models without changing the calibrated index tranche prices. In this study, we used
the (Li 2009) model to construct different default time copulas from the same index tranche calibration, and
we systematically study the price bounds of tranche optionsunder these default time copulas.

The paper is organized as follows: In section 2 we first reviewsome practical situations that involve the
pricing of tranche options; then we review the general derivation of the price bounds for tranche options in
section 3; then we study the pricing bounds for European style tranche options in section 4; then we discuss
tranche options with random triggers in section 5.

Even though we focus on tranche options in this paper, the methodology and conclusions are generally
applicable to other types of multi-name credit options, such as options on NtD basket, and options on
multiple tranches or CDO2s.

2 Practical Examples of Tranche Options

Tranche options naturally arise from a number of practical situations. We first define some terminology
before reviewing these situations. Suppose there exists a probability space(Ω,F t ,P) equipped with a risk-
neutral probability measureP. Consider a CDO tranche with a fixed set of payment date{ti} and a stream
of cashflow{ci} on the payment grid. The MTM of the tranche at timet is Vt = BtE[∑ti>t

ci
Bi
|F t ], whereBi

is value of a money market account atti that started with amount 1 at time 0. We further assume thatBi and
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ci are uncorrelated, therefore:
Vt = ∑

ti>t
d(t, ti)E[ci|F t ]

whered(t, ti) =
Bt

E[Bti |F t ]
is the risk free discount factor betweent andti.

2.1 Counterparty Risk

This is the classic case considered in (Mashal & Naldi 2005).Suppose a bank traded a tranche with a risky
counterparty, if the counterparty default at timet, then the bank usually need to pay the full MTM (Vt ) to the
bankruptcy pool if the trade is to the counterparty’s favor (Vt < 0), and the bank only recover a portion of the
MTM if the trade’s MTM is to the bank’s favor (Vt > 0). DefineR as the recovery rate of the counterparty,
then the bank could suffer a loss if the counterparty default, and the amount of the lose is(1−R)max[Vt ,0],
which is a typical call option payoff. The counterparty effectively holds a call option to default and walk
away from the remaining trade. The price of this call option to the counterparty is therefore:

CP= E[d(0, t)1τ=t max[(1−R)Vt ,0]]

The fair MTM price of the trade to the bank therefore has to be adjusted down toV0−CP if we price in the
counterparty default risk. In reality, the bank also holds an option to default, which can be priced similarly.

2.2 Gap Risk

Suppose a bank entered a tranche trade with a client, and the client posted collateral in the amount ofC0

according to certain margin policies. Normally the collateral agreement allows the bank to make a margin
call for additional collateral if the market moves against the client and the initial margin is inadequate to
cover the potential loss of the trade. SupposeVt is the MTM to the bank, and a margin call is made at timet,
if the client does not post additional collateral within a certain time periodδ, which is typically a few days
to two weeks after the margin call, the bank can seize the collateral and unwind the trade. A rationale client
would choose not to post any additional collateral in the event of C0 <Vt+δ, therefore the client effectively
holds a call option whose payoff is max(Vt+δ−C0,0). Denoteτ as the stopping time of the margin call, then
the price of the call option to the client is:

GAP= E[d(0, t +δ)1τ=t max(Vt+δ −C0,0)]

The fair price of the instrument to the bank with this gap riskis thereforeV0−GAP.

2.3 Levered Super Senior Tranche

Levered super senior (LSS) trade is a very popular trade for aclient to take on leveraged risk on the senior
part of the capital structure. In a typical LSS trade, the client sell protection on a super senior trancheVt to
a bank and the client only post collateral in the amount ofC0. The ratio between the notional amount of the
Vt andC0 is the leverage factor. The LSS trade is different from the situation in the gap risk in that the bank
can only call for additional collateral if a pre-defined trigger event occurs. The trigger event can be portfolio
loss reaching certain level, or tranche spreads reaching certain level. Before the trigger event, the bank can’t
call additional collateral beyondC0 even if the market moves against the client and the MTM ofVt to the
bank becomes greater than the collateral valueC0. After the trigger event, the bank usually is free to call
additional collateral based on the MTM of the super senior trancheVt .
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Since a rational client would not post any additional collateral if C0 <Vt , the bank only gets the smaller
of C0 andVt when trigger event occurs, therefore the value of the LSS trade to the bank is:

LSS= E[∑
i

d(0, ti)1ti<τci +d(0, t)1τ=t min(Vt ,C0)]

= E[∑
i

d(0, ti)1ti<τci +d(0, t)1τ=t(Vt −max(Vt −C0,0)]

= E[∑
i

d(0, ti)1ti<τci +d(0, t)1τ=tVt ]−E[d(0, t)1τ=t max(Vt −C0,0)]

whereci is the coupon payment for the super senior tranche, here we made the assumption that the trigger
event always occurs before the super senior tranche suffersany real losses, which is almost always the case
in practice since the trigger is put in to protect the bank thus it is designed to trigger far before the realized
loss hits the tranche attachment. If the trigger is based on the portfolio loss, the first term can be computed
from a default time copula. The second term is the value of a call option for the client to walk away from
the trade when the trigger event occurs.

The LSS trade is often mistakenly modeled as a gap risk trade.Comparing the LSS trade with the gap
risk, it is obvious that the LSS protection worths much less to the bank than in the case of the gap risk.
Readers are referred to (Gregory 2008) for a very detailed discussion of the LSS.

2.4 Liquidation Risk

Suppose a client entered a funded credit-linked-note (CLN)trade referencing a tranche with a bank. At trade
inception, the client deposits the face amount of the CLN to aSPV, this principal may be invested in a risky
assetAt for additional yield. The SPV then enters a unfunded swap contract with the bank to get exposure to
the underlying tranche. We denote the MTM of the unfunded swap to the bank asVt . The coupon payments
from both theAt andVt , netting of any fees to the bank, will be paid to the client. Ifeither the underlying
tranche gets impaired, or if the risky collateralAt defaults, both theVt andAt are liquidated; the client then
receives the liquidation value of (At −Vt) if it is positive. Since the client never put additional money into
the SPV besides the initial principal, the bank will suffer aloss in the event of the net liquidation value
At −Vt is negative. Defineτ to be the stopping time of the liquidation event, then the client effectively holds
a liquidation option whose payoff is max(Vt −At ,0) whose value to the client is:

LIQ = E[d(0, t)1τ=t max(Vt −At,0)]

The fair value of the swap to the bank is thereforeV0−LIQ. The liquidation risk is similar to an exchange
option between two assetsVt andAt .

There are several variations of the liquidation risk: in thefamous (or infamous) mini-bond structure,Vt

is a first-to-default basket andAt is a synthetic CDO tranche. In a typical credit-linked-note, theVt can be
a single name CDS or synthetic CDO tranche, andAt is very safe money market instruments. In a funding
trade, theVt can be a CDO tranche or a single name CDS, and theAt is the term bond or funding of the bank.

2.5 Callable Tranche

Suppose a bank bought tranche protection from a client, and the trade’s MTM to the bank isVt . If the client
is given the option to buy back the tranche protection at price K under certain trigger event, then the client
hold an option of max(Vt −K,0) when the trigger event occurs. Denoteτ as the stopping time of the trigger
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event, the client’s option to call the tranche can be valued as:

CAL = E[d(0, t)1τ=t max(Vt −K,0)]

The fair value of the swap to the bank is thereforeV0−CAL.

3 Derivation of Price Bounds

All of examples in section 2 reduces to the same problem of valuing the following call option where the
exercise time is random:

C = E[d(0, t)1τ=t max(Vt −K,0)] (1)

with K as the strike price of the call.Vt may involve multiple tranches or assets as in the case of liquidation
risk. This call option is very difficult to price because it depends on the MTMVt at a future time. Normally
this types of problem requires nested Monte Carlo simulation becauseVt itself is an expectation of all future
cashflows. It also requires a full dynamic model capable of generating spread levels at a future time on a
simulated path, such a model is nearly impossible to calibrate given the lack of liquidity in the tranche option
market. (Mashal & Naldi 2005) offered an elegant solution tocompute the range bounds of the option value
C just from the filtration generated by default events and recovery rates only (denoted asD t). Note that the
full market filtrationF t also include other systemic and idiosyncratic factors beyondD t , thereforeD t ⊂ F t .
We also have to assume that the trigger eventτ is adapted toD t , which excludes the spread triggers.

In this section, we review the derivation of the range boundsof (1). The upperbound of (1) is the same
method as described in (Mashal & Naldi 2005), the lowerboundof (1) given here is an improvement over
the method in (Mashal & Naldi 2005), which first appeared in (Ruan 2006). The key in the derivation is
the Jensen’s inequality which states:g(E[x]) ≤ E[g(x)] if g(x) is a convex function. In particular, since
max(x−K,0) is a convex function ofx: max(E[x]−K,0)≤ E[max(x−K,0)].

Recall thatVt = E[∑ti>t d(t, ti)ci|F t ] whereci are the cashflows of the trade.ci is assumed to be adapted
toD ti , which is usually the case in practice, i.e., the cashflows ofmulti-name credit derivatives normally are
only functions of realized default and recovery scenarios.The upper bound ofC can be derived as:

C = E[d(0, t)1τ=t max(Vt −K,0)]

= E[d(0, t)1τ=t max(E[∑
ti>t

d(t, ti)ci|F t ]−K,0)] : expandVt

≤ E[d(0, t)1τ=tE[max(∑
ti>t

d(t, ti)ci −K,0)|F t ]] : Jensen’s inequality (2)

= E[E[d(0, t)1τ=t max(∑
ti>t

d(t, ti)ci −K,0)|F t ]] : 1τ=t is adapted toF t

= E[d(0, t)1τ=t max(∑
ti>t

d(t, ti)ci −K,0)] : iterative expectation

It is very straight-forward to compute the upper bound from aMonte Carlo simulation of default times and
recovery rates since there is no nested simulations. Suppose Y t is a sub filtration ofF t that includes the
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trigger event. The lower bound ofC can be derived as:

C = E[d(0, t)1τ=t max(Vt −K,0)]

= E[E[d(0, t)1τ=t max(Vt −K,0)|Y t ]] : iterative expectation

= E[d(0, t)1τ=tE[max(Vt −K,0)|Y t ]] : 1τ=t is adapted toY t

≥ E[d(0, t)1τ=t max(E[Vt −K|Y t],0)] : Jensen’s inequality (3)

= E[d(0, t)1τ=t max(E[Vt |Y t ]−K,0)] : K is constant

= E[d(0, t)1τ=t max(E[E[∑
ti>t

d(t, ti)ci|F t ]|Y t ]−K,0)] : expandVt

= E[d(0, t)1τ=t max(E[∑
ti>t

d(t, ti)ci|Y t ]−K,0)] : iterative expectation

The termE[∑ti>t d(0, ti)ci|Y t ] is the expected total value of future cashflow conditioned onthe information
in Y t . The choice ofY t determines the quality of the lower bound, the more information in Y t the higher the
lower bound is. In the limiting case ofY t = F t , the lower bound converges to the true value of the option.

There is a very intuitive explanation of the upper and lower bounds of the option values. The MTM of
the underlying tranche (Vt ) is based on the information in the market filtrationF t . In (2), the upper bound
of option payoff1τ=t max(∑ti>t d(0, ti)ci,0)] corresponds to the option’s value to an all-powerful deity who
can perfectly foresee the future default events and recovery rates. Therefore, at the time of the trigger event
τ = t, the deity will exercise the option based on the foreseeablefuture cashflow∑ti>t d(0, ti)ci instead ofVt .
For example, the deity may exercise the option and buy protection on a CDO tranche even if the MTM of
the tranche is less than the strike price because he foreseesthat the future loss of the tranche will eventually
exceed the future value of the strike price. Therefore, the deity can extract more value from the option than
its fair market value by exercising the option based on future information that is not part ofF t . Therefore,
the upper bound corresponds to the option value with the divine power of perfect foresight.

The lower bound of the option payoff1τ=t max(E[∑ti>t d(0, ti)ci|Y t ],0) corresponds to an imprisoned
investor who were only given the information in the sub-filtrationY t ⊂ F t . Therefore, he does not observe
the fair MTM valueVt , and he can only exercise the option based onE[Vt |Y t ], which is an estimation (or
best guess) of the MTM based on the available informationY t . This clearly results in suboptimal exercise
of the option. Therefore, the lower bound corresponds to theoption value with incomplete information.

Even with a full dynamic model, one could obtain the lower bound of the option instead of the true value
if the numerical methods of the option pricing is built on a reduced filtration, which is often the case with the
lattice methods. For example, in the pioneering work by (Chapovsky, Rennie & Tavares 2006), the tranche
options are priced by building a lattice on a reduced filtration with low dimensionality, which results in a
lower bound of the option in the strict sense even though the authors were trying to obtain the true value of
the option.

In the most generic form, the upper bound and lower bound can be computed from the Monte Carlo
simulation of a default time copula. We don’t need to model orsimulate any future spreads in order to
compute the price bounds if we chooseY t ⊂ D t . The upper bound can be computed directly from the
simulated default time and recoveries of all the underlyingcredits, and the lower bound requires a least
square Monte Carlo simulation as in (Longstaff & Schwartz 2001) that regresses the value of the future cash
flows to the state variables inY t . Semi-analytical solution to the option bounds can be obtained if the trigger
event is deterministic in time (ie, vanilla European optionwhose holder can exercise at a deterministic future
time), or if the trigger event is the default event of a singlecredit, such as the case in the counterparty risk.
We’ll analyze these special cases in the following sections.

The bounds derived from the default time copula offers greatinsights on the tranche option pricing. If
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the bounds are very narrow, the option values are mainly determined by theJDDT ; if the bounds are wide,
then the option values are primarily determined by other systemic or idiosyncratic factors beyond the default
time. In this paper, we’ll try to understand what is the main driver of the tranche option prices.

The price bounds for put option can be obtained via the put-call parity. The methodology to obtain the
lower and upper bound of an option payoff is very general, it applies to any multi-name credit options, such
as CDO tranche option, NTD basket option or the multiple asset options as discussed in liquidation risk.

4 European Tranche Options

In this section, we consider the vanilla European tranche options which can be exercised at a pre-determined
time. The tranche options with random trigger event will be discussed in the next section.

For simplicity, we consider the tranche loss option insteadof the more general case of tranche option. An
European tranche loss option is a hypothetical instrument that gives the buyer the right (not an obligation)
to pay a fixed amountK at the exercise timet in order to receive a payoff equal to the total realized loss of
a tranche at timeT . Regular tranche option reduces to the tranche loss option if the tranche has no running
coupon and if we assume the protection payments are all made at maturity instead of the time of default.
The price bounds of tranche loss option with deterministic time trigger can be computed without Monte
Carlo simulation. Since the main driver of a tranche’s valueis its expected tranche loss at maturity, the
conclusions drew from the analysis on the tranche loss option applies to the more general cases of tranche
option with running coupons and immediate protection settlement. Furthermore, the regular tranche option
can be approximated using tranche loss option, please see Appendix A for a more detailed discussion of the
approximation.

Then the PV of the tranche loss option can be written as:

C = d(0, t)E[max(d(t,T )E[LT (A,D)|F t ]−K,0)]

= d(0,T )E[max(E[LT (A,D)|F t ]−
K

d(t,T )
,0)] (4)

We useA andD to denote the tranche’s attachment and detachment levels. In the subsequent analysis,
we drop all the deterministic discount factors to simplify the exposition, with the understanding that the
valuation bounds and strikes need to be adjusted with those deterministic discount factors in (4). The
LT (A,D) in (4) is the expected tranche loss (ETL) andLT is the portfolio loss at tranche maturityT :

LT (A,D) = min(max(LT −A,0),D−A)

A simple expression for the upperbound can be derived from (2):

C ≤ E[max(LT (A,D)−K,0)]

= E[max(min(max(LT −A,0),D−A)−K,0)))]

= E[min(max(LT − (A+K),0),D− (A+K))] (5)

= E[LT (A+K,D)]

Therefore, the upper bound of the tranche loss option is justthe ETL of anA + K to D tranche. This
relationship does not hold if the tranche has a non-zero running coupon or if the protection payment is not
made at the end of tranche maturity. However, since the impact of running coupon and the discounting of
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Table 1: CDX-IG9 Expected Tranche Loss

Tranches 3Y 5Y 7Y 10Y
0-3% 54.12% 80.19% 86.76% 91.12%
3-7% 17.03% 42.64% 55.16% 66.18%
7-10% 5.36% 20.09% 33.98% 48.18%
10-15% 1.35% 8.17% 15.82% 23.34%
15-30% 0.76% 2.29% 4.81% 7.95%
30-60% 0.49% 1.62% 3.40% 5.31%
60-100% 0.02% 0.42% 0.95% 1.54%

protection payments is limited in the tranche pricing, we can still use the PV of aA+K to D tranche as an
approximation to the upper bound of a regular tranche option. This is a very handy relationship in practice.
A more accurate upper bound for the regular tranche option can be obtained using the approximation in
Appendix A.

The upper bound of the tranche loss option only depends on theterminal loss distribution, therefore, it
is not model dependent as long as all the models are calibrated to the same loss distribution. For example,
we can compute the upper bound of a tranche option even from a base correlation model.

The lower bound of the tranche loss option can be written as:

C ≥ E[max(E[LT (A,D)|Y t ]−K,0)] (6)

whereY t is a sub-filtration of the market filtrationF t . The lower bound is generally model dependent
through the conditional expectationE[LT (A,D)|Y t ] but we can derive a naive model-independent lower
bound by Jensen’s inequality:

C = E[max(E[LT (A,D)|F t ]−K,0)]

≥ max(E[E[LT (A,D)|F t ]−K],0) (7)

= max(E[LT (A,D)]−K,0)

The lower bound in (7) corresponds to an exercising strategythat the option holder always exercises the
option if the expected tranche loss based on information att = 0 is more than the strike priceK, aka, if
the option is “in-the-money” att = 0. (Gregory 2008) pointed out that a digital tranche is the upper bound
(“super-hedge”) of a loss-trigger LSS trade. The digital tranche is equivalent to the naive lower bound (7)
in the context of the LSS.

To get more precise lower bound, we have to choose the sub-filtration Y t with more information. We
used the CDX-IG9 index tranches and market data on Jul 21st, 2009 for this study. We calibrated the model
described in (Li 2009) to the market data, and Table 1 showed the expected tranche loss from the calibrated
model. Note that all the ETLs are normalized to their tranchenotionals, so are the option values in the rest
of this document1.

We first consider IG9 tranche loss options that expires at 3Y (maturity: Dec. 20, 2010) for the expected
loss of a 5Y (maturity: Dec. 20, 2012) tranche, we define the at-the-money (ATM) strike to be the expected
tranche lossKATM = E[LT (A,D)]. In this study, we also computed the price bounds for in-the-money(ITM)
and out-of-the-money (OTM) tranche loss options. In the following examples, the ITM strike is half of ETL,
and the OTM strike is twice of the ETL:KIT M = 1

2E[LT (A,D)] andKOTM = 2E[LT (A,D)]. Table 2 showed
the upper bounds computed from the calibrated bottom-up model according to (5).

1We still refer the CDX-IG9 tranches using their original strikes even though the actual calculations were using the adjusted
strikes which take into account the three defaulted names inthe portfolio.
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Table 2: Upper Bounds of 3Y-5Y Tranche Loss Option

CDX-IG9 Upper Bounds
Tranches ITM ATM OTM

0-3% 43.33% 12.73% 0.00%
3-7% 30.71% 20.57% 4.44%
7-10% 17.35% 14.79% 10.21%
10-15% 7.63% 7.11% 6.14%
15-30% 2.24% 2.19% 2.10%
30-60% 1.61% 1.59% 1.56%
60-100% 0.42% 0.41% 0.41%

We now focus on the lower bounds which depends on the choice ofthe sub-filtrationY t .

4.1 Lower Bounds from Top-down Models

The minimum sub-filtration that can price tranche loss option consistently is the filtration generated by the
portfolio loss process, we denote it asL t . Note thatL t does not contain any single name information and
typical top-down models are built on theL t filtration.

TheL t does impose a more precise lower bounds of the tranche loss option than (7). To illustrate this,
we take a discrete sample of the initial loss distribution, and built two different Markov chains on the loss
distribution: co-monotonic Markov chain and maximum entropy Markov chain. The details of how to build
these Markov chains can be found in (Epple, Morgan & Schloegl2007). Once we have a Markov chain
on the loss transition, we can then compute the lower bound in(6) by conditioning on the portfolio loss
Lt . Since the conditioning is only on a scaler variable, the lower bound can be easily computed from the
Markov Chain without using Monte Carlo simulation. The lower bounds from the two different Markov
chains are shown in the table 3: the co-monotonic Markov chain implies a much higher lower bound than
the maximum entropy Markov chain. The OTM option on the 0-3% equity tranche has a value of 0 since
the OTM strike is more than the tranche notional. The 60-100%tranche’s lower bounds with co-monotonic
Markov chain are slightly higher than the upper bounds in Table 2, which is caused by the inaccuracies of
the discrete sampling of the loss distribution.

An interesting question is: what is the lower bound if we onlyknow the loss distributions but not the
Markov chain of loss transition? This bound is of special interest because it is not model dependent, and
it is the lowest lower bound among all admissible Markov chains by the loss distribution. We denote this
lowest lower bound as LLB(L t). Finding the LLB(L t) among all possible Markov chains can be formulated
as a nonlinear optimization problem (see the Appendix B), which can be solved using a standard non-linear
optimizer. The column “LLB” in table 3 is the lowest lower bound obtained from the nonlinear optimization.
Note that the optimizations to find the LLBs for different tranches are run separately, therefore the tranche
loss options from different tranches can’t be at their LLB(L t) simultaneously. For example, if the tranche
loss option for the 0-3% tranche is priced at its LLB(L t), then the 3-7% tranche loss option price has to be
greater than its LLB(L t) since the Markov chain that produces the LLB(L t) for 0-3% tranche is generally
not the same Markov chain that produces the LLB(L t) of 3-7%. Though still crude, the LLB(L t) from loss
distribution is much more precise than the naive lower boundin (7), which are zeros for all the ATM or
OTM options.

In table 3, the LLB(L t) are greater than 0 for all tranches even in the case of OTM options. This is a
unique feature of the CDO tranche option. In other asset classes, the OTM option values can be very close to
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Table 3: Lower Bounds of 3Y-5Y Option fromL t (Top-down)

CDX-IG9 ITM Lower Bounds ATM Lower Bounds OTM Lower Bounds
Tranches Co-mo Max-E LLB Co-mo Max-E LLB Co-mo Max-E LLB

0-3% 43.09% 39.97% 39.97% 12.50% 7.91% 6.40% 0.00% 0.00% 0.00%
3-7% 30.32% 22.34% 21.40% 19.75% 11.74% 7.55% 4.18% 1.82% 1.54%
7-10% 17.01% 11.05% 9.82% 14.39% 7.53% 3.67% 9.35% 3.99% 2.28%
10-15% 7.63% 4.88% 4.20% 7.13% 3.64% 1.07% 6.28% 2.38% 0.94%
15-30% 2.19% 1.48% 1.12% 2.11% 1.24% 0.68% 2.02% 1.00% 0.66%
30-60% 1.60% 1.11% 0.81% 1.57% 0.97% 0.41% 1.52% 0.83% 0.40%
60-100% 0.48% 0.35% 0.28% 0.48% 0.30% 0.07% 0.47% 0.26% 0.03%

0 if the volatility of the underlying asset becomes very low.However, even the OTM tranche option always
have certain minimum value regardless of the tranche spreadvolatility. The reason is that the dynamics of
the portfolio loss process has to be consistent with the initial loss distribution at timet = 0, which imposes
a minimum level of portfolio loss volatility. For example, the volatility of portfolio loss process cannot be 0
since a deterministic portfolio loss process clearly violates the initial loss distribution att = 0.

The value of a tranche option depends on the full loss distribution hence it is important to model tranche
options on the same underlying portfolio across capital structure as inter-dependent instruments. The simple
approach of modeling tranche options as separate derivative instruments on individual tranches, as suggested
by (Hull & White 2007), is not adequate. (Hull & White 2007) attempted to model tranche options using
a similar approach to the Libor market model in the interest rates world, which could produce inconsistent
prices with the underlying tranche prices. For example, there is no restriction on the volatility parameter
of the forward tranche spread in the (Hull & White 2007) approach and we could produce arbitrage-able
tranche option prices out of the range bound from (2) and (3) by choosing the volatility parameter.

4.2 Lower Bound from the (Li 2009) Model

More precise lower bound can be obtained if theY t in (3) also includes single name information. To study
the effects of single name information, we used the model described in (Li 2009). The (Li 2009) model is
a one-factor bottom-up dynamic model where the systemic factor is modeled by an increasing processXt.
Under the (Li 2009) model, the marginal distribution ofXt determines theJDDI; the Markov chain onXt

determines theJDDT , therefore each different Markov chain onXt defines a different default time copula.
The marginal distribution ofXt can be calibrated to index tranche prices, afterwards, we can construct
different default time copulas by constructing different Markov chain to the marginal distribution ofXt.
These different default time copula produces differentJDDT but identicalJDDI and tranche prices by
construction.

AssumeS t is a a filtration generated by the common factor processXt and the single name default and
recovery. Of courseS t ⊂ F t sinceF t includes other systemic and idiosyncratic factors beyondXt . In the
numerical implementation, the lower bound fromS t are computed by only conditioning on the value of the
common factorXt but not the lossLt , which allow us to compute the lower bound with a semi-analytical
method pioneered by (Andersen, Sidenius & Basu 2003). Ignoring the realized lossLt results in slightly
worse (or lower) lower bounds because we are not using the full information available inS t , but it is a good
trade off since it allows us to use the semi-analytical pricing method for much faster calculation of the lower
bound. Since theXt and the lossLt are highly correlated under the one-factor model, the degradation of the
lower bound quality is expected to be small by excluding the realized losses in the conditioning.
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Table 4: Lower Bounds of 3Y-5Y Option fromS t

CDX-IG9 ITM Lower Bounds ATM Lower Bounds OTM Lower Bounds
Tranches Co-mo Max-E LLB Co-mo Max-E LLB Co-mo Max-E LLB

0-3% 41.07% 40.93% 40.05% 10.47% 9.53% 8.46% 0.00% 0.00% 0.00%
3-7% 29.15% 26.63% 22.07% 19.13% 15.45% 11.96% 3.19% 2.57% 2.47%
7-10% 16.26% 14.48% 13.12% 13.20% 11.74% 11.20% 8.12% 7.85% 7.58%
10-15% 7.32% 7.26% 6.42% 6.70% 6.64% 5.79% 5.54% 5.47% 4.85%
15-30% 2.19% 2.14% 1.23% 2.12% 2.04% 1.16% 1.99% 1.90% 1.09%
30-60% 1.60% 1.53% 0.82% 1.57% 1.47% 0.65% 1.52% 1.37% 0.73%
60-100% 0.41% 0.39% 0.20% 0.41% 0.38% 0.12% 0.41% 0.35% 0.14%

In this example, we built a co-monotonic Markov chain and a maximum entropy Markov chain onXt,
and the resulting lower bounds fromS t and these two default time copula are show in table 4. We can also
find the lowest lower bound of all possible Markov chains ofXt that preserves theJDDI and tranche prices.
We denote the lowest lower bound based on the sub-filtrationS t as LLB(S t) (shown in the column “LLB”
of table 4). The LLB(S t) is much higher than the LLB(L t) because it is constrained by the additional single
name information and the conditional independent correlation structure in the (Li 2009) model.

Comparing table 3 and 4, it is interesting to note that the lower bounds fromL t can vary at a much wider
range than the lower bound fromS t . This can be explained by the fact that not all the loss transitions are
admissible under a factor model with conditional independence. For example, the co-monotonic Markov
chain built on the loss process have many deterministic transitions, such as: if the tranche loss is 2% at 3Y,
then the loss will be 4% at 5Y with probability 1. The existence of such fully deterministic transition is a
property of the co-monotonic Markov chain. Though admissible under a contagion model, the deterministic
loss transition is incompatible with a conditional independent factor model where theLT conditioned onF t

can never be fully deterministic except for the degeneratedcase. Therefore, adding single name information
and a conditional independent correlation structure further restricts the set of admissible loss transitions,
thus imposing a narrower range on the lower bounds.

(Lando & Nielsen 2009) have shown that the conditional independent assumption cannot be rejected
from either the individual case studies or the statistical tests of the historical default events. None of the
historical default events so far are caused by contagion in the strict sense that one company’s default event
directly caused another company to default. Contagion models also have some undesirable properties as
shown in (Hitier & Huber 2009) that make it difficult to use in practice. Therefore, conditional independent
factor model remains the most practical and efficient approach to include single name information. In
practice, we have to adopt the lower bounds from the conditional independent model since it is the only
feasible approach to price and manage both the vanilla CDO tranches and exotic instruments like tranche
options.

4.3 Systemic vs. Idiosyncratic Dynamics

Furthermore, we can quantify how much uncertainty of the option value is due to systemic dynamics vs.
idiosyncratic dynamics under the (Li 2009) model. Suppose we have a filtrationU t which includeS t and
XT , i.e., this filtration correspond to a less powerful deity (comparing to the all-powerful deity that gives
the upper bound) who can only foresee the future value of the common factor, but not the idiosyncratic
default events. The remaining uncertainty between the lower bound fromU t and the upper bound has to
be caused by idiosyncratic dynamics. Therefore, the optionbounds fromU t gives a way to gauge the
pricing uncertainty purely due to the idiosyncratic dynamics. Table 5 showed the lower bounds calculated
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Table 5: Lower Bounds of 3Y-5Y Option fromU t (Perfect Foresight)

CDX-IG9 Lower Bounds
Tranches ITM ATM OTM

0-3% 41.14% 10.73% 0.00%
3-7% 29.47% 19.15% 3.28%
7-10% 16.37% 13.38% 8.18%
10-15% 7.36% 6.70% 5.69%
15-30% 2.20% 2.13% 2.04%
30-60% 1.60% 1.59% 1.56%
60-100% 0.42% 0.41% 0.41%

from U t . By comparing to the upper bounds in Table 2, it is obvious that option pricing uncertainty due
to idiosyncratic dynamics is very limited. The idiosyncratic dynamics only contributes a small amount
of uncertainty to junior tranche options, and it has almost no contributions to the senior tranche options.
Therefore, we can safely ignore the idiosyncratic spread dynamics if we are mainly dealing with the senior
tranche options.

4.4 Long-dated Options

The upper and lower bounds of a 5Y to 10Y tranche loss option are also computed in Table 6. In general, the
price bounds of the 5Y-10Y options exhibit very similar features as the 3Y-5Y options. The 5Y-10Y option
showed a wider range between upper and lower bound than the 3Y-5Y option, which is not surprising since
the long-dated option is expected to have more pricing uncertainties.

4.5 Choice of Markov Chains

In Table 5, the lower bounds fromU t is only slightly higher than the lower bound from co-monotonic
Markov chain because the co-monotonic Markov chain is very close to having perfect foresight as the
common factors at the two maturities are mapped sequentially by their distribution quantiles. If the common
factor is specified as a continuous distribution, the co-monotonic Markov chain will produce the exact same
lower bound as those fromU t . Therefore, it is arguable that the co-monotonic Markov chain is not realistic
due to the collapsed uncertainty of future common factor distribution.

As noted by many previous authors, eg (Andersen 2006) and (Skarke 2005), the classic Gaussian Copula
implies very unrealistic spread dynamics. This price boundanalysis of tranche options offers yet another
interesting view on the Gaussian Copula: the classic Gaussian Copula model is a degenerated co-monotonic
Markov chain across time where the common factor distributions remains unchanged (Gaussian). Therefore,
the classic Gaussian copula suffers from the same problem ofvanishing common factor uncertainties as the
co-monotonic Markov chain. Co-monotonic Markov chains, including Gaussian Copula, will overvalue the
tranche options because of the perfect foresight of the future market factor realizations.

In comparison, the maximum entropy Markov chain is a much better choice since it has the advantage
of keeping the least amount of information in the system, andthe uncertainty of the future common factor
is the largest among all possible Markov chains (because theinformation entropy is maximized). Ideally
we should calibrate the Markov chain using market information; however it is impossible to do so under the
current market condition because there is no relevant and reliable market observables on the transition of
future loss process. Given the lack of market information, we argue that the maximum entropy Markov chain
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Table 6: Price Bounds of 5Y-10Y Tranche Loss Option

In-the-Money Option

CDX-IG9 Lower Bounds Upper
Tranches LLB(L t) Max-EL t LLB(S t) Max-E S t U t Bound

0-3% 45.46% 45.58% 45.37% 45.56% 45.40%46.97%
3-7% 33.19% 35.75% 35.76% 39.64% 41.28%42.12%
7-10% 23.23% 26.75% 25.15% 30.90% 33.13%34.66%
10-15% 11.94% 14.25% 11.81% 16.47% 18.07%19.29%
15-30% 3.91% 5.08% 3.96% 6.58% 7.22% 7.42%
30-60% 2.61% 3.49% 2.62% 4.60% 5.14% 5.14%
60-100% 0.88% 1.16% 0.76% 1.37% 1.50% 1.50%

At-the-Money Option

CDX-IG9 Lower Bounds Upper
Tranches LLB(L t) Max-EL t LLB(S t) Max-E S t U t Bounds

0-3% 5.61% 5.76% 4.96% 5.62% 5.62% 7.09%
3-7% 12.91% 14.92% 15.80% 17.98% 19.99%20.53%
7-10% 8.16% 13.70% 11.82% 16.85% 18.49%22.23%
10-15% 5.60% 8.87% 9.27% 12.06% 14.33%15.69%
15-30% 1.98% 3.94% 3.49% 5.96% 6.75% 6.93%
30-60% 1.52% 2.91% 1.51% 4.27% 4.97% 4.98%
60-100% 0.46% 1.01% 0.56% 1.27% 1.47% 1.47%

Out-of-the-Money Option

CDX-IG9 Lower Bounds Upper
Tranches LLB(L t) Max-EL t LLB(S t) Max-E S t U t Bound

0-3% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3-7% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7-10% 0.53% 0.53% 0.52% 0.50% 0.80% 1.36%
10-15% 3.23% 4.57% 5.57% 6.47% 8.15% 9.65%
15-30% 1.69% 2.98% 2.90% 5.00% 5.92% 6.08%
30-60% 1.43% 2.33% 1.41% 3.70% 4.65% 4.66%
60-100% 0.44% 0.86% 0.54% 1.15% 1.41% 1.41%
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Table 7: 3Y-5Y ATM Options with Single Default Event Trigger

Trigger Default Prob = 5%

CDX-IG9 Independent Less Correlated More Correlated
Tranches LB UB LB UB LB UB

0-3% 0.48% 0.64% 0.69% 0.73% 0.86% 0.87%
3-7% 0.77% 1.03% 1.57% 1.69% 2.14% 2.22%
7-10% 0.59% 0.74% 1.69% 1.75% 2.41% 2.46%
10-15% 0.33% 0.36% 1.37% 1.37% 1.89% 1.90%
15-30% 0.10% 0.11% 0.89% 0.90% 1.09% 1.11%
30-60% 0.07% 0.08% 0.80% 0.81% 0.94% 0.96%
60-100% 0.02% 0.02% 0.22% 0.22% 0.25% 0.26%

Trigger Default Prob = 30%

CDX-IG9 Independent Less Correlated More Correlated
Tranches LB UB LB UB LB UB

0-3% 2.86% 3.82% 3.92% 4.15% 4.72% 4.88%
3-7% 4.63% 6.17% 8.19% 9.02% 10.47% 11.17%
7-10% 3.52% 4.44% 7.79% 8.22% 9.95% 10.40%
10-15% 1.99% 2.13% 5.00% 5.02% 6.09% 6.11%
15-30% 0.61% 0.66% 1.82% 1.88% 2.00% 2.07%
30-60% 0.44% 0.48% 1.36% 1.44% 1.45% 1.56%
60-100% 0.11% 0.12% 0.36% 0.38% 0.38% 0.40%

is the most natural choice since it corresponds to the state of no relevant information. Table 3 to 6 have shown
that the lower bounds become more precise with larger sub-filtrations, and the price bounds imposed byS t
and the maximum entropy Markov chains are still quite tight,especially for the senior tranches. Therefore,
the dynamics of other systemic and idiosyncratic factors beyond S t only have limited contribution to the
pricing uncertainty of tranche options.

5 Tranche Options with Random Triggers

As discussed in section 2, the trigger event itself for a tranche option can be a random event. In general,
the tranche options with random triggers require Monte Carlo simulation to compute its upper and lower
bounds. However, if the trigger event is the default of a single credit, we can still treat it semi-analytically
without Monte Carlo simulation by taking advantage of the conditional independence.

5.1 Single Default Event Trigger

We take the 3Y to 5Y CDX-IG9 ATM tranche loss option as an example, and consider an option that can
be exercised at 3Y only if a trigger credit has defaulted before 3Y. We further assume that the trigger credit
does not appear in the portfolio of the CDO tranche2. Because of the single credit trigger, the price bounds
of this option cannot be obtained using a pure top-down model.

2If the name does appear in the tranche portfolio, we can always replicate the original option by an equivalent tranche loss
option without the trigger credit in the portfolio by adjusting the tranche attachment, detachment and the strike priceof the option
because the trigger credit has to be in the default state whenthe option has non-zero payoff.
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We consider the price bound with a Maximum Entropy Markov chain under the (Li 2009) model. Be-
cause of the conditional independence, whether the triggername default before 3Y does not change the
distribution or the transition Markov Chain of the common factor process; neither does it change the condi-
tional default probabilities of any other names in the portfolio. Therefore, we can obtain the price bounds of
this option by simply weighting the option payoff in (2) and (3) by the 3Y conditional default probability of
the trigger credit:

CU = E[1τ<t max(∑
ti>t

d(0, ti)ci −K,0)]

= E[E[1τ<t max(∑
ti>t

d(0, ti)ci −K,0)|Xt ]] : Iterative expectation

= E[E[1τ<t |Xt ]E[max(∑
ti>t

d(0, ti)ci −K,0)|Xt ]] : Conditional Independence

= E[q(Xt , t)E[max(∑
ti>t

d(0, ti)ci −K,0)|Xt]] (8)

WhereXt is the value of the common factor at timet, q(Xt , t) is the conditional default probability of the
trigger credit. Similarly, we can get the following expression for the lower bound:

CL = E[q(Xt , t)E[max(E[∑
ti>t

d(0, ti)ci|Y t ]−K,0)|Xt]] (9)

Both of the bounds in (8) and (9) are easy to compute semi-analytically.

As shown in Table 7, we computed the price bounds with two different default probabilities for the
trigger credit, 5% and 30%. We also computed the price boundswith different correlations between the
trigger credit default and the common market factor. As expected, the option is more valuable if the trigger
credit is more risky. Table 7 also showed that the option is much more valuable if the trigger credit is more
correlated to the common market factor. In the context of counterparty risk, this results in the so called
“wrong-way” risk of buying tranche protection from a risky counterparty, i.e., the tranche protection worth
much less if the counterparty is more likely to default when the portfolio suffers more losses.

The price bounds in Table 7 are much narrower than the comparable bounds from Maximum Entropy
Markov chain in table 2 and 4. The price bounds are very narroweven when the trigger name has significant
default probability; therefore there is clearly no need to build the full dynamic spread models for the single
default event trigger. Counterparty risk of tranches therefore can be very effectively priced and managed
using this methodology.

In this example, we assume the option is exercised at 3Y if thetrigger name defaults before 3Y, we refer
to it as the “exercise-at-maturity” option. In a more realistic setting, the option holder has to exercise the
option immediately if the trigger credit default, which is referred as “exercise-at-trigger”. The “exercise-at-
trigger” option can be modeled as a series “exercise-at-maturity” options, with one option expires at every
default observation date and is only exercisable if the trigger credit defaults between the previous default
observation date and the current default observation date.Given that he “exercise-at-maturity” option expires
at a fixed maturity date and the “exercise-at-trigger” option is a series of options that expires at each default
observation date from time 0 to the maturity, the “exercise-at-trigger” option’s value is always less than
the “exercise-at-maturity” option with the same maturity because an option is less valuable with shorter
expiration.
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Table 8: Max Entropy Lower Bounds Conditioned onXt andLt

CDX-IG9 3Y-5Y Lower Bounds 5Y-10Y Lower Bounds
Tranches ITM ATM OTM ITM ATM OTM

0-3% 41.39% 10.31% 0.00% 46.14% 6.25% 0.00%
3-7% 26.74% 15.68% 2.72% 40.03% 18.14% 0.00%
7-10% 14.45% 11.86% 8.08% 30.94% 17.27% 0.67%
10-15% 7.23% 6.62% 5.54% 16.64% 12.38% 6.93%
15-30% 2.12% 2.02% 1.88% 6.55% 5.95% 4.97%
30-60% 1.50% 1.45% 1.34% 4.54% 4.22% 3.66%
60-100% 0.39% 0.38% 0.35% 1.35% 1.26% 1.14%

5.2 Generic Random Triggers

For more general triggers that involve multiple names, suchas portfolio loss triggers or the 1st default event
in a credit basket, we have to use Monte Carlo simulation of default time and recovery to compute the price
bounds. The semi-analytical solutions for these complicated triggers often gets too tedious comparing to the
straight-forward Monte Carlo simulation.

The lower bound of the option depends on the termE[Vt |Y t ] in (3). In section 4, we restricted ourselves
to only condition on the common factorXt, which is the most convenient for semi-analytical solutions.
However, in Monte Carlo simulation, we can easily add additional variables in the filtrationY t to the con-
ditioning so that we can get better (or higher) lower bounds.The realized portfolio lossLt is the next most
useful factor to be included in the conditioning after the common factorXt . Given the conditional indepen-
dence, there is limited benefits to include individual names’ default indicators in the conditioning afterXt

andLt . If we only useXt ,Lt as the two conditioning variables, theE[Vt |Xt ,Lt ] can be directly computed
from the simulation by constructing a two dimensional grid that samples theXt andLt discretely. If there
are more variables in the conditioning, we have to use the regression technique in the typical least square
Monte Carlo methodology in (Longstaff & Schwartz 2001).

Table 8 shows the lower bound of the tranche loss option with deterministic time trigger implied by the
maximum entropy Markov chain conditioned on bothXt and Lt . The results are obtained from a Monte
Carlo simulation where half of the simulated path is used to establish theE[Vt |Xt ,Lt ] by constructing a two-
dimensional grid of(Xt ,Lt), and the other half of the simulated path is used to compute the actual lower
bounds from theE[Vt |Xt ,Lt ]. Comparing with Table 4 and Table 6, the lower bound for junior tranches
improved slightly by adding the realized lossLt in the conditioning. The lower bounds of senior tranches
showed almost no improvements.

We also considered a more realistic example of callable tranche where a client sold protection to a bank
on a senior 5Y IG9 tranche, and the client has the right to buy back the protection at the initial expected
tranche loss if the IG9 portfolio loss is greater than a pre-determined thresholdα at the 3Y. In this example,
the trigger event and the option payoff are highly correlated as both of them are functions of the IG9 portfolio
loss, therefore, we cannot compute its price bounds by simply multiplying the tranche option payoffs in
Table 4 by the probability of the trigger event. Instead we have to use the full Monte Carlo simulation to
compute the price bounds, which are shown in Table 9. The price bounds of the options to call tranche with
portfolio loss triggers are also very tight.

The price bounds of other types of options, such as gap risk and liquidation risk, can also be computed
from Monte Carlo simulation of default times and recovery rate using similar methods as in the callable
tranche.
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Table 9: Price Bounds of 3Y-5Y Option to Call Tranche

CDX-IG9 α = 4% α = 8% α = 12%
Tranches LB UB LB UB LB UB
15-30% 2.02% 2.22% 1.85% 1.95% 1.08% 1.13%
30-60% 1.45% 1.62% 1.36% 1.47% 0.95% 1.00%
60-100% 0.38% 0.42% 0.36% 0.38% 0.26% 0.27%

6 Conclusion

In this study, we have shown that the tranche option prices can be effectively bounded from a default time
copula. We argue that the default time copula from the maximum entropy Markov chain is the most natural
choice when we don’t have relevant market observables for tranche options; we also argue that it is possible
for a dealer to make market and dynamically hedge the senior tranche options solely based on their price
bounds.

For the European tranche options and the tranche options with single name default triggers, both the
upper bound and lower bound can be computed from semi-analytical methods without Monte Carlo simu-
lation. The Greeks of the price bounds can be computed by perturbing the market inputs and re-valuing.
When the pricing bounds of an option is narrow, a dealer can treat the true value the option as an average
of the lower and upper bound, and dynamically hedge an European tranche option book by averaging the
Greeks for the lower bound and upper bound. A senior tranche option book could be managed without much
additional effort than the effort required to risk-manage atypical index or bespoke tranche book.

The fact that the upper and lower bounds can be hedged using static instruments makes it possible to
profit from the market mis-pricing of the tranche options. Inthe event that the market tranche option prices
are out of the pricing bounds, the dealer can take the corresponding option position and a hedge position
for the bound that the option value violates. For example, ifa European tranche call option on aA to D
tranche with strikeK is priced higher in the market than its upper bound, then a dealer can sell the call
option and hedge it by buying protection on aA+K to D tranche. This will results in a positive profit
without any future risk, i.e., an arbitrage opportunity. However, in reality, theA+K to D tranche may not be
liquid itself, therefore, the tranche option may have to be hedge dynamically using other liquid instruments.
The dynamic hedging of the lower or upper bound of the trancheoptions is no more complicated than the
common practice of dynamically hedging the off-the-run index tranches or bespoke tranches.

Contrary to a common stereotype, the tranche options pricesare primarily determined by theJDDT and
default time copula. Other systemic and idiosyncratic factors beyond the default time copula contribute a rel-
atively small portion of the pricing uncertainty. Using top-down models to price tranche options could result
in mis-pricing given the top-down models ignores a large amount of static single name market information
which is important in determining the tranche option prices.

The methodology to obtain price bounds of tranche options described in this paper could also play an
important role in the management of counterparty risk, gap risk and liquidation risk. As shown in section
5.2, the price bounds are often very narrow for tranche options with random trigger event, therefore, these
practical problems can also be effectively addressed usingthe price bounds.
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Appendix

A Approximate the Tranche PV Option

Consider a generic tranche with non-zero coupon, and whose protection payment is settled at the time of
default. The MTM of such a tranche can be written as:

Vt = PROTt − sPV01t
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wherePROT is the protection PV and thePV01 is the PV of a 1bps coupon payment, ands is the contractual
coupon. Since the main risk factor of a tranche is its terminal loss, we can view thePROTt andPV01t as
functions of the expected terminal tranche losslt =E[LT (A,D)|F t ]. Therefore, we can expand thePROT (lt)
andPV01(lt) around the current tranche expected lossl0

t = E[LT (A,D)|F0]:

PROT (lt)≈ PROT (l0
t )+

∂PROT (l0
t )

∂lt
(lt − l0

t )

PV01(lt)≈ PV01(l0
t )+

∂PV01(l0
t )

∂lt
(lt − l0

t )

Therefore, we have:

Vt ≈ PROT(l0
t )− sPV01(l0

t )+ (
∂PROT(l0

t )

∂lt
− s

∂PV01(l0
t )

∂lt
)(lt − l0

t )

= a+blt

Wherea,b are constants which are obvious from the above equation. This effectively approximates the
MTM of a regular tranche by a linear function oflt . The first order derivatives can be obtained from the
default time copula and the price of an option on tranche PV with strikeK can be approximated by a tranche
loss option:

C = E[d(0, t)1τ=t max(Vt −K,0)]

≈ E[d(0, t)1τ=t max(a+blt −K,0)]

= E[d(0, t)1τ=t bmax(lt −
K −a

b
,0)]

Therefore, the tranche loss option bounds discussed in thispaper can be applied to produce the bounds for the
tranche PV option. In practice, the tranche PV is mainly driven by its terminal loss, thus the approximation
should be adequate in most situations.

B Finding the Lowest Lower Bound

We want to find the lowest lower bound among all possible Markov chains from two loss (or common factor)
distributions; this problem can be formulated as an nonlinear optimization with linear constraints. Here we
use the LLB for the loss distribution to describe the optimization setup, the LLB of the common factor
process can be solved using the exact same method.

Suppose the portfolio loss distribution at two time horizons t < T are sampled by a discrete loss gridli,
the corresponding loss probability are given bypi(t) andpi(T ), which has to satisfy the usual constraints of
being valid loss distributions.

A discrete Markov chain is parameterized by its transition probabilityqi j =P{l j|li}, obviouslyqi j is zero
if i > j. The transition probability has to satisfy the following constraints from the initial loss distribution:

∑
i

qi j = pi(t)

∑
j

qi j = p j(T ) (10)

The lower bound from the Markov chainqi j is a nonlinear objective function that we have to minimize by
adjusting theqi j. Therefore, this is a nonlinear optimization problem with linear constraints given in (10).
The dimension ofqi, j is aboutN2/2 whereN is the number of discrete samples on the loss distribution. For
a N less than 40, this problem can be solved in a few minutes usingPowell’s TOLMIN algorithm.
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